Skip to main content
Log in

Axi-symmetric simulation of a two phase vertical thermosyphon using Eulerian two-fluid methodology

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

Numerical simulation of steady state operation of a vertical two phase closed thermosyphon is performed using the two-fluid methodology within Eulerian multiphase domain. A full scale axi-symmetric model is developed for computational fluid dynamics simulation of thermosyphon using ANSYS/FLUENT 13.0. The effects of evaporation, condensation and interfacial heat and mass transfer are taken into account within the whole domain. Cooling water jacket is also modelled along with the wall of thermosyphon to simulate the effect of conjugate heat transfer between the wall and fluid phase. The results obtained are presented and compared with available experimental investigations for a similar thermosyphon. It is established that two-fluid methodology can be used effectively for the purpose of simulation of two phase system like a typical thermosyphon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Abbreviations

c :

Relaxation time (s−1)

g:

Gravitational acceleration (m s−2)

H :

Interfacial heat transfer coefficient (W m−3 K−1)

h :

Specific enthalpy (J kg−1)

L:

Latent heat (J kg−1)

\(\dot{m}\) :

Interfacial mass transfer (kg m−3 s−1)

p:

Pressure (kg m−1 s−2)

q :

Heat flux (J m−2 s−1)

S :

Mass source term (kg m−3 s−1)

t:

Time (s)

T :

Temperature (K)

v :

Velocity (m s−1)

V :

Cell volume (m3)

α:

Volume fraction

β:

Thermal expansion coefficient (K−1)

ρ:

Density (kg m−3)

a:

General phase

eff:

Effective

l :

Liquid phase

lv :

Liquid–vapor

m :

Phase mixture

o:

Operating conditions

v :

Vapor

vl :

Vapor–liquid

sat :

Saturation

References

  1. Gaugler RS (1942) US Patent No. 2350348

  2. Grover GM, Cotter TP, Erickson GF (1964) Structures of very high thermal conductance. J App Phys 35:1990–1991

    Article  Google Scholar 

  3. Peterson GP (1994) Heat pipes modelling, testing and applications. Wiley, New York

    Google Scholar 

  4. Mostafa A, El-Baky A, Mousa M (2007) Mohamed, heat pipe heat exchanger for heat recovery in air conditioning. Appl Therm Eng 27:795–801

    Article  Google Scholar 

  5. Azad E (2008) Theoretical and experimental investigation of heat pipe solar collector. Exp Therm Fluid Sci 32:1666–1672

    Article  Google Scholar 

  6. Vasiliev LL (2008) Micro and miniature heat pipes—electronic component coolers. Appl Therm Eng 28:266–273

    Article  Google Scholar 

  7. Riehl RR, Dutra T (2005) Development of an experimental loop heat pipe for application in future space missions. Appl Therm Eng 25:101–112

    Article  Google Scholar 

  8. Noie SH (2005) Heat transfer characteristics of a two-phase closed thermosyphon. Appl Therm Eng 25:495–506

    Article  Google Scholar 

  9. Amatachaya P, Srimuang W (2010) Comparative heat transfer characteristics of a flat two-phase closed thermosyphon (FTPCT) and a conventional two-phase closed thermosyphon (CTPCT). Int Commun Heat Mass Transf 37:293–298

    Article  Google Scholar 

  10. Ling J, Cao Y, Lopez AP (2001) Experimental investigations of radially rotating miniature high-temperature heat pipes. J Heat Transf 123:113–119

    Article  Google Scholar 

  11. Zuo ZJ, Gunnerson FS (1994) Numerical modeling of the steady-state two-phase closed thermosyphon. Int J Heat Mass Transf 37:2715–2722

    Article  Google Scholar 

  12. Cao Y, Faghri A (1990) Transient two-dimensional compressible analysis for high-temperature heat pipes with pulsed heat input. Numer Heat Transf A Appl 18:483–502

    Article  Google Scholar 

  13. Ma Z, Turan A, Guo S (2009) Practical numerical simulations of two-phase flow and heat transfer phenomena in a thermosyphon for design and development. Comput Sci—ICCS 5544:665–674

    Google Scholar 

  14. Nouri-Borujerdi A, Layeghi M (2004) A numerical analysis of vapour flow in concentric annular heat pipes. Trans ASME 126:442–448

    Article  Google Scholar 

  15. Kaya T, Goldak J (2007) Three-dimensional numerical analysis of heat and mass transfer in heat pipes. Heat Mass Transf 43:775–785

    Article  Google Scholar 

  16. Legierski J, Wiecek B, de Mey G (2006) Measurements and simulations of transient characteristics of heat pipes. Microelectron Reliab 46:109–115

    Article  Google Scholar 

  17. Hirt CW, Nichols BD (1981) Volume of fluid (VOF) method for the dynamics of free boundaries. J Comput Phys 39(1):201–225

    Article  MATH  Google Scholar 

  18. Alizadehdakhel A, Rahimi M, Alsairafi AA (2010) CFD modeling of flow and heat transfer in a thermosyphon. Int Commun Heat Mass Transf 37:312–318

    Article  Google Scholar 

  19. Ghorai S, Nigam KDP (2006) CFD modeling of flow profiles and interfacial phenomena in two-phase flow in pipes. Chem Eng Process 45:55–65

    Article  Google Scholar 

  20. De Schepper SCK, Heynderickx GJ, Marin GB (2008) A CFD modeling of all gas–liquid and vapor–liquid flow regimes predicted by the Baker chart. Chem Eng J 138:349–357

    Article  Google Scholar 

  21. ANSYS FLUENT12.0 Theory Guide, April 2009

  22. Ranz WE, Marshall WR (1952) Evaporation from drops. Part I. Chem Eng Prog 3:141–146

    Google Scholar 

  23. De Schepper SCK, Heynderickx GJ, Marin GB (2009) Modeling the evaporation of a hydrocarbon feedstock in the convection section of a steam cracker. Comput Chem Eng 33(1):122–132

    Article  Google Scholar 

  24. Zang Y, Faghri A, Shafii MB (2001) Capillary blocking in forced convective condensation in horizontal miniature channels. ASME J Heat Transf 123:501–511

    Article  Google Scholar 

  25. Shekriladze IG, Gomelauri VI (1966) Theoretical study of laminar film condensation of flowing vapor. Int J Heat Mass Transf 9:581–591

    Article  Google Scholar 

  26. L Schiller, Z Naumann (1935) Z Ver Deutsch Ing 77:318

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khurram Kafeel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kafeel, K., Turan, A. Axi-symmetric simulation of a two phase vertical thermosyphon using Eulerian two-fluid methodology. Heat Mass Transfer 49, 1089–1099 (2013). https://doi.org/10.1007/s00231-013-1155-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-013-1155-6

Keywords

Navigation