Skip to main content

Advertisement

Log in

Protein Extraction by Means of Electroporation from E. coli with Preserved Viability

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

Extracting proteins by means of electroporation from different microorganisms is gaining on its importance, as electroporation is a quick, chemical-free, and cost-effective method. Since complete cell destruction (to obtain proteins) necessitates additional work, and cost of purifying the end-product is high, pulses have to be adjusted in order to prevent total disintegration. Namely, total disintegration of the cell releases bacterial membrane contaminants in the final sample. Therefore, our goal was to study different electric pulse parameters in order to extract as much proteins as possible from E. coli bacteria, while preserving bacterial viability. Our results show that by increasing electric field strength the concentration of extracted proteins increases and viability reduces. The correlation is reasonable, since high electric field destroys bacterial envelope, releasing all intracellular components into surrounding media. The strong correlation was also found with pulse duration. However, at longer pulses we obtained more proteins, while bacterial viability was not as much affected. Pulse number and/or pulse repetition frequency at our conditions have no or little effect on concentration of extracted proteins and/or bacterial viability. We can conclude that the most promising pulse protocol for protein extraction by means of electroporation based on our experience would be longer pulses with lower pulse amplitude assuring high protein yield and low effect on bacterial viability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Asavasanti S, Ristenpart W, Stroeve P, Barrett DM (2011) Permeabilization of plant tissues by monopolar pulsed electric fields: effect of frequency. J Food Sci 76:E98–E111

    Article  CAS  PubMed  Google Scholar 

  • Assenberg R, Wan PT, Geisse S, Mayr LM (2013) Advances in recombinant protein expression for use in pharmaceutical research. Curr Opin Struct Biol 23:393–402

    Article  CAS  PubMed  Google Scholar 

  • Bermudez-Aguirre D, Dunne CP, Barbosa-Canovas GV (2012) Effect of processing parameters on inactivation of Bacillus cereus spores in milk using pulsed electric fields. Int Dairy J 24:13–21

    Article  Google Scholar 

  • Bradford MM (1976) Rapid and sensitive method for quantitation of microgram quantities of protein utilizing principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Cooper GM (2000) The cell: a molecular approach, 2nd edn. ASM press, Washington, USA

    Google Scholar 

  • Coustets M, Al-Karablieh N, Thomsen C, Teissié J (2013) Flow process for electroextraction of total proteins from microalgae. J Membr Biol 246:751–760

    Article  CAS  PubMed  Google Scholar 

  • Coustets M, Ganeva V, Galutzov B, Teissie J (2015) Millisecond duration pulses for flow-through electro-induced protein extraction from E.coli and associated eradication. Bioelectrochemistry 103:82–91

    Article  CAS  PubMed  Google Scholar 

  • Daud AI, DeConti RC, Andrews S, Urbas P, Riker AI, Sondak VK, Munster PN, Sullivan DM, Ugen KE, Messina JL, Heller R (2008) Phase I trial of interleukin-12 plasmid electroporation in patients with metastatic melanoma. J Clin Oncol 26:5896–5903

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Flisar K, Haberl Meglic S, Morelj J, Golob J, Miklavcic D (2014) Testing a prototype pulse generator for a continuous flow system and its use for E. coli inactivation and microalgae lipid extraction. Bioelectrochemistry 100:44–51

    Article  CAS  PubMed  Google Scholar 

  • Ganeva V, Galutzov B, Teissié J (2003) High yield electroextraction of proteins from yeast by a flow process. Anal Biochem 315:77–84

    Article  CAS  PubMed  Google Scholar 

  • Garcia D, Gomez N, Manas P, Raso J, Pagan R (2007) Pulsed electric fields cause bacterial envelopes permeabilization depending on the treatment intensity, the treatment medium pH and the microorganism investigated. Int J Food Microbiol 113:219–227

    Article  CAS  PubMed  Google Scholar 

  • Geciova J, Bury D, Jelen P (2002) Methods for disruption of microbial cells for potential use in the dairy industry—a review. Int Dairy J 12:541–553

    Article  CAS  Google Scholar 

  • Gurung N, Ray S, Bose S, Rai V (2013) A broader view: microbial enzymes and their relevance in industries, medicine, and beyond. BioMed Res Int 2013:329121

    Article  PubMed Central  PubMed  Google Scholar 

  • Haberl S, Jarc M, Strancar A, Peterka M, Hodžić D, Miklavčič D (2013a) Comparison of alkaline lysis with electroextraction and optimization of electric pulses to extract plasmid DNA from Escherichia coli. J Membr Biol 246:861–867

    Article  CAS  PubMed  Google Scholar 

  • Haberl S, Kandušer M, Flisar K, Hodžić D, Bregar VB, Miklavčič D, Escoffre JM, Rols MP, Pavlin M (2013b) Effect of different parameters used for in vitro gene electrotransfer on gene expression efficiency, cell viability and visualization of plasmid DNA at the membrane level. J Gene Med 15:169–181

    Article  CAS  PubMed  Google Scholar 

  • Kargi AY, Merriam GR (2013) Diagnosis and treatment of growth hormone deficiency in adults. Nat Rev Endocrinol 9:335–345

    Article  CAS  PubMed  Google Scholar 

  • Kotnik T, Pucihar G, Miklavcic D (2010) Induced transmembrane voltage and its correlation with electroporation-mediated molecular transport. J Membr Biol 236:3–13

    Article  CAS  PubMed  Google Scholar 

  • Matos T, Senkbeil S, Mendonca A, Queiroz JA, Kutter JP, Bulow L (2013) Nucleic acid and protein extraction from electropermeabilized E. coli cells on a microfluidic chip. Analyst 138:7347–7353

    Article  CAS  PubMed  Google Scholar 

  • Meacle FJ, Lander R, Shamlou PA, Titchener-Hooker NJ (2004) Impact of engineering flow conditions on plasmid DNA yield and purity in chemical cell lysis operations. Biotechnol Bioeng 87:293–302

    Article  CAS  PubMed  Google Scholar 

  • Miklavcic D, Mali B, Kos B, Heller R, Sersa G (2014) Electrochemotherapy: from the drawing board into medical practice. Biomed Eng Online 13:29

    Article  PubMed Central  PubMed  Google Scholar 

  • Naglak TJ, Hettwer DJ, Wang HY (1990) Chemical permeabilization of cells for intracellular product release. Bioprocess Technol 9:177–205

    CAS  PubMed  Google Scholar 

  • Neumann E, Rosenheck K (1972) Permeability changes induced by electric impulses in vesicular membranes. J Membr Biol 10:279–290

    Article  CAS  PubMed  Google Scholar 

  • Neumann E, Schaefer-Ridder M, Wang Y, Hofschneider PH (1982) Gene transfer into mouse lyoma cells by electroporation in high electric fields. EMBO J 1:841–845

    PubMed Central  CAS  PubMed  Google Scholar 

  • Niyonzima FN, More SS (2014) Detergent-compatible bacterial amylases. Appl Biochem Biotechnol 174:1215–1232

    Article  CAS  PubMed  Google Scholar 

  • Ohshima T, Hama Y, Sato M (2000) Releasing profiles of gene products from recombinant Escherichia coli in a high-voltage pulsed electric field. Biochem Eng J 5:149–155

    Article  CAS  PubMed  Google Scholar 

  • Okino M, Mohri H (1987) Effects of a high-voltage electrical impulse and an anticancer drug on in vivo growing tumors. Jpn J Cancer Res Gann 78:1319–1321

    CAS  PubMed  Google Scholar 

  • Olempska-Beer ZS, Merker RI, Ditto MD, DiNovi MJ (2006) Food-processing enzymes from recombinant microorganisms-a review. Regul Toxicol Pharmacol 45:144–158

    Article  CAS  PubMed  Google Scholar 

  • Pataro G, Ferrentino G, Ricciardi C, Ferrari G (2010) Pulsed electric fields assisted microbial inactivation of S. cerevisiae cells by high pressure carbon dioxide. J Supercrit Fluids 54:120–128

    Article  CAS  Google Scholar 

  • Pataro G, Senatore B, Donsi G, Ferrari G (2011) Effect of electric and flow parameters on PEF treatment efficiency. J Food Eng 105:79–88

    Article  Google Scholar 

  • Pucihar G, Krmelj J, Rebersek M, Batista Napotnik T, Miklavcic D (2011) Equivalent pulse parameters for electroporation. IEEE Trans Biomed Eng 58:3279–3288

    Article  PubMed  Google Scholar 

  • Reasoner DJ (2004) Heterotrophic plate count methodology in the United States. Int J Food Microbiol 92:307–315

    Article  PubMed  Google Scholar 

  • Roff SR, Noon-Song EN, Yamamoto JK (2014) The significance of interferon-γ in HIV-1 pathogenesis, therapy, and prophylaxis. Front Immunol 4:498

    Article  PubMed Central  PubMed  Google Scholar 

  • Rols MP, Teissie J (1990) Electropermeabilization of mammalian cells. Quantitative analysis of the phenomenon. Biophys J 58:1089–1098

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rols MP, Teissie J (1998) Electropermeabilization of mammalian cells to macromolecules: control by pulse duration. Biophys J 75:1415–1423

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Salazar O, Asenjo JA (2007) Enzymatic lysis of microbial cells. Biotechnol Lett 29:985–994

    Article  CAS  PubMed  Google Scholar 

  • Saulis G (2010) Electroporation of cell membranes: the fundamental effects of pulsed electric fields in food processing. Food Eng. Rev. 2:52–73

    Article  Google Scholar 

  • Schiavoni G, Mattei F, Gabriele L (2013) Type I interferons as stimulators of DC-mediated cross-priming: impact on anti-tumor response. Front Immunol 4:483

    Article  PubMed Central  PubMed  Google Scholar 

  • Schütte H, Kula MR (1990) Pilot- and process-scale techniques for cell disruption. Biotechnol Appl Biochem 12:599–620

    PubMed  Google Scholar 

  • Shiina S, Ohshima T, Sato M (2007) Extracellular production of alpha-amylase during fed-batch cultivation of recombinant Escherichia coli using pulsed electric field. J Electrost 65:30–36

    Article  CAS  Google Scholar 

  • Suga M, Hatakeyama T (2009) Gene transfer and protein release of fission yeast by application of a high voltage electric pulse. Anal Bioanal Chem 394:13–16

    Article  CAS  PubMed  Google Scholar 

  • Suga M, Goto A, Hatakeyama T (2007) Electrically induced protein release from Schizosaccharomyces pombe cells in a hyperosmotic condition during and following a high electropulsation. J Biosci Bioeng 103:298–302

    Article  CAS  PubMed  Google Scholar 

  • Toepfl S, Heinz V, Knorr D (2007) High intensity pulsed electric fields applied for food preservation. Chem Eng Process 46:537–546

    Article  CAS  Google Scholar 

  • Wolf H, Rols MP, Boldt E, Neumann E, Teissie J (1994) Control by pulse parameters of electric field-mediated gene transfer in mammalian cells. Biophys J 66:524–531

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wong TK, Neumann E (1982) Electric field mediated gene transfer. Biochem Biophys Res Commun 107:584–587

    Article  CAS  PubMed  Google Scholar 

  • Xie TD, Tsong TY (1992) Study of mechanisms of electric field-induced DNA transfection. III. Electric parameters and other conditions for effective transfection. Biophys J 63:28–34

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zgalin MK, Hodzic D, Rebersek M, Kanduser M (2012) Combination of microsecond and nanosecond pulsed electric field treatments for inactivation of Escherichia coli in water samples. J Membr Biol 245:643–650

    Article  CAS  PubMed  Google Scholar 

  • Zhan Y, Martin VA, Geahlen RL, Lu C (2010) One-step extraction of subcellular proteins from eukaryotic cells. Lab Chip 10:2046–2048

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhan Y, Sun C, Cao Z, Bao N, Xing J, Lu C (2012) Release of intracellular proteins by electroporation with preserved cell viability. Anal Chem 84:8102–8105

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported under various grants by the Slovenian Research Agency (ARRS) and was conducted within the scope of the EBAM European Associated Laboratory (LEA). This research was possible as a result of networking efforts within COST Action TD1104 (www.electroporation.net). Experimental work was performed in the infrastructure center ‘Cellular Electrical Engineering’ at University of Ljubljana. We would like to thank Dr. Rok Kostanjšek, from Biotechnical faculty, University of Ljubljana for providing SEM pictures of our samples and giving the explanations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Damijan Miklavcic.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haberl Meglic, S., Marolt, T. & Miklavcic, D. Protein Extraction by Means of Electroporation from E. coli with Preserved Viability. J Membrane Biol 248, 893–901 (2015). https://doi.org/10.1007/s00232-015-9824-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-015-9824-7

Keywords

Navigation