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Abstract Optimal upper bounds are given for the norm of the semigroup (¢ ~*");>0,
where V is the classical Volterra operator acting on L [0, 1], 1 < p < oo. In particu-
lar, for every p € [1, oo] we prove that
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1 Introduction

We shall consider the classical integral Volterra operator V defined on the space L, =
L,[0,1], 1 < p < o0, by

(VA = /0 Fdi, fel,.

The operator V acts boundedly on L, and then the exponential function

[e.]

mvm
V=31 :zec (1)

m!

m=0
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is well defined.
It was proved in [1, Theorem 1.2] that

L s

Z_l}grnoo —iz =+/2co0s(0/2), 60¢€(—m, ], 2)
where 1 < p < o0. For |0| < 7 the right-hand side of the equality (2) is positive. On
the other hand for 6 = 7 the limit in (2) is zero. Thus, a natural and interesting case

0 = m requires a further investigation.
As observed in [2], the semigroup (e’ V),Z() is uniformly bounded on L, if and
only if p = 2. Indeed, suppose that for some p € [1, +00] one has ||e_tv||Lp <M,
t > 0. Then by the Laplace transform representation for the generator’s resolvent (see

e.g. [3])
I+V)" L, ==V -=D""llL, <M, neN, 3)
On the other hand, by [4, Theorem 1.1] (for p =1 this is the result due to Hille [5]),

e < VATVCP(T 4 V)™ L, <1 n=1, )

for some constants c1, ¢ca > 0, and then in view of (3) we obtain that p =2.If p =2
then the operator V is accretive:

1 1

— x)dx

3] rw

and therefore (e™! V)zzo is a semigroup of contractions on Lj:

2

Re(Vf, fiL, = >0, fel,

le VL, <1, =0
In this note we shall prove that
TVAVeP eV <, =1,

and
e P M PN S

for some positive sequence #,, — 00, n — 00, thus providing a semigroup counterpart
for the estimate (4) obtained in [4].

2 Main result

Let J = —V. We have

J"Hx)= (_ );)‘/ (x—)""'f(s)ds, neN,
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and then
S n N X
e’ i) = f(x)+Z - 1)), , / (x—5)"" f(s)ds
=f(X)+/ K(x —s;1) f(s)ds,
0
where

' _ e8] Zn_lln(—l)n ( tZ) B «/;
K(z; 1) ~—Zm—— Zn‘(n—i—l)' _ﬁJl(Z\/E)’

n=1

and Jp (-) is the Bessel function of the first kind and of the first order. So,

€ @) = fx) = SO ), >0, (%)
where
* Q2
(SO N0 =i / Lf) Fx— s)ds
J12vt(x —5))
i f ds. 6
N —Ff ) (6)
From (5) and (6), using Minkowski’s inequality, we have

L@
le' Fll, < 1fle, + 170 f/ [h@+s)| f)'

24/t
_ (1 +/0 |J1<s>|ds> L,

and by the well-known estimate for Bessel functions [6, Chap. 7]:

111(9)] < % 5> 0,

for some ¢ > 0, so we obtain for some constant M
”etJ”L,,fo]M, t>1, 1 <p<=<oo. @)

Moreover, since (e!/ )s>0 is a semigroup of contractions on L, by the Riesz-Thorin
interpolation theorem [7, p. 97] and (7) we get

”etJ”Lp < ||etl||L22/P|| Z‘JHZ/F l<M2/P 1 1/(217) 1/4 r>1, pe(l’z)’

e 1z, < e 171 127 < M'=2e A21CD s pe 2, 00),
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so that
e |z, < MPP=HAVEP=UA > 1 ) < p < oo ®)
The following theorem, which is the main result of the note, states that the estimate

(8) is sharp for any p € [1, oo].

Theorem For every p €[1, 00]:

Tim (t—|1/4—1/(217)| ||€tJ||LP> > 0. ©)

t—+00

Proof Let g be the conjugate exponent of p, thatis 1/p + 1/¢g = 1. Then by [4,
p- 765] we obtain

J tJ
e I, =l I, 1<p<oc.

Thus is suffices to prove the estimates (9) for p € [1, 2].
Let p € [1, 2] be fixed. First of all, from (6) it follows that

1S@ fllL, = 1S@ fllL /01
> 1So) fllL, /e, = IS1@O fllL,nyeny, fE€Lp, t>1,
where the operator functions S;(¢), j =0, 1 are given by
ULV =)
(5006 = [ o

Ji * J12t(x —5))
x—1/t VX =S

——F—f()ds,

(S1(0) f)(x) = ———f(®)ds.

By Minkowski’s inequality,

Ve, 2 /p
||Sl(t)f||Lpum]<\f/ GVl f)' (/1 F— s)|"dy) ds

1/t 2
< ||f||LpJZ/() NGRS

2
= IIfIILp/0 |J1($)lds = coll fllz,,,

where the constant cp > 0 does not depend on ¢ > 1. So, to prove (9) it suffices to

show that

_ So(t

Tim t_|1/4_1/(2p)‘ sup ” 0( )f”Lp[l/t,l] -0 (10)
t—>+00 reL, IfllL,0,1-1/n

We will use the following asymptotic formula for the Bessel function [6, Sect. 7.4]:

J VTG )= SRV =9 /4

“3J4, N—3/4
SR — )1/ +O0@E " (x =),
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t(x —s) —> oo.

Observe that So(¢) f can be decomposed as

So(®) fH(x) = —=(So,1 f)(x) + (So2(0) fHx), xed/t, 1), (11)
where
14 2=t cos(24/1(x — ) +71/4)
(S0,1./)(x) = 7= ) T f(s)ds,
and

x—1/ X —
1(So.2(t) ) (x)] §Ct_l/4/ lMds—clt_l/4f Mds.
0 1

(x —5)34 = PR

Then, using Minkowski’s inequality, we get the estimate

1/p

1 1

_ 1

IS0.2() fllL,1=1/r.11 < c1t 1/4/ ﬁ(/ x(x—S)If(x—S)Ipdx) ds
1/t S -1/t

U ds
<cit™'4 /;/ 57 I AL, 00-170 <4erll fllL, f0.1-1/1s
t

where x is the characteristic function of [0, +00).
Furthermore

1/4

t -
1S0,1(0) fllL, 117611 = ﬁ”s(t)f”Lp[O,l—l/t]s (12)

where the operator function S (1) is defined as

Y cos/t(x —s + 1/t) +m/4)
G —s+ 1/

G fHx) = /0 Fs)ds. xe.1—1/n).

Thus, by (11) and (12), we conclude that for the proof of the inequality (10), and then
for the proof of the theorem, it is enough to prove that

— S@) ,10,1—1
Tm | c11/4=1/@pl /4 sup BSOSy Lo g5
1—=+00 ferLyi01-1/0  Ifllz,01-1/1

Lett, =72n2, wheren=2,4,.... Thenfork=1,2, ..., n we have

2 —1/4)% k2
cos(2«/t7z+7t/4)2§, zeIk::[(kn%,%}C[O,l]. (14)

Note that
x—s+1/tyelx, sel[l,1/(@n)], x € Mg, (15)

@ Springer



348 O. Gomilko

where

M_(k—1/4)2 1 1 k1 n
k= n? t, 4n’n?2 1, |’

The lengths | My | of the segments M}, satisfy

kK k=1/9* 1 k—n/2—-1/8

n2 n? 4n 2n
so that
n n
1 n—-9 1
dyi= ) Mil = > > (k—n/2-1/8)= o 25 n > 20.
k=n/2+1 k=n/2+1

Let now n > 20 be an even integer, let g be the characteristic function of

M= U My,

k=n/2

and let f be the characteristic function of the segment [1, (4n)~11. Set Bn=1—1/t,.

Then
\"r 1
I fllz, 0.8 = (ﬂ) = lgllz,01-1/60 =<1,
Bn - ~ 1 1
A (SHX)gx)dx| < IS fllL, 10,8118 N1L,10., = NS FNL, 10,815 > + i L.
On the other hand, using properties of the segments My (see (14), (15)), we obtain
Bn
‘ (SHx)g(x)dx| = (Sf)(x)dx
0
V4 cos/ta(x — s + 1/, + 1 /4)
dsdx
xXeM x_5+1/tn)3/4
1/4n dsdx
>
- /xEM/ (x =5+ 1/1,)34
1/4n d 1
> — dsdx = ——n
«/E /xeM/O «/— 4n
Thus
S 1/p
Rz IS fllL,10.8:1 . n L P12
I F1lz,0,8.1 " 721

If p €[1, 2], then the last inequality implies (13), and then (9) follows. The proof
complete.
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3 Comments and remarks
Define the differential operator A on L, 1 < p < 00, by
ANH ) = —f/(y), with the domain D(A) = {f € W;[O, 11: f(0) =0},

where W}, stands for the Sobolev space. The operator A generates the nilpotent Co-
semigroup (e'4),>0 given by

@ Hx)=fx—1), O<x—r1<I, @2 )x)=0, 0<x<rt,

and A~! = J. So, the Theorem provides the example of a nilpotent Co-semigroup
(e'),50 on Ly, p €[l,00), p# 2, such that the Co-semigroup (e“rl),zo is not

uniformly bounded (more precisely, the norm of e’ A grows at infinity as %7, o), =
11/4—=1/2p)D.

Let us consider a more general situation. Let X be a Banach space with the norm
|- Il. Denote by G = G(X) the set of generators of uniformly bounded Cy-semigroups
on X and by G.xp = Gexp(X) the set of generators of exponentially stable Cp-
semigroup acting on X.

If for A € Geyp(X) one has for some M > 1, w >0

e < Me™', 1>0,

then the inverse operator A~! is bounded, so that A~! generates the Co-semigroup
-1 .
(€' )50 given by
),‘Ail ad th_m

e = , t>0.
m!

m=0

It can also be shown that in this case (see [8, 9]) the semigroup (e“rl),zo has the
following integral representation:

_ X J1(2/t
e lx:x—\/;/ ue“‘xds, t>0,xeX (16)
0 Vs
(compare with (5), (6)), and, in particular, we have the estimate
_ ® J1(2A/t
e A <1 +M¢Zf %e—ws ds<ct'* 1>1. (17)
0 N

Consider now A € G,y (L ,(2,dp)), 1 < p < 0o, where (€2, 1) is a o -finite measure
space. Suppose that operator A € Gexp(L ), p €[1, 00) is such that

le' L, <Me™, t>0,

for some constants M > 1 and w > 0, which do not depend on p. Then from (17) and
the Riesz-Thorin interpolation theorem, we obtain the estimates

—1 -1 2.2 _
le' A I, < erlle 32 PAVCOTUA > pelloon  (18)
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Thus, if the semigroup (e’ A),Zo is uniformly bounded on L, then from (18) we have

||etA_1||Lp <opVC=VA S 1 pell, 00), (19)

and the above theorem shows the sharpness of (19) for L, (€2, n), p € [1,2)U (2, 00).

The problem whether the inverse of the generator of a uniformly bounded Co-
semigroup is again a generator of a uniformly bounded Cy-semigroup was posed
by deLaubenfels in [10]. If A is an injective linear operator on X with dense range
generating a uniformly bounded analytic Co-semigroup, then it is well known that
A~! also generates such a semigroup [10].

On the other hand, it was shown in [8, 9, 11, 12] that there exists a Banach space
X and an injective linear operator on X with dense range generating a uniformly
bounded Cyp-semigroup whose inverse does not generate a Co-semigroup. In [9] this
was proved for X =1, p € (1,2) U (2, 00).

If X = H is an infinite-dimensional Hilbert space then the question whether the
implication

AeG(H), kerA={0} = A~ e G(H)

holds is still open.
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