Skip to main content
Log in

Deleterious Mutations of a Claw Keratin in Multiple Taxa of Reptiles

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

We have recently shown that homologs of mammalian hair keratins are expressed in the claws of the green anole lizard, Anolis carolinensis. To test whether reptilian hair keratin homologs are functionally associated with claws, we investigated the conservation of the prototypical reptilian hair keratin homolog, hard acidic keratin 1 (HA1), in representative species from all main clades of reptiles. A complete cDNA of HA1 was cloned from the claw-forming epidermis of the lacertid lizard Podarcis sicula, and partial HA1 gene sequences could be amplified from genomic DNA of tuatara, lizards, gekkos, turtles, and crocodiles. In contrast, the HA1 gene of the limbless slow worm, Anguis fragilis, and of two species of turtles contained at least one deleterious mutation. Moreover, an HA1 gene was undetectable in the softshell turtle, snakes, and birds. Mapping the presence and absence of HA1 onto the phylogenetic tree of sauropsids suggested that the HA1 gene has been lost independently in several lineages of reptiles. The species distribution of HA1 is compatible with the hypothesis of a primary function of HA1 in claws but also shows that the formation of reptilian claws does not strictly depend on this keratin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alibardi L (2008) Microscopic analysis of lizard claw morphogenesis and hypothesis on its evolution. Acta Zool 89:169–178

    Article  Google Scholar 

  • Alibardi L (2009) Development, comparative morphology and cornification of reptilian claws in relation to claws evolution in tetrapods. Contributions Zool 78:25–42

    Google Scholar 

  • Alibardi L (2010) Autoradiographic observations on developing and growing claws of reptiles. Acta Zool 91:233–241

    Article  Google Scholar 

  • Alibardi L, Toni M (2009) Immunocytochemistry and protein analysis suggest that reptilian claws contain small high cysteine-glycine proteins. Tissue Cell 41:180–192

    Article  PubMed  CAS  Google Scholar 

  • Alibardi L, Dalla Valle L, Nardi A, Toni M (2009) Evolution of hard proteins in the sauropsid integument in relation to the cornification of skin derivatives in amniotes. J Anat 214:560–586

    Article  PubMed  CAS  Google Scholar 

  • Alibardi L, Jaeger K, Dalla Valle L, Eckhart L (2010) Ultrastructural localization of hair keratin homologs in the claw of the lizard Anolis carolinensis. J Morphol. doi:10.1002/jmor.10920

  • Dalla Valle L, Nardi A, Toffolo V, Niero C, Toni M, Alibardi L (2007) Cloning and characterization of scale beta-keratins in the differentiating epidermis of geckoes show they are glycine-proline-serine-rich proteins with a central motif homologous to avian beta-keratins. Dev Dyn 236:374–388

    Article  PubMed  CAS  Google Scholar 

  • Dalla Valle L, Nardi A, Bonazza G, Zuccal C, Emera D, Alibardi L (2010) Forty keratin-associated beta-proteins (beta-keratins) form the hard layers of scales, claws, and adhesive pads in the green anole lizard, Anolis carolinensis. J Exp Zool B Mol Dev Evol 314:11–32

    Article  PubMed  Google Scholar 

  • Dhouailly D (2009) A new scenario for the evolutionary origin of hair, feather, and avian scales. J Anat 214:587–606

    Article  PubMed  Google Scholar 

  • Eckhart L, Dalla Valle L, Jaeger K, Ballaun C, Szabo S, Nardi A, Buchberger M, Hermann M, Alibardi L, Tschachler E (2008) Identification of reptilian genes encoding hair keratin-like proteins suggests a new scenario for the evolutionary origin of hair. Proc Natl Acad Sci USA 105:18419–18423

    Article  PubMed  CAS  Google Scholar 

  • Eckhart L, Jaeger K, Tschachler E (2009) The tail domains of keratins contain conserved amino acid sequence motifs. J Dermatol Sci 54:208–209

    Article  PubMed  CAS  Google Scholar 

  • Gillespie JM, Marshall RC, Woods EF (1982) A comparison of lizard claw keratin proteins with those of avian beak and claw. J Mol Evol 18:121–129

    Article  PubMed  CAS  Google Scholar 

  • Gonyea W, Ashworth A (1975) The form and function of retractile claws in the Felidae and other representative carnivorans. J Morphol 145:229–238

    Article  PubMed  CAS  Google Scholar 

  • Hackett SJ, Kimball RT, Reddy S, Bowie RC, Braun EL, Braun MJ, Chojnowski JL, Cox WA, Han KL, Harshman J, Huddleston CJ, Marks BD, Miglia KJ, Moore WS, Sheldon FH, Steadman DW, Witt CC, Yuri T (2008) A phylogenomic study of birds reveals their evolutionary history. Science 320:1763–1768

    Article  PubMed  CAS  Google Scholar 

  • Hallahan DL, Keiper-Hrynko NM, Shang TQ, Ganzke TS, Toni M, Dalla Valle L, Alibardi L (2009) Analysis of gene expression in gecko digital adhesive pads indicates significant production of cysteine- and glycine-rich beta-keratins. J Exp Zool B Mol Dev Evol 312:58–73

    Article  PubMed  Google Scholar 

  • Hamrick MW (2001) Development and evolution of the mammalian limb: adaptive diversification of nails, hooves, and claws. Evol Dev 3:355–363

    Article  PubMed  CAS  Google Scholar 

  • Heid HW, Werner E, Franke WW (1986) The complement of native alpha-keratin polypeptides of hair-forming cells: a subset of eight polypeptides that differ from epithelial cytokeratins. Differentiation 32:101–119

    Article  PubMed  CAS  Google Scholar 

  • Iwabe N, Hara Y, Kumazawa Y, Shibamoto K, Saito Y, Miyata T, Katoh K (2005) Sister group relationship of turtles to the bird-crocodilian clade revealed by nuclear DNA-coded proteins. Mol Biol Evol 22:810–813

    Article  PubMed  CAS  Google Scholar 

  • Jäger K, Fischer H, Tschachler E, Eckhart L (2007) Terminal differentiation of nail matrix keratinocytes involves upregulation of DNase1L2 but is independent of caspase-14 expression. Differentiation 75:939–946

    PubMed  Google Scholar 

  • Kwok S, Chang SY, Sninsky JJ, Wang A (1994) A guide to the design and use of mismatched and degenerate primers. PCR Methods Appl 3:S39–S47

    PubMed  CAS  Google Scholar 

  • Maddin HC, Eckhart L, Jaeger K, Russell AP, Ghannadan M (2009) The anatomy and development of the claws of Xenopus laevis (Lissamphibia: Anura) reveal alternate pathways of structural evolution in the integument of tetrapods. J Anat 214:607–620

    Article  PubMed  Google Scholar 

  • Roux KH (2009) Optimization and troubleshooting in PCR. Cold Spring Harb Protoc. doi:10.1101/pdb.ip66

  • Schweizer J, Bowden PE, Coulombe PA, Langbein L, Lane EB, Magin TM, Maltais L, Omary MB, Parry DA, Rogers MA, Wright MW (2006) New consensus nomenclature for mammalian keratins. J Cell Biol 174:169–174

    Article  PubMed  CAS  Google Scholar 

  • Schweizer J, Langbein L, Rogers MA, Winter H (2007) Hair follicle-specific keratins and their diseases. Exp Cell Res 313:2010–2020

    Article  PubMed  CAS  Google Scholar 

  • Tobiasch E, Winter H, Schweizer J (1992) Structural features and sites of expression of a new murine 65 kD and 48 kD hair-related keratin pair, associated with a special type of parakeratotic epithelial differentiation. Differentiation 50:163–178

    Article  PubMed  CAS  Google Scholar 

  • Toni M, Dalla Valle L, Alibardi L (2007) Hard (Beta-)keratins in the epidermis of reptiles: composition, sequence, and molecular organization. J Proteome Res 6:3377–3392

    Article  PubMed  CAS  Google Scholar 

  • Vidal N, Hedges SB (2005) The phylogeny of squamate reptiles (lizards, snakes, and amphisbaenians) inferred from nine nuclear protein-coding genes. C R Biol 328:1000–1008

    PubMed  CAS  Google Scholar 

  • Wang H, Parry DA, Jones LN, Idler WW, Marekov LN, Steinert PM (2000) In vitro assembly and structure of trichocyte keratin intermediate filaments: a novel role for stabilization by disulfide bonding. J Cell Biol 151:1459–1468

    Article  PubMed  CAS  Google Scholar 

  • Widelitz RB, Veltmaat JM, Mayer JA, Foley J, Chuong CM (2007) Mammary glands and feathers: comparing two skin appendages which help define novel classes during vertebrate evolution. Semin Cell Dev Biol 18:255–266

    Article  PubMed  CAS  Google Scholar 

  • Wu P, Hou L, Plikus M, Hughes M, Scehnet J, Suksaweang S, Widelitz R, Jiang TX, Chuong CM (2004) Evo-Devo of amniote integuments and appendages. Int J Dev Biol 48:249–270

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Maria Buchberger, Sandra Szabo, Susanne Karner, Ramona Gmeiner, and Karin Jaeger for excellent technical support and helpful discussions. This research was supported in part by PRIN 2008 funding from the Ministry of the University and Scientific and Technological Research of Italy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leopold Eckhart.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dalla Valle, L., Benato, F., Rossi, C. et al. Deleterious Mutations of a Claw Keratin in Multiple Taxa of Reptiles. J Mol Evol 72, 265–273 (2011). https://doi.org/10.1007/s00239-010-9427-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-010-9427-y

Keywords

Navigation