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Abstract Optimal upper bounds are given for the norm of the semigroup (e−tV )t≥0,
where V is the classical Volterra operator acting on Lp[0,1], 1 ≤ p ≤ ∞. In particu-
lar, for every p ∈ [1,∞] we prove that

lim
t→+∞

(
t−|1/4−1/(2p)|‖e−tV ‖Lp

)
> 0.

Keywords Volterra operator · Lp-space · Operator semigroup

1 Introduction

We shall consider the classical integral Volterra operator V defined on the space Lp =
Lp[0,1], 1 ≤ p ≤ ∞, by

(Vf )(x) =
∫ x

0
f (t) dt, f ∈ Lp.

The operator V acts boundedly on Lp and then the exponential function

ezV =
∞∑

m=0

zmV m

m! , z ∈ C, (1)
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is well defined.
It was proved in [1, Theorem 1.2] that

lim
t→+∞

ln‖eteiθV ‖Lp

t1/2
= √

2 cos(θ/2), θ ∈ (−π,π], (2)

where 1 ≤ p ≤ ∞. For |θ | < π the right-hand side of the equality (2) is positive. On
the other hand for θ = π the limit in (2) is zero. Thus, a natural and interesting case
θ = π requires a further investigation.

As observed in [2], the semigroup (e−tV )t≥0 is uniformly bounded on Lp if and
only if p = 2. Indeed, suppose that for some p ∈ [1,+∞] one has ‖e−tV ‖Lp ≤ M ,
t ≥ 0. Then by the Laplace transform representation for the generator’s resolvent (see
e.g. [3])

‖(I + V )−n‖Lp = ‖(−V − I )−n‖Lp ≤ M, n ∈ N. (3)

On the other hand, by [4, Theorem 1.1] (for p = 1 this is the result due to Hille [5]),

c2 ≤ n−|1/4−1/(2p)|‖(I + V )−n‖Lp ≤ c1, n ≥ 1, (4)

for some constants c1, c2 > 0, and then in view of (3) we obtain that p = 2. If p = 2
then the operator V is accretive:

Re (Vf,f )L2 = 1

2

∣∣∣∣∣
∫ 1

0
f (x)dx

∣∣∣∣∣
2

≥ 0, f ∈ L2,

and therefore (e−tV )t≥0 is a semigroup of contractions on L2:

‖e−tV ‖L2 ≤ 1, t ≥ 0.

In this note we shall prove that

t−|1/4−1/(2p)|‖e−tV ‖Lp ≤ c̃1, t ≥ 1,

and

t
−|1/4−1/(2p)|
n ‖e−tnV ‖Lp ≥ c̃2, n ≥ 1,

for some positive sequence tn → ∞, n → ∞, thus providing a semigroup counterpart
for the estimate (4) obtained in [4].

2 Main result

Let J = −V . We have

(J nf )(x) = (−1)n

(n − 1)!
∫ x

0
(x − s)n−1f (s) ds, n ∈ N,
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and then

(etJ f )(x) = f (x) +
∞∑

n=1

tn(−1)n

(n − 1)!n!
∫ x

0
(x − s)n−1f (s) ds

= f (x) +
∫ x

0
K(x − s; t)f (s) ds,

where

K(z; t) :=
∞∑

n=1

zn−1tn(−1)n

(n − 1)!n! = −t

∞∑
n=0

(−tz)n

n!(n + 1)! = −
√

t√
z
J1(2

√
tz),

and J1(·) is the Bessel function of the first kind and of the first order. So,

(etJ f )(x) = f (x) − (S(t)f )(x), t > 0, (5)

where

(S(t)f )(x) = √
t

∫ x

0

J1(2
√

ts)√
s

f (x − s)ds

= √
t

∫ x

0

J1(2
√

t (x − s))√
x − s

f (s)ds. (6)

From (5) and (6), using Minkowski’s inequality, we have

‖etJ f ‖Lp ≤ ‖f ‖Lp + ‖f ‖Lp

√
t

∫ 1

0

|J1(2
√

ts)|√
s

ds

=
(

1 +
∫ 2

√
t

0
|J1(s)|ds

)
· ‖f ‖Lp ,

and by the well-known estimate for Bessel functions [6, Chap. 7]:

|J1(s)| ≤ c√
s
, s > 0,

for some c > 0, so we obtain for some constant M

‖etJ ‖Lp ≤ Mt1/4, t ≥ 1, 1 ≤ p ≤ ∞. (7)

Moreover, since (etJ )t≥0 is a semigroup of contractions on L2, by the Riesz-Thorin
interpolation theorem [7, p. 97] and (7) we get

‖etJ ‖Lp ≤ ‖etJ ‖2−2/p
L2

‖etJ ‖2/p−1
L1

≤ M2/p−1t1/(2p)−1/4, t ≥ 1, p ∈ (1,2),

‖etJ ‖Lp ≤ ‖etJ ‖2/p
L2

‖etJ ‖1−2/p
L∞ ≤ M1−2/pt1/4−1/(2p), t ≥ 1, p ∈ (2,∞),
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so that

‖etJ ‖Lp ≤ M |2/p−1|t |1/(2p)−1/4|, t ≥ 1, 1 ≤ p ≤ ∞. (8)

The following theorem, which is the main result of the note, states that the estimate
(8) is sharp for any p ∈ [1,∞].
Theorem For every p ∈ [1,∞]:

lim
t→+∞

(
t−|1/4−1/(2p)|‖etJ ‖Lp

)
> 0. (9)

Proof Let q be the conjugate exponent of p, that is 1/p + 1/q = 1. Then by [4,
p. 765] we obtain

‖etJ ‖Lq = ‖etJ ‖Lp, 1 ≤ p ≤ ∞.

Thus is suffices to prove the estimates (9) for p ∈ [1,2].
Let p ∈ [1,2] be fixed. First of all, from (6) it follows that

‖S(t)f ‖Lp ≥ ‖S(t)f ‖Lp[1/t,1]
≥ ‖S0(t)f ‖Lp[1/t,1] − ‖S1(t)f ‖Lp[1/t,1], f ∈ Lp, t > 1,

where the operator functions Sj (t), j = 0,1 are given by

(S0(t)f )(x) = √
t

∫ x−1/t

0

J1(2
√

t (x − s))√
x − s

f (s)ds,

(S1(t)f )(x) = √
t

∫ x

x−1/t

J1(2
√

t (x − s))√
x − s

f (s)ds.

By Minkowski’s inequality,

‖S1(t)f ‖Lp[1/t,1] ≤ √
t

∫ 1/t

0

|J1(2
√

ts)|√
s

(∫ 1

1/t

|f (x − s)|pdy

)1/p

ds

≤ ‖f ‖Lp

√
t

∫ 1/t

0

|J1(2
√

ts)|√
s

ds

= ‖f ‖Lp

∫ 2

0
|J1(s)|ds = c0‖f ‖Lp ,

where the constant c0 > 0 does not depend on t > 1. So, to prove (9) it suffices to
show that

lim
t→+∞

{
t−|1/4−1/(2p)|

(
sup

f ∈Lp

‖S0(t)f ‖Lp[1/t,1]
‖f ‖Lp[0,1−1/t]

)}
> 0. (10)

We will use the following asymptotic formula for the Bessel function [6, Sect. 7.4]:

J1(2
√

t (x − s)) = −cos(2
√

t (x − s) + π/4)√
πt1/4(x − s)1/4

+ O(t−3/4(x − s)−3/4),
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t (x − s) → ∞.

Observe that S0(t)f can be decomposed as

(S0(t)f )(x) = −(S0,1f )(x) + (S0,2(t)f )(x), x ∈ (1/t,1), (11)

where

(S0,1f )(x) = t1/4

√
π

∫ x−1/t

0

cos(2
√

t (x − s) + π/4)

(x − s)3/4
f (s)ds,

and

|(S0,2(t)f )(x)| ≤ ct−1/4
∫ x−1/t

0

|f (s)|
(x − s)5/4

ds = c1t
−1/4

∫ x

1/t

|f (x − s)|
s5/4

ds.

Then, using Minkowski’s inequality, we get the estimate

‖S0,2(t)f ‖Lp[1−1/t,1] ≤ c1t
−1/4

∫ 1

1/t

1

s5/4

(∫ 1

1−1/t

χ(x − s)|f (x − s)|pdx

)1/p

ds

≤ c1t
−1/4

∫ 1

1/t

ds

s5/4
‖f ‖Lp[0,1−1/t] ≤ 4c1‖f ‖Lp[0,1−1/t],

where χ is the characteristic function of [0,+∞).
Furthermore

‖S0,1(t)f ‖Lp[1/t,1] = t1/4

√
π

‖S̃(t)f ‖Lp[0,1−1/t], (12)

where the operator function S̃(t) is defined as

(S̃(t)f )(x) :=
∫ y

0

cos(2
√

t (x − s + 1/t) + π/4)

(x − s + 1/t)3/4
f (s)ds, x ∈ (0,1 − 1/t).

Thus, by (11) and (12), we conclude that for the proof of the inequality (10), and then
for the proof of the theorem, it is enough to prove that

lim
t→+∞

{
t−|1/4−1/(2p)|t1/4

(
sup

f ∈Lp[0,1−1/t]
‖S̃(t)f ‖Lp[0,1−1/t]

‖f ‖Lp[0,1−1/t]

)}
> 0. (13)

Let tn = π2n2, where n = 2,4, . . . . Then for k = 1,2, . . . , n we have

cos(2
√

tnz + π/4) ≥
√

2

2
, z ∈ Ik :=

[
(k − 1/4)2

n2
,
k2

n2

]
⊂ [0,1]. (14)

Note that

x − s + 1/tn ∈ Ik, s ∈ [1,1/(4n)], x ∈ Mk, (15)
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where

Mk =
[
(k − 1/4)2

n2
− 1

tn
+ 1

4n
,
k2

n2
− 1

tn

]
, k = n

2
+ 1, . . . , n.

The lengths |Mk| of the segments Mk satisfy

|Mk| = k2

n2
− (k − 1/4)2

n2
− 1

4n
= k − n/2 − 1/8

2n2
,

so that

dn :=
n∑

k=n/2+1

|Mk| = 1

2n2

n∑
k=n/2+1

(k − n/2 − 1/8) = 4n − 9

32n
≥ 1

9
, n > 20.

Let now n > 20 be an even integer, let g be the characteristic function of

M =
n⋃

k=n/2

Mk,

and let f be the characteristic function of the segment [1, (4n)−1]. Set βn = 1−1/tn.
Then

‖f ‖Lp[0,βn] =
(

1

4n

)1/p

≤ 1

n1/p
, ‖g‖Lq [0,1−1/tn] ≤ 1,

∣∣∣∣
∫ βn

0
(S̃f )(x)g(x)dx

∣∣∣∣ ≤ ‖S̃f ‖Lp[0,βn]‖g‖Lq [0,βn] ≤ ‖S̃f ‖Lp[0,βn],
1

p
+ 1

q
= 1.

On the other hand, using properties of the segments Mk (see (14), (15)), we obtain
∣∣∣∣
∫ βn

0
(S̃f )(x)g(x)dx

∣∣∣∣ =
∣∣∣∣
∫

x∈M

(S̃f )(x)dx

∣∣∣∣

=
∫

x∈M

∫ 1/4n

0

cos(2
√

tn(x − s + 1/tn + π/4)

(x − s + 1/tn)3/4
ds dx

≥ 1√
2

∫

x∈M

∫ 1/4n

0

ds dx

(x − s + 1/tn)3/4

≥ 1√
2

∫

x∈M

∫ 1/4n

0
ds dx = 1√

2

dn

4n
≥ 1

72n
.

Thus

t
1/4
n

‖S̃f ‖Lp[0,βn]
‖f ‖Lp[0,βn]

≥ √
π

n1/p

72n1/2
= ct

(1/p−1/2)/2
n , c > 0.

If p ∈ [1,2], then the last inequality implies (13), and then (9) follows. The proof is
complete. �
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3 Comments and remarks

Define the differential operator A on Lp , 1 ≤ p < ∞, by

(Af )(y) = −f
′
(y), with the domain D(A) = {f ∈ W 1

p[0,1] : f (0) = 0},
where W 1

p stands for the Sobolev space. The operator A generates the nilpotent C0-
semigroup (etA)t≥0 given by

(etAf )(x) = f (x − t), 0 < x − t ≤ 1, (etAf )(x) = 0, 0 ≤ x < t,

and A−1 = J . So, the Theorem provides the example of a nilpotent C0-semigroup
(etA)t≥0 on Lp , p ∈ [1,∞), p �= 2, such that the C0-semigroup (etA−1

)t≥0 is not

uniformly bounded (more precisely, the norm of etA−1
grows at infinity as tαp , αp =

|1/4 − 1/(2p)|).
Let us consider a more general situation. Let X be a Banach space with the norm

‖ ·‖. Denote by G = G(X) the set of generators of uniformly bounded C0-semigroups
on X and by Gexp = Gexp(X) the set of generators of exponentially stable C0-
semigroup acting on X.

If for A ∈ Gexp(X) one has for some M ≥ 1, ω > 0

‖etA‖ ≤ Me−ωt , t ≥ 0,

then the inverse operator A−1 is bounded, so that A−1 generates the C0-semigroup
(etA−1

)t≥0 given by

etA−1 =
∞∑

m=0

tmA−m

m! , t ≥ 0.

It can also be shown that in this case (see [8, 9]) the semigroup (etA−1
)t≥0 has the

following integral representation:

etA−1
x = x − √

t

∫ ∞

0

J1(2
√

ts)√
s

esAx ds, t > 0, x ∈ X (16)

(compare with (5), (6)), and, in particular, we have the estimate

‖etA−1‖ ≤ 1 + M
√

t

∫ ∞

0

J1(2
√

ts)√
s

e−ωs ds ≤ ct1/4, t ≥ 1. (17)

Consider now A ∈ Gexp(Lp(�,dμ)), 1 ≤ p < ∞, where (�,μ) is a σ -finite measure
space. Suppose that operator A ∈ Gexp(Lp), p ∈ [1,∞) is such that

‖etA‖Lp ≤ Me−ωt , t ≥ 0,

for some constants M ≥ 1 and ω > 0, which do not depend on p. Then from (17) and
the Riesz-Thorin interpolation theorem, we obtain the estimates

‖etA−1‖Lp ≤ c1‖etA−1‖2−2/p
L2

t |1/(2p)−1/4|, t ≥ 1, p ∈ [1,∞). (18)
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Thus, if the semigroup (etA)t≥0 is uniformly bounded on L2, then from (18) we have

‖etA−1‖Lp ≤ c2t
|1/(2p)−1/4|, t ≥ 1, p ∈ [1,∞), (19)

and the above theorem shows the sharpness of (19) for Lp(�,μ), p ∈ [1,2)∪(2,∞).
The problem whether the inverse of the generator of a uniformly bounded C0-

semigroup is again a generator of a uniformly bounded C0-semigroup was posed
by deLaubenfels in [10]. If A is an injective linear operator on X with dense range
generating a uniformly bounded analytic C0-semigroup, then it is well known that
A−1 also generates such a semigroup [10].

On the other hand, it was shown in [8, 9, 11, 12] that there exists a Banach space
X and an injective linear operator on X with dense range generating a uniformly
bounded C0-semigroup whose inverse does not generate a C0-semigroup. In [9] this
was proved for X = lp , p ∈ (1,2) ∪ (2,∞).

If X = H is an infinite-dimensional Hilbert space then the question whether the
implication

A ∈ G(H), kerA = {0} ⇒ A−1 ∈ G(H)

holds is still open.
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