Skip to main content
Log in

Effect of breviscapine on CYP3A metabolic activity in healthy volunteers

  • Clinical Trial
  • Published:
European Journal of Clinical Pharmacology Aims and scope Submit manuscript

Abstract

Objective

The purpose of this study was to investigate the influence of breviscapine on the pharmacokinetics of concomitantly administered midazolam (MID) and its associations with and effects on genetic polymorphism of the gene encoding cytochrome P450 3A5 (CYP3A5) in healthy volunteers.

Methods

The study group comprised 17 healthy volunteers who had been genotyped for CYP3A5*3 prior to start of the study. These volunteers were given daily doses of 120 mg (40 mg, three times a day) of breviscapine or a placebo for 14 days, followed by 7.5 mg midazolam (MID) on day 15. The plasma concentrations of MID and the metabolite 1-hydroxy-midazolam (1-OH-MID) were determined by ultra-performance liquid chromatography-mass spectrometry for up to 12 h after drug administration.

Results

The pharmacokinetics of MID and 1-OH-MID were significantly different between the breviscapine and placebo groups, with a point estimate for MID AUC(0–12) of 1.56 (90% confidence interval 1.26, 1.87). The pharmacokinetics of MID and 1-OH-MID were not different among the CYP3A5 genotype groups, regardless of whether MID was coadministered with breviscapine or with placebo.

Conclusions

These findings suggest that breviscapine inhibited the metabolism of CYP3A in the volunteers, with no interaction difference among the different CYP3A5 genotypes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Chu Q, Wu T, Fu L, Ye J (2005) Simultaneous determination of active ingredients in Erigeron breviscapus (Vant.) Hand-Mazz. by capillary electrophoresis with electrochemical detection. J Pharm Biomed Anal 37(3):535–541. https://doi.org/10.1016/j.jpba.2004.11.018

  2. van de Veerdonk FL, Netea MG, Dinarello CA, Joosten LA (2011) Inflammasome activation and IL-1β and IL-18 processing during infection. Trends Immunol 32(3):110–116. https://doi.org/10.1016/j.it.2011.01.003

    Article  PubMed  Google Scholar 

  3. Liu H, Yang X, Tang R, Liu J, Xu H (2005) Effect of scutellarin on nitric oxide production in early stages of neuron damage induced by hydrogen peroxide. Pharmacol Res 51(3):205–210. https://doi.org/10.1016/j.phrs.2004.09.001

    Article  CAS  PubMed  Google Scholar 

  4. Qian L, Shen M, Tang H, Tang Y, Zhang L, Fu Y, Shi Q, Li NG (2012) Synthesis and protective effect of scutellarein on focal cerebral ischemia/reperfusion in rats. Molecules 17(9):10667–10674. https://doi.org/10.3390/molecules170910667

    Article  CAS  PubMed  Google Scholar 

  5. Ma YX, Ma T, Wang L, Song T (2012) Clinical efficacy of breviscapine plus metoprolol on ventricular arrhythmias in dilated cardiomyopathy patients. J Med Forum 33(11):36–37

    Google Scholar 

  6. Lin Z, Guo S, Yang C, Yu Y, Xu L, Liu G (2014) In vivo effects of scutellarin on the activities of CYP1A2, CYP2C11, CYP2D1, and CYP3A1/2 by cocktail probe drugs in rats. Pharmazie 69(7):537–541

    CAS  PubMed  Google Scholar 

  7. Nebert DW, Russell DW (2002) Clinical importance of the cytochromes P450. Lancet 360(9340):1155–1162. https://doi.org/10.1016/S0140-6736(02)11203-7

    Article  CAS  PubMed  Google Scholar 

  8. Guengerich FP (1991) Reactions and significance of cytochrome P-450 enzymes. J Biol Chem 266(16):10019–10022

    CAS  PubMed  Google Scholar 

  9. Flockhart DA, Rae JM (2003) Cytochrome P450 3A pharmacogenetics: the road that needs traveled. Pharmacogenomics J 3(1):3–5

    Article  CAS  PubMed  Google Scholar 

  10. Gorski JC, Hall SD, Jones DR VandenBranden M, Wrighton SA (1994) Regioselective biotransformation of midazolam by members of the human cytochrome P450 3A (CYP3A) subfamily. Biochem Pharmacol 47(9):1643–1653

  11. Evans WE, Relling MV (1999) Pharmacogenomics: translating functional genomics into rational therapeutics. Science 286(5439):487–491

    Article  CAS  PubMed  Google Scholar 

  12. Wojnowski L, Kamdem LK (2006) Clinical implications of CYP3A polymorphisms. Expert Opin Drug Metab Toxicol 2(2):171–182

    Article  CAS  PubMed  Google Scholar 

  13. Lamba JK, Lin YS, Schuetz EG, Thummel KE (2002) Genetic contribution to variable human CYP3A-mediated metabolism. Adv Drug Deliv Rev 54(10):1271–1294

    Article  CAS  PubMed  Google Scholar 

  14. Evans WE, McLeod HL (2003) Pharmacogenomics-drug disposition, drug targets, and side effects. N Engl J Med 348(6):538–549

    Article  CAS  PubMed  Google Scholar 

  15. Weinshilboum R (2003) Inheritance and drug response. N Engl J Med 348(6):529–537

    Article  PubMed  Google Scholar 

  16. Kueh P, Zhang J, Lin Y, Lamba J, Assem M, Schuetz J, Watkins PB, Daly A, Wrighton SA, Hall SD et al (2001) Sequence diversity in CYP3A promoters and characterization of the genetic basis of polymorphic CYP3A5 expression. Nat Genet 27(4):383–391

    Article  Google Scholar 

  17. Streetma DS, Bertino JS Jr, Nafziger AN (2000) Phenotyping of drug-metabolizing enzymes in adults: a review of in-vivo cytochrome P450 phenotyping probes. Pharmacogenetics 10(3):187–216

    Article  Google Scholar 

  18. Eap CB, Buclin T, Hustert E, Bleiber G, Golay KP, Aubert AC, Baumann P, Telenti A, Kerb R (2004) Pharmacokinetics of midazolam in CYP3A4-and CYP3A5-genotyped subjects. Eur J Clin Pharmacol 60(4):231–236

    CAS  PubMed  Google Scholar 

  19. Eap CB, Fellay J, Buclin T, Bleiber E, Golay KP, Brocard M, Baumann P, Telenti A (2004) CYP3A activity measured by the midazolam test is not related to 3435 C > T polymorphism in the multiple drug resistance transporter gene. Pharmacogenetics 14(4):255–260

    Article  CAS  PubMed  Google Scholar 

  20. Carrillo JA, Ramos SI, Agundez JA, Martinez C, Benitez J (1998) Analysis of midazolam and metabolites in plasma by high-performance liquid chromatography: probe of CYP3A. Ther Drug Monit 20(3):319–324

    Article  CAS  PubMed  Google Scholar 

  21. Wang H, Tompkins LM (2008) CYP2B6: new insights into a historically overlooked cytochrome P450 isozyme. Curr Drug Metab 9(7):598–610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Faucette SR, Hawke RL, Lecluyse EL, Shord SS, Yan B, Laethem RM, Lindley CM (2000) Validation of bupropion hydroxylation as a selective marker of human cytochrome P450 2B6 catalytic activity. Drug Metab Dispos 28(10):1222–1230

    CAS  PubMed  Google Scholar 

  23. Shiran MR, Gregory A, Rostami-Hodjegan A, Tucke GT, Lennard MS (2003) Determination of midazolam and 1′-hydroxymidazolam by liquid chromatography-mass spectrometry in plasma of patients undergoing methadone maintenance treatment. J Chromatogr B Analyt Technol Biomed Life Sci 783(1):303–307. https://doi.org/10.1016/S1570-0232(02)00673-6

    Article  CAS  PubMed  Google Scholar 

  24. Liu J, Han XW, Li Q, Jiao JJ, Gao SN, Meng SR, Lou JS (2011) Effect of Breviscapinum on the Activity of CYP3A4 in Rats. Lishizhen Med Materia Medica Res 22(9):2082–2084

    CAS  Google Scholar 

  25. Jian TY, He JC, He GH, Feng EF, Li HL, Bai M, Xu GL (2012) Scutellarin inhibits cytochrome P450 isoenzyme 1A2 (CYP1A2) in rats. Phytother Res 26(8):1226–1230

    Article  CAS  PubMed  Google Scholar 

  26. Stockis A, Watanabe S, Scheen AJ (2015) Effect of brivaracetam on CYP3A activity, measured by oral midazolam. J Clin Pharmacol 55(5):543–548. https://doi.org/10.1002/jcph.446

    Article  CAS  PubMed  Google Scholar 

  27. McConn DJ, Lin YS, Mathisen TL, Blough DK, Xu Y, Hashizume T, Taylor SL, Thummel KE, Shuhar MC (2009) Reduced duodenal cytochrome P450 3A protein expression and catalytic activity in patients with cirrhosis. Clin Pharmacol Ther 85(4):387–393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mueller SC, Drewelow B (2013) Evaluation of limited sampling models for prediction of oral midazolam AUC for CYP3A phenotyping and drug interaction studies. Eur J Clin Pharmacol 69(5):1127–1134. https://doi.org/10.1007/s00228-012-1437-9

    Article  CAS  PubMed  Google Scholar 

  29. Wang D, Guo Y, Wrighton SA, Cooke GE, Sadee W (2011) Intronic polymorphism in CYP3A4 affects hepatic expression and response to statin drugs. Pharmacogenomics J 11(4):274–286. https://doi.org/10.1038/tpj.2010.28

    Article  PubMed  Google Scholar 

  30. Pallet N, Jannot AS, El Bahri M, Etienne I, Buchler M, de Ligny BH et al (2015) Kidney transplant recipients carrying the CYP3A4*22 allelic variant have reduced tacrolimus clearance and often reach supratherapeutic tacrolimus concentrations. Am J Transplant 15(3):800–805. https://doi.org/10.1111/ajt.13059

  31. Hu M, Mak VWL, Xiao YJ, Tomlinson B (2013) Associations between the genotypes and phenotype of CYP3A and the lipid response to simvastatin in Chinese patients with hypercholesterolemia. Pharmacogenomics 14(1):25–34. https://doi.org/10.2217/pgs

    Article  CAS  PubMed  Google Scholar 

  32. Hu M, Mak VWL, Chu TTY, Waye MMY, Tomlinson B (2009) Pharmacogenetics of HMG-CoA reductase inhibitors: optimizing the prevention of coronary heart disease. Curr Pharmacogenomics Person Med 7(1):1–26. https://doi.org/10.2174/187569209787582349

    Article  Google Scholar 

Download references

Funding

This work was supported by grants from the National Natural Science Foundation of China (No. 81241139, 81,360,511) and by Dali University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Lai.

Ethics declarations

Conflicts of interest

None.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, X., Gao, Yy., Hu, Jy. et al. Effect of breviscapine on CYP3A metabolic activity in healthy volunteers. Eur J Clin Pharmacol 74, 37–44 (2018). https://doi.org/10.1007/s00228-017-2346-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00228-017-2346-8

Keywords

Navigation