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Abstract A right-chain semigroup is a semigroup whose right ideals are totally or-
dered by set inclusion. The main result of this paper says that if S is a right-chain
semigroup admitting a ring structure, then either S is a null semigroup with two
elements or sS = S for some s ∈ S. Using this we give an elementary proof of
Oman’s characterization of semigroups admitting a ring structure whose subsemi-
groups (containing zero) form a chain. We also apply this result, along with two other
results proved in this paper, to show that no nontrivial multiplicative bounded inter-
val semigroup on the real line R admits a ring structure, obtaining the main results of
Kemprasit et al. (ScienceAsia 36: 85–88, 2010).

Keywords Semigroup admitting a ring structure · Right-chain semigroup ·
Multiplicative interval semigroup

Introduction

If (R,+, ·) is a ring, then the multiplicative structure (R, ·) of the ring is by definition
a semigroup with zero. On the other hand, as it is shown by examples of left zero
semigroups (i.e. semigroups S such that xy = x for any x, y ∈ S) with zero adjoined,
not every semigroup (S, ·) with zero admits a ring structure, that is an addition +
cannot always be defined on S such that (S,+, ·) is a ring.

The problem of characterizing semigroups admitting ring structure was studied by
many authors (see [9] for a brief survey of results on the topic, obtained till 1970).
As proved by S.R. Kogalovski [5], it is impossible to characterize the class of all
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semigroups admitting ring structure axiomatically, and thus to obtain worthwhile re-
sults the problem is often restricted to particular classes of semigroups. Sometimes it
makes the problem quite easy. For example, since an abelian group structure can be
defined on every nonempty set (interestingly, the statement is equivalent to the Ax-
iom of Choice, see [3]), every null semigroup (i.e. a semigroup S such that xy = 0 for
any x, y ∈ S) admits a ring structure. In general, however, the problem of identifying
semigroups admitting ring structure within a given class of semigroups seems to be
difficult.

In this paper all semigroups as well as all subsemigroups are with zero 0, semi-
group operation is written multiplicatively, and all rings are associative but not neces-
sarily with unity. If S is a semigroup such that an addition + may be defined on S so
that (S,+, ·) is a ring, then we say that S admits a ring structure. Such a semigroup
S will also be called a ring semigroup.

In Sect. 1 of this paper we study right-chain semigroups admitting ring structure.
Recall that a semigroup S is said to be a right-chain semigroup if the right ideals of S

are totally ordered by set inclusion [2]. The main result of the paper is Theorem 1.1
which says that if S is a right-chain semigroup admitting a ring structure, then ei-
ther S is a null semigroup with two elements or sS = S for some s ∈ S. Using this
result, in Sect. 2 we give an elementary proof of G. Oman’s characterization [7, The-
orem 1] of semigroups admitting a ring structure whose subsemigroups form a chain.
In Sect. 3 we apply Theorem 1.1, along with Theorems 1.3 and 3.1, to give alterna-
tive and shorter proofs of main results of Y. Kemprasit et al. from [4] which imply
that the trivial semigroups {0} and {1} are the only multiplicative bounded interval
semigroups on the real line R admitting a ring structure.

If S is a semigroup and a ∈ S, then the right ideal of S generated by a is denoted
by aS1, i.e. aS1 = {a}∪aS = {a}∪{as | s ∈ S}, and the subsemigroup of S generated
by a is denoted by 〈0, a〉, i.e. 〈0, a〉 = {0} ∪ {an : n ∈ N}. If S is a semigroup with
unity 1, then we assume that 1 �= 0. For a set A, the cardinality of A is denoted by
CardA.

1 On right-chain semigroups admitting ring structure

A right-chain semigroup is a semigroup whose right ideals are totally ordered by set
inclusion [2]. It is easy to see that a semigroup S is a right-chain semigroup if and
only if aS1 ⊆ bS1 or bS1 ⊆ aS1 for any a, b ∈ S.

Theorem 1.1 Let S be a right-chain semigroup such that sS �= S for any s ∈ S. Then
S is a ring semigroup if and only if S is a null semigroup with two elements.

Proof The “if” part is clear. For the “only if” part, assume (S,+, ·) is a ring for some
addition +. We first prove that S is a null semigroup. For contradiction, suppose xy �=
0 for some x, y ∈ S. Since S is a right-chain semigroup, we have xS1 ⊆ (x +xy)S1 or
(x + xy)S1 ⊆ xS1, and since x �= x + xy, in both cases it follows that x ∈ xS. Hence
x = xs for some s ∈ S. Set I = {t −st | t ∈ S}. If s ∈ I , then s = t −st for some t ∈ S,
which leads to x = xs = x(t − st) = xt − (xs)t = xt − xt = 0, a contradiction. Thus
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s �∈ I , and since I is a right ideal of the right-chain semigroup S, I ⊆ sS follows.
Hence t − st ∈ sS for any t ∈ S, which implies S = sS, a contradiction. Thus S is a
null semigroup.

To complete the proof, we show that S is a semigroup with two elements. If S =
{0}, then sS = S for s = 0, a contradiction. Thus S contains a nonzero element.
Suppose S contains two different nonzero elements a, b. Since S is a null semigroup,
aS1 = {0, a} and bS1 = {0, b} are incomparable right ideals of S, contradicting that
S is a right-chain semigroup. Hence CardS = 2. �

Obvious examples of right-chain semigroups are semigroups S such that S =
〈0, s〉 for some s ∈ S; for the purpose of this paper, let us call such a semigroup S a
0-cyclic semigroup. Since the multiplicative group of a finite field (F,+, ·) is cyclic,
(F, ·) is a 0-cyclic ring semigroup. Below we give a new proof of Corollary 3.3(3) of
[1] which says that up to isomorphism, with exception of the trivial semigroup and
the null semigroup with two elements, 0-cyclic ring semigroups are exactly multi-
plicative semigroups of finite fields, i.e. multiplicative semigroups of the form Fpn ,
where p is a prime and n ∈ N. As an immediate consequence of the corollary we
obtain a well-known result that all 0-cyclic ring semigroups are finite (e.g. see [10,
Corollary 1.4]).

Corollary 1.2 A semigroup S is a 0-cyclic ring semigroup if and only if either S =
{0}, or S = {0, s} with s �= 0 and s2 = 0, or S ∼= Fpn for some prime p and n ∈ N. In
particular, every 0-cyclic ring semigroup is finite.

Proof Assume S is a nonzero 0-cyclic ring semigroup, i.e. S = {0} ∪ {sn : n ∈ N} for
some s ∈ S \ {0}. By Theorem 1.1, it suffices to consider the case where skS = S for
some k ∈ N. Then s = skx for some x ∈ S, which implies s = sm for some m ≥ 2.
Thus S is finite, 1 = sm−1 is an identity element of S, and each nonzero element of S

is invertible. Since S is a commutative ring semigroup, it follows that S is isomorphic
to a multiplicative semigroup of a finite field.

Obviously, the semigroups {0}, {0, s} with s2 = 0, and Fpn are 0-cyclic ring semi-
groups. �

Condition (1.1) of our next result with A = J obviously is satisfied for any right-
chain semigroup. We state the result in a more general setting for further applications
in Sect. 3.

Theorem 1.3 Let S be a semigroup such that eS = S for some e ∈ S, and let J = {s ∈
S : sS �= S}. If S is a ring semigroup, then for any subset A of S with the following
property:

for any x, y ∈ A there exists z ∈ J with xS ⊆ zS and yS ⊆ zS, (1.1)

we have CardA ≤ Card (S \ A) and CardS ≤ 2 · Card (S \ A).
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Proof Let + be an addition such that (S,+, ·) is a ring and let x ∈ A. If e + x ∈ A,
then for some z ∈ J we have (e + x)S ⊆ zS and xS ⊆ zS, which leads to

S = eS = ((e + x) − x)S ⊆ (e + x)S + xS ⊆ zS + zS ⊆ zS �= S,

a contradiction. Hence for any x ∈ A we have e + x ∈ S \ A, and thus by setting
ϕ(x) = e + x we obtain an injection of A into S \ A, which proves that CardA ≤
Card (S \ A). Therefore, CardS = CardA + Card (S \ A) ≤ 2 · Card (S \ A). �

As a consequence of Theorems 1.1 and 1.3, we obtain the following result of
L.J.M. Lawson [6] (see [9, Theorem 4.7]).

Corollary 1.4 Let S be a right-chain semigroup such that for any x, y ∈ S, xS1 =
yS1 implies x = y. If S is a ring semigroup, then CardS ≤ 2.

Proof Set J = {s ∈ S : sS �= S}. If S = J , then the result follows from Theorem 1.1.
We are left with the case where S �= J . If x, y ∈ S \ J , then xS1 = S = yS1, and by
hypothesis x = y follows. Hence in this case S \ J consists of only one element and
the result follows from Theorem 1.3 by taking A = J . �

2 Ring semigroups whose subsemigroups form a chain

In [7] G. Oman characterized ring semigroups whose subsemigroups form a chain
with respect to set inclusion (see Theorem 2.1 below). His proof however uses other
nontrivial results, in particular Mihǎilescu’s Theorem on Catalan’s Conjecture (see
[7] for details). We note that semigroups whose subsemigroups form a chain are
right-chain semigroups and thus Theorem 1.1 applies to this class of semigroups.
Below we present an elementary and selfcontained proof of Oman’s result.

Theorem 2.1 ([7, Theorem 1]) A semigroup S is a ring semigroup whose subsemi-
groups are totally ordered if and only if one of the following holds:

(1) S = {0},
(2) S is a null semigroup with two elements,
(3) S ∼= Fp , where p is a prime and p = 2n + 1 for some n ∈ N ∪ {0},
(4) S ∼= F2n , where n ∈ N is such that 2n − 1 is a prime,
(5) S ∼= F9.

Proof It is easy to check that the semigroups in (1)–(5) satisfy the condition. Con-
versely, suppose S is a ring semigroup whose subsemigroups form a chain. If S = {0},
then S is of type (1). Assume that S �= {0}. Since for any x, y ∈ S \ {0} we have
〈0, x〉 ⊆ 〈0, y〉 or 〈0, y〉 ⊆ 〈0, x〉, x = yn or y = xn for some n ∈ N, which clearly
implies xy = yx. Thus S is commutative. If sS �= S for any s ∈ S, then S is of type
(2) by Theorem 1.1. Thus we assume that sS = S for some s ∈ S and S �= {0}. Then
s = se for some e ∈ S \ {0}. Since for any x ∈ S = sS there exists y ∈ S with x = sy,
we have ex = esy = sey = sy = x and thus e is an identity element of S and {0, e}
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is a subsemigroup of S. Since subsemigroups of S form a chain, for any t ∈ S \ {0}
we have {0, e} ⊆ 〈0, t〉 and thus tn = e for some n ∈ N, which shows that S \ {0} is a
torsion abelian group.

Let + be an addition such that (S,+, ·) is a ring. From the preceding it follows
that (S,+, ·) is a field of prime characteristic p. We claim that

any finite subfield F of (S,+, ·) belongs to family (3), (4) or (5), (2.1)

that is, either F is isomorphic to a field Fp with p as described in (3), or F is iso-
morphic to a field F2n with n as described in (4), or F ∼= F9. Once we have proved
this, it will follow that S is finite, and thus by (2.1) S itself belongs to family (3),
(4) or (5). Indeed, since the multiplicative group S \ {0} is torsion, every element of
S belongs to a finite subfield of S. Hence, if S were infinite, then S would contain
infinitely many finite subfields. But, assuming (2.1), if p �∈ {2,3}, then the only finite
subfield of S is Fp , and if p = 3, then the only possible finite subfields of S are F3

and F9. We are left with the case where p = 2. Suppose F2m1 and F2m2 are different
subfields of S with 2 < m1 < m2. Since subsemigroups of S form a chain, it follows
that F2m1 � F2m2 . Hence, assuming (2.1), 2m1 − 1 and 2m2 − 1 are different primes
such that 2m1 − 1 divides 2m2 − 1. This contradiction shows that if p = 2, then S

contains no more than two finite subfields.
To prove (2.1), suppose F is a finite subfield of S. Then F = Fpm for some m ∈ N

and the multiplicative group F \ {0} is a cyclic subgroup of S \ {0} of order pm − 1.
Thus for any a, b ∈ N, if pm − 1 = ab, then the group F \ {0} contains subgroups
A,B of order a, b respectively, and since the subsemigroups A ∪ {0} and B ∪ {0} of
S are comparable, it follows that A ⊆ B or B ⊆ A, and so a divides b or b divides a.
Therefore, if pm − 1 �= 1, then

pm − 1 = qk for some prime q and k ∈ N. (2.2)

Assume p �= 2. Then pm − 1 �= 1, hence (2.2) holds with q = 2, i.e. pm − 1 = 2k .
If m is even, then 2k = (p

m
2 − 1)(p

m
2 + 1), hence p

m
2 − 1 = 2α and p

m
2 + 1 = 2β

for some α,β ∈ N. Thus 2 = p
m
2 + 1 − (p

m
2 − 1) = 2β − 2α , so α = 1, and thus

p = 3 and m = 2. Hence F ∼= F9 is of type (5). We are left with the case where m is
odd. Then 2k = (p − 1)

∑m−1
i=0 pi. Since m and p are odd,

∑m−1
i=0 pi is odd too, thus

∑m−1
i=0 pi = 1, and m = 1 follows. Hence F ∼= Fp , where p = 2k + 1 is a prime, and

thus F belongs to the family (3).
Now assume p = 2. If 2m − 1 = 1, then m = 1 and F ∼= F2 belongs to the fam-

ily (3). Assume 2m − 1 �= 1. Then from (2.2) we have 2m − 1 = qk for some prime
q and k ∈ N. If k is even, then qk ≡ 1(mod 4), thus 2m ≡ 2(mod 4). Hence m = 1,
so qk = 1, a contradiction. If k is odd, then 2m = (1 + q)

∑k−1
i=0 (−q)i . Since k and q

are odd, so is
∑k−1

i=0 (−q)i , and thus 2m = 1 + q . Hence F ∼= F2m , where m ∈ N and
2m − 1 = q is a prime, and thus F belongs to the family (4). �
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3 Bounded interval semigroups on R admitting ring structure

It follows from [8, p. 273] that the only bounded interval semigroups on the real line
R, with ordinary multiplication, are the trivial intervals {0} = [0,0] and {1} = [1,1],
and intervals of the following types:

(i) [0, b) or [0, b], where 0 < b ≤ 1;
(ii) [a, b] or (a, b] or (a, b), where −1 ≤ a < 0 and a2 ≤ b ≤ 1;

(iii) [a, b), where −1 < a < 0 and a2 ≤ b ≤ 1.

In [4] Kemprasit, Danpattanamongkon and Savettaseranee proved that no semi-
group of type (i), (ii) or (iii) admits a ring structure. In this section we apply Theo-
rem 1.3, and adopt some ideas of [4], to give an alternative and more consistent proof
of the result.

We begin with the following general observation. Recall that if S is a semigroup
and s ∈ S, then s is said to be a central element of S if sx = xs for any x ∈ S, and s

is called a left cancellative element of S if sx = sy implies x = y for any x, y ∈ S.

Theorem 3.1 Let S be a semigroup and let s be a central, cancellative element of S.
Then S is a ring semigroup if and only if sS is a ring semigroup.

Proof If S is a ring semigroup, then there exists an addition + such that (S,+, ·) is a
ring. Since sS is a right ideal of the ring, sS is a ring semigroup.

Conversely, let sS be a ring semigroup. Then there exists an addition + such that
(sS,+, ·) is a ring. We define an operation ⊕ on S as follows. For any x, y ∈ S,
sx + sy ∈ sS, and thus there exists t ∈ S such that sx + sy = st . Since s is left
cancellative, such a t is unique, and we put x ⊕ y = t . In other words, x ⊕ y is a
unique element of S such that

sx + sy = s(x ⊕ y).

It is clear that x ⊕ y = y ⊕ x for any x, y ∈ S. Furthermore, for any x, y, z ∈ S we
have

s(x ⊕ (y ⊕ z)) = sx + s(y ⊕ z) = sx + (sy + sz)

= (sx + sy) + sz = s(x ⊕ y) + sz = s((x ⊕ y) ⊕ z),

which implies that x ⊕ (y ⊕ z) = (x ⊕y)⊕ z, and thus the operation ⊕ is associative.
Moreover, if x ∈ S, then s(0 ⊕ x) = s0 + sx = 0 + sx = sx, and thus 0 ⊕ x = x,
showing that 0 is a zero element of ⊕. Furthermore, if x ∈ S, then there exists y ∈ S

with sx + sy = 0. Hence s(x ⊕ y) = s0, and x ⊕ y = 0 follows, proving that (S,⊕)

is an abelian group.
To complete the proof, we consider any elements x, y, z ∈ S. Since s is central,

s(x(y ⊕ z)) = x(s(y ⊕ z)) = x(sy + sz) = xsy + xsz = s(xy) + s(xz)

= s(xy ⊕ xz),
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and x(y ⊕ z) = xy ⊕ xz follows. Furthermore

s((x ⊕ y)z) = (s(x ⊕ y))z = (sx + sy)z = sxz + syz = s(xz ⊕ yz),

which shows that (x ⊕ y)z = xz ⊕ yz. Thus (S,⊕, ·) is a ring. Hence S is a ring
semigroup. �

We are now in a position to prove that no multiplicative interval semigroup of type
(i) admits a ring structure (cf. [4, Corollaries 1, 2]).

Lemma 3.2 Let b ∈ R be such that 0 < b ≤ 1. Then neither of the multiplicative
interval semigroups [0, b] and [0, b) is a ring semigroup.

Proof It is easy to see that [0,1] and [0,1) are right-chain semigroups. Hence by
Corollary 1.4 neither of these two semigroups is a ring semigroup. We are left with
the case where b < 1. Then b ∈ [0,1), and since [0, b] = b[0,1] and [0, b) = b[0,1),
Theorem 3.1 implies that neither [0, b] nor [0, b) is a ring semigroup. �

Next we turn to multiplicative interval semigroups of the form [a, b] (cf. [4, Corol-
lary 3]).

Lemma 3.3 If −1 ≤ a < 0 and a2 ≤ b ≤ 1, then the multiplicative interval semi-
group [a, b] is not a ring semigroup.

Proof We first prove the special case where b = 1. For that we apply Theorem 1.3
with A = (a,1). By this theorem, to prove that S = [a,1] is not a ring semigroup, it
suffices to show that for any x, y ∈ (a,1) there exists z ∈ J = {s ∈ S : sS �= S} with
xS ⊆ zS and yS ⊆ zS. Note that J = [a,1) if a �= −1, and J = (a,1) if a = −1;
in particular A ⊆ J . We can assume that x < y. The case where x = 0 or y = 0 is
clear. If 0 < x < y, then x = y x

y
∈ yS, and thus we can put z = y in this case. If

x < y < 0, then y = x
y
x

∈ xS, and we can set z = x. We are left with the case where
a < x < 0 < y < 1. Then xa < 1, x

a
< 1 and y < 1, and thus there exists z ∈ S with

max{xa, x
a
, y} < z < 1 (in particular z ∈ J ). Since za < x < xa < z and za < ya <

y < z, we have xS = [x, xa] ⊆ [za, z] = zS and yS = [ya, y] ⊆ [za, z] = zS, as
desired.

Now we prove the general case. If a ≥ −b, then −1 ≤ a
b

< 0 and thus, as we have
already proved, [ a

b
,1] is not a ring semigroup. Hence [a, b] = b[ a

b
,1] is not a ring

semigroup by Theorem 3.1. If a < −b, then −1 < b
a

< 0, and thus [ b
a
,1] is not a

ring semigroup. Hence by Theorem 3.1, a2[ b
a
,1] = [ab, a2] = a[a, b] is not a ring

semigroup, and thus by the same theorem, [a, b] is not a ring semigroup. �

Now we consider the remaining bounded interval semigroups on R (cf. [4, Corol-
lary 4]).
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Lemma 3.4

(1) If −1 ≤ a < 0 and a2 ≤ b ≤ 1, then neither of the multiplicative interval semi-
groups (a, b] and (a, b) is a ring semigroup.

(2) If −1 < a < 0 and a2 ≤ b ≤ 1, then the multiplicative interval semigroup [a, b)

is not a ring semigroup.

Proof Parts (1) and (2) follow by the same argument. Indeed, let S be any of the
semigroups (a, b], (a, b) or [a, b). For any n ∈ N set dn = b

2 + b
3n

. Then dn ∈ (a, b),

and thus dn ∈ S. Furthermore [ ab
2 , b2

2 ] ⊆ dnS ⊆ [adn, bdn]. Since limn→∞(adn) = ab
2

and limn→∞(bdn) = b2

2 , it follows that [ ab
2 , b2

2 ] = ⋂
n∈N

dnS. Hence if (S,+, ·) is a

ring for an addition +, then [ ab
2 , b2

2 ] is an ideal of the ring, and thus [ ab
2 , b2

2 ] is a ring
semigroup, contradicting Lemma 3.3. �

As an immediate consequence of Lemmas 3.2, 3.3 and 3.4, we obtain the following
result.

Theorem 3.5 [4] The trivial semigroups {0} and {1} are the only bounded multiplica-
tive interval semigroups on R admitting a ring structure.
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