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Abstract
Purpose Neuroblastoma is the most common extracranial
solid tumour in childhood. It accounts for 15% of all
paediatric oncology deaths. In the last few decades, improve-
ment in treatment outcome for high-risk patients has not
occurred, with an overall survival rate <30–40%. Many
reasons may account for such a low survival rate. The aim
of this review is to evaluate whether pharmacogenetic factors
can explain treatment failure in neuroblastoma.
Methods A literature search based on PubMed’s database
Medical Subject Headings (MeSH) was performed to
retrieve all pertinent publications on current treatment
options and new classes of drugs under investigation. One
hundred and fifty-eight articles wer reviewed, and relevant
data were extracted and summarised.
Results and conclusions Few of the large number of poly-
morphisms identified thus far showed an effect on pharmaco-
kinetics that could be considered clinically relevant. Despite
their clinical relevance, none of the single nucleotide poly-
morphisms (SNPs) investigated can explain treatment failure.
These findings seem to reflect the clinical context in which

anti-tumour drugs are used, i.e. in combination with multi-
modal therapy. In addition, many pharmacogenetic studies did
not assess (differences in) drug exposure, which could
contribute to explaining pharmacogenetic associations. Fur-
thermore, it remains unclear whether the significant activity of
new drugs on different neuroblastoma cell lines translates into
clinical efficacy, irrespective of resistance or myelocytoma-
tosis viral related oncogene, neuroblastoma derived (MYCN)
amplification. Elucidation of the clinical role of pharmacoge-
netic factors in the treatment of neuroblastoma demands an
integrated pharmacokinetic–pharmacodynamic approach to
the analysis of treatment response data.
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Introduction

Neuroblastoma

Neuroblastoma (NB) is the most common extracranial solid
tumour in childhood and belongs to the group of “small
blue round cells” neoplasms. It accounts for 15% of all
paediatric oncology deaths [1–3]. Its incidence peaks at age
0–4 years, and <5% of patients are older than 10 years of
age [2]. It is a neuroendocrine tumour tightly connected to
the sympathetic nervous system (SNS). Given that it
originates from the primitive neuroepithelial cells of the
neural crest, it can develop anywhere in the SNS. Fifty
percent of primary tumours arise in the adrenal medulla, but
other common sites are neck, chest, abdomen, and pelvis.
At diagnosis, in most cases, neuroblastoma has already
metastasised, usually to liver, bone, bone marrow, lymph
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nodes, and skin [1–3]. Despite its prevalence and invasive-
ness, the aetiology of neuroblastoma is still poorly under-
stood. Few causative factors have been identified: familiar
forms are rare (about 1%); there is no clear genetic
predisposition, and presumably tumorigenesis may require
alterations in more than one gene. The hallmark of the
tumour is heterogeneity; its behaviour can vary from a
localised tumour, easy to resect with surgery, to a metastatic
progressive one, with high resistance and poor outcome;
strikingly, in 5% of cases, it manifests a spontaneous
regression. Prognosis, in the same manner, ranges from
overall survival (OS) to high fatality risk. Because of the
tumour heterogeneity, biomarkers have been used to select
the appropriate treatment schedule according to a risk-group
classification. Myc myelocytomatosis viral related oncogene,
neuroblastoma derived (MYCN) amplification, chromosomal
loss (1p) or gain (17q), DNA index (near diploid), age
>18months, and International Neuroblastoma Staging System
(INSS) stages III and IV, are all predictors of poor prognosis
and disease malignancy [1–7]. As with MYCN, many other
biomarkers have been studied to define phenotype (disease
severity) and stratify patients, such as e.g. the tyrosine kinase
(Trk) family of neurotrophin receptors, which are important
regulators of survival, growth, and differentiation of normal
neuronal cells; high expression of TrkB and TrkA III is
associated with MYCN amplification and poor outcome,
whereas high expression of TrkA is associated with a
favourable status. In spite of these data, to date only the
amplification of the oncogene MYCN can be considered as
an independent marker of tumour status and treatment
outcome [1, 2]. The current risk-group classification of the
disease and the corresponding treatment protocols have
therefore been defined according to tumour behaviour and
biomarker prediction.

Although in the last 20 years this approach substantially
improved treatment outcome for low- and intermediate-risk
patients, to date, there has been little improvement in the
high-risk patient group. Despite intensive polytherapy,
high-risk patients still only have an OS rate of 30–40%
[1, 3]. There may be several reasons for the low OS rate.
Considering that important associations have been demon-
strated between pharmacogenetics and efficacy in different
solid tumours (e.g., increased efficacy of Herceptin in the
treatment of human epidermal growth factor receptor 2 (HER-
2)-positive breast cancers with benefits in terms of disease-
free (DFS) and OS [8–10]), the aim of this review was to
explore the role of pharmacogenetics in the treatment of
neuroblastoma. The main question to be addressed is
whether pharmacogenetic differences can (partly) explain
treatment failure. In addition, we propose the use of model-
based interventions, such as different dosing algorithms, to
improve the outcome of therapy and the safety profile of
current and novel drugs in high-risk patients.

Pharmacogenetics

In the context of our review, the term pharmacogenetics is
considered as defined by the International Conference of
Harmonisation of Technical Requirements for Registration
of Pharmaceuticals for Human Use (ICH), even if other
definitions have been reported in the scientific literature.
According to the proposed ICH definitions, pharmacoge-
nomics is the investigation of variations of DNA and RNA
characteristics as related to drug response. Pharmacoge-
netics is a subset of pharmacogenomics and is defined as
the influence of variations in DNA sequence on drug
response [8]. Pharmacogenetics is a relatively new field of
research, which aims to improve medical knowledge using
DNA sequence information [11, 12].

Clinical research on prognostic, risk and covariate factors
often assigns a privileged position to pharmacogenetics com-
pared with other determinants of drug response. This approach
often disregards the multivariate nature of the interaction
between all relevant factors underlying treatment response,
which may cause biased analysis and misinterpretation of the
findings. Too narrow a vision of the clinical factors contributing
to variability reduces the opportunity to understand the true role
of pharmacogenetics and to relate it to real-life applications. It is
critical to realise that pharmacogenetics is only one of the many
factors that can influence pharmacokinetics, pharmacodynam-
ics and clinical response, and that these factors can interact
with each other. This review represents an effort to answer the
questions posed above 1) by evaluating the role of pharma-
cogenetics on the pharmacokinetics of cytotoxic drugs used in
the treatment of neuroblastoma and 2) by highlighting the
requirements to evaluate its role in new therapeutic inter-
ventions. In addition, suggestions are given for alternative
therapeutic approaches, which can potentially reduce treat-
ment failure.

Methods

Literature search on PubMed’s database Medical Subject
Headings (MeSH) was performed to retrieve relevant
published data. The search method involved structured
keywords and was divided into two phases.

In the first phase, attention was given to cytotoxic drugs
currently used for the treatment of neuroblastoma. In the
first step, the drug’s generic name was associated to four
general keywords: pharmacokinetics, pharmacogenetics,
neuroblastoma, and leukaemia. Subsequently, the drug
name was associated to specific elements of drug disposi-
tion. In the secon phase, new classes of drugs currently in
clinical development were evaluated. The search involved
retrieval of all publications related to the treatment of
neuroblastoma, which focused on pharmacogenetics. In
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addition, pharmacokinetic data on the aforementioned
drugs were retrieved from paediatric studies, and especially
from studies of patients affected by neuroblastoma or
leukaemia [13–59]. Conversely, pharmacogenetic data were
gathered from any available study [60–123]. We decided to
exclude references related to genetic variations in pharma-
codynamics and disease.

A total of 158 articles and reviews were used for abstraction
and extraction. Data on exposure, efficacy and toxicity were
summarised usingMS Excel spreadsheets. An overview of the
findings and potential relevance of genetic variation is
presented for both cytotoxic drugs (Tables 1, 2, and 3) and
drugs under clinical investigation (Tables 4, 5, and 6).

Results

Cytotoxic drugs

The use of cytotoxic drugs in neuroblastoma treatment is
considered as an adjuvant or add-on therapy to chemo-
therapy (CT), radiotherapy, surgical resection, stem-cell
transplantation, and treatment of minimal residual disease
(MRD) [3]. CT approaches used in low-, intermediate-,
and high-risk patient groups present differences in terms
of dosing regimens and drug associations. In high-risk
patients, cytotoxic drugs are used in two different phases
of treatment: first, during induction CT, which is aimed at
metastasis control and primary tumour resection; and
second, during myeloablative chemotherapy (or high-
dose CT) in association with stem-cell transplantation
with the aim of consolidating induction CT and surgery
[3]. Despite the various treatment approaches, high-risk
groups have a very low OS rate (30–40%) [1, 3]. To
clarify whether or not genetic variants could explain the
lack of response, the role of pharmacogenetics in influ-
encing pharmacokinetics of six of the main cytotoxic
drugs used in neuroblastoma treatment was evaluated.
Without taking into account the nature of treatment as
adjuvant therapy, it was found that only few single
nucleotide polymorphisms (SNPs) show a relevant effect
on pharmacokinetics. In agreement with our hypothesis,
published results seem to confirm that an SNP must affect
a key enzyme or pathway to translate genetic variation into
clinically relevant differences. Tables 1, 2 and 3 provide
the summary of the findings. The most relevant poly-
morphisms evaluated are briefly described in the following
paragraphs.

Irinotecan

To date UDP glucuronosyltransferase 1 family, polypep-
tide A1 (UGT1A1)*28 is the only SNP introduced in a

label (US) among all cytotoxic drugs included in this
review. It is noteworthy to emphasise that UGT1A is the
main enzyme in controlling deactivation of 7-ethyl-10-
hydroxycamptothecin (SN-38), the active metabolite of
irinotecan. The label of CAMPTOSAR (irinotecan hy-
drochloride injection) has been revised with the follow-
ing pharmacogenetic information: patients homozygous
for the UGT1A1*28, who undergo a single-agent
treatment with irinotecan, have a higher exposure to the
active metabolite and are at increased risk for neutrope-
nia [8]. In fact, various publications seem to confirm
higher exposure to SN-38 [85, 89, 90, 107–109, 115, 116,
119] and the increased risk for neutropenia [85, 100, 108,
113, 115, 117] in patients harbouring the UGT1A1*28
allele. On the same enzyme, another SNP showed a similar
effect on SN-38 exposure. Studies on the UGT1A1*6,
SNP expressed in Asian individuals also showed higher
exposure to the active metabolite [86, 88, 89, 106, 110]
and an increased risk for neutropenia [86, 88, 89].
However, further studies are needed to assess the clinical
value of UGT1A1*6.

Vincristine

According to Dennison et al. [60, 69], and Renbarger et
al. [68], cytochrome P450 (CYP)3A4 and CYP3A5 play
key roles in metabolising vincristine to its main metabolite
(the secondary amine M1), with a 9- to 14-fold higher
selectivity for CYP3A5. As mentioned earlier, polymor-
phisms affecting the primary metabolic pathway are
required to influence the pharmacokinetic profile of a
drug. Although in the study by Dennison et al. patients
with a high expression of CYP3A5 (homozygous: *1/*1;
heterozygous: *1/*3, *1/*6) showed lower exposure to
vincristine, and patients with a low expression of the
enzyme (homozygous: *3/*3; heterozygous: *1/*7)
showed increased exposure, further studies are needed to
confirm the hypothesis that SNPs in CYP3A5 do
contribute to the interindividual variability in vincristine
metabolism.

Other cytotoxic drugs

No SNPs analysed thus far appeared to affect the pharmaco-
kinetic profile of cisplatin, melphalan, etoposide or doxorubi-
cin in a way that can be considered clinically relevant.

Drugs in clinical development

To significantly improve the treatment of neuroblastoma,
several studies were carried out to evaluate the potential of
novel therapeutic alternatives. New approaches to circumvent
the high resistance of neuroblastoma cells to chemotherapy
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could have a great impact on future treatment options. Seven
new classes of drugs were identified that may contribute to
that objective. Mechanisms of action, metabolic pathway and
efficacy on neuroblastoma cells were assessed, with particular
attention being paid to pharmacogenetic effects. Tables 4, 5,
and 6 provide a summary of the findings from published
pharmacogenetic studies.

17-N-allylamino 17-demethoxygeldanamycin (17-AAG)

Heat-shock protein 90 (Hsp90), an essential chaperone
involved in the conformational maturation and stability of
different proteins, including regulators of cellular proliferation
and inhibitors of apoptosis, is constitutively overexpressed in
tumour cell lines [124]. The great advantage of Hsp90
inhibitors should be the simultaneous depletion of multiple
oncogenic client proteins [125]. Kang et al. [124] demon-
strated the inhibition of SK-N-SH and LAN-1 neuroblastoma
cell-line growth by 17-AAG, accompanied by reduced levels
of Raf-1 and Akt protein kinases. On the other hand,
Jayanthan et al. [125] showed that all neuroblastoma cell
lines under evaluation (SK-N-MC, SK-N-SH, SK-N-BE2,
IMR32, SH-Sy5y, LAN1, SHEP, IMR-5 and NUB-7) were
sensitive to 17-AAG, with a half maximal inhibitory
concentration (IC50) value ranging from 0.5 to 5 μM across
different cell lines. In the same study, 17-AAG also sensitised
neuroblastoma cells to various chemotherapeutic agents. 17-
AAG is metabolised by CYP3A4 and CYP3A5 to the active
metabolite 17-AG and by nicotinamide adenine dinucleotide
phosphate-oxidase (NADPH) dehydrogenase quinone 1
(NQO1) to the very active metabolite 17-AAGH2. The SNP
NQO1*2, which seems to deplete enzyme activity, induces a
32-fold increase in 17-AAG resistance [96, 97], suggesting
that such variation could have a relevant effect on the clinical
response. Further studies are needed to characterise the role of
NQO1 and other related polymorphisms in 17-AAG metab-
olism. In addition, it should be noted that polymorphisms
affecting CYP450 are unlikely to influence the pharmacody-
namics of 17-AAG because the metabolite has a similar
activity to the parent compound.

Aprepitant

In addition to its role in the regulation of neurogenic
inflammation, pain and depression, the activation of the
neurokinin 1 (NK1) receptor by substance P induces mito-
genesis and regulates active migration of tumour cells and
angiogenetic processes. Aprepitant, a specific inhibitor of NK1,
can inhibit both DNA synthesis and cell proliferation through
the mitogen-activated protein kinase (MAPK) pathway [126].
In the study by Muñoz et al. [126], aprepitant showed a
cytotoxic activity on all tested glioma, neuroblastoma,
retinoblastoma, pancreatic carcinoma, larynx carcinoma,

gastric carcinoma and colon carcinoma cell lines. Further-
more, after its administration, a great number of apoptotic
cells were found in all tumour cell lines. Aprepitant is
metabolised mainly by CYP3A4, with CYP1A2 and 2C19 as
secondary metabolic routes. Thus far, as reported in Table 2,
data on pharmacogenetic variation has not been reported.

BMS-536924

Through the IGF-1 receptor, insulin-like growth factor
regulates many cellular survival mechanisms, such as
cellular growth, differentiation, apoptosis, tumour angio-
genesis and metastasis, and different tumour types have
shown overexpression of this receptor [127]. All neuro-
blastoma cell lines tested in the study by Huang et al. [127]
were sensitive to treatment with BMS-536924 (IC50 range:
0.136-0.277 μmol/L), a specific inhibitor of IGF-1R, but
the treatment seems to be successful only when the
receptor is on the critical path of the pathogenesis and
tumour progression. The same study demonstrated an
interaction between BMS-536924 and gefitinib [epider-
mal growth factor receptor (EGFR) inhibitor] or BMS-
690514 (panHER inhibitor). Such evidence raises an
important issue regarding the mechanisms of resistance
by single agents, which involves the adaptation to an
IGF-independent growth mechanism. No pharmacoge-
netic data have been published on this drug.

Eflornithine (alpha-difluoromethylornithine)

Polyamines, essential molecules for cellular activity, are
undoubtedly involved in tumour cell growth [128]. If
their synthesis is inhibited, cell growth is stopped or
severely retarded. One of the hallmarks of neuroblastoma
MYCN-amplified cell lines is the polyamine expansion
[129]. Ornithine decarboxylase (ODC1) is a key enzyme
in the biosynthetic pathway of polyamines, and ODC1 at
high levels correlates with poor outcome in neuroblasto-
ma. Eflornithine [d,l-α-difluoromethylornithine (DFMO)]
has been shown to induce cell-cycle arrest (G1) inhibiting
ODC1 in neuroblastoma cell lines. The underlying cause
is a polyamine depletion that arrests the cell cycle through
the cyclin-dependent kinase inhibitor (p27kip1) pathway.
Wallick et al. [128] demonstrated its inhibitory activity on
neuroblastoma cell lines LAN-1 and NMB-7, with a near-
total cessation of cellular growth after 3 days. Whereas
Koomoa et al. [130] confirmed the inhibition of LAN-1
proliferation, in another study by Rounbehler et al. [131],
DFMO preferentially abolished the growth of MYCN-
amplified cell lines. DFMO also increased the effects of
chemotherapy without additional toxicity [129]. It is
important to point out that the polyamine depletion,
besides cell-cycle arrest, also induces a mechanism of cell
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survival through the PI3K/Akt pathway that could explain
a possible moderate efficacy of DFMO alone. Given that
eflornithine is not metabolised, pharmacogenetic informa-
tion pertinent to drug disposition is not available.

Imatinib mesylate

The 2-phenylaminopyrimidine imatinib is a specific inhibitor
of Trk enzymes. It binds the Trk domain of Abl, c-kit (or
CD117), and platelet-derived growth factor receptor
(PDGF-R). C-Kit and PDGF-R were detected in neuro-
blastoma [132–134], and the cytokine receptor seems to
be expressed mainly in the most aggressive forms of the
tumour [135]. PDGF plays an important role in controlling
growth, differentiation and survival of glial cells and
immature neuroblasts, whereas c-Kit is essential for
normal haematopoiesis, gametogenesis and melanogenesis
[134]. In vitro studies by Vitali et al., Beppu et al., Rossler
et al., and Palmberg et al. [132–135] demonstrated the
ability of imatinib to inhibit neuroblastoma proliferation.
Imatinib is metabolised by a large number of enzymes of
the CYP450 family, with a major role played by CYP3A4
and CYP3A5. It is also a substrate of the ATP-binding
cassette (ABC) transporters, P-glycoprotein (Pgp) and
ABCG2. The most common polymorphisms associated with
these routes only have a limited influence on imatinib
pharmacokinetics and therefore do not seem to be the
underlying cause of the high interindividual variability
observed in clinical data [98, 136].

Nutlin-3

Murine double minute (MDM2) is a negative regulator of
p53. It prevents p53 control on cell cycle and apoptosis,
inhibiting transcriptional activation of the tumour suppres-
sor. However, the effectiveness of an MDM2 inhibitor is
evident only if p53 is functional. Given this prerequisite, it is
important to emphasise that <2% of neuroblastoma tumours
exhibit mutations on the TP53 gene [137]. Nutlin-3 is a
specific chiral inhibitor of MDM2, which induces G1 cell-
cycle arrest, apoptosis and neuronal differentiation in
neuroblastoma cells [137–140], with an IC50 value of
3.25 μmol/L [141]. The 3a enantiomer shows a ∼200-fold
higher affinity for MDM2 than the enantiomer 3b [141].
Nutlin-3 is also a Pgp substrate, and both enantiomers
increase the cytotoxic activity of anticancer agents that are
substrates of Pgp (e.g., Vincristine) [140]. No pharmacoge-
netic information is available for this compound.

Oncolytic virus

Oncolytic viruses represent a new important therapeutic
approach in cancer treatment [142–145]. They can circumvent

chemotherapy-induced resistance mechanisms through a spe-
cific lysis of tumour cells. In addition, evidence exists of their
efficacy and safety in clinical trials [146–148]. They basically
act by inducing cell lysis, and genetic mutations applied to their
genome restrict viral replication only to the tumour cells. An
interesting feature of these viruses is the opportunity to
incorporate an additional mechanism of action by arming the
virus against specific targets (examples are listed below).

Neuroblastoma cells show evidence of cancer stem cells, as
confirmed by the expression of various stem-cell markers such
as CD34, CD133, and nestin. These cells can form tumor-
spheres extremely resistant to chemotherapy treatment and
cause tumour relapse [146]. Given that neuroblastoma is also
highly susceptible to herpes simplex virus (HSV)-mediated
oncolysis [147, 149, 150], the use of HSV represents the best
solution for a possible application in neuroblastoma treatment.

On the other hand, nestin, a protein expressed in nerve
cells and involved in radial growth of the axon, is one of
the possible options with which to arm an oncolytic virus.
Thomas et al. [151] and Mahller et al. [146] demonstrated a
correlation between nestin expression and MYCN amplifi-
cation, although the same correlation was not shown in the
study by Korja et al. [152]. In the former study,
rQNestin34.5 oHSV abolished tumour formation for
>60 days in mice affected by neuroblastoma [146].

Other possible options, besides the nestin-targeted
vector, is the use of HSV armed with immunomodulatory
molecules [B7-1, interleukin (IL)-12 and IL-18], armed
against activated Rat sacroma (Ras)-signalling pathway, or
with inhibitors of the matrix metalloproteinases (TIMP-3), as
demonstrated respectively by Ino et al., Li et al. andMahller et
al. [147, 148, 150]. No pharmacogenetic data have been
found for this type of intervention.

Discussions and conclusion

To date, limited improvement in survival rates has been
achieved for high-risk patients with neuroblatoma. In this
review, we have explored whether pharmacogenetic varia-
tion in pharmacokinetics could explain treatment failure. In
addition, we have attempted to highlight some of the
research gaps in the evaluation of novel molecules for
neuroblastoma treatment. Numerous pharmacogenetic stud-
ies have been performed during the last 10 years, but most
of them are basically related to drug disposition, rather than to
pharmacodynamics. Based on the published literature,
pharmacokinetic polymporphisms do not seem to be the
cause of the low survival rate in neuroblastoma. None of
the SNPs analysed thus far can explain the poor
prognosis in high-risk patients following a variety of
treatment options. The lack of correlation between
response and pharmacogenetic factors may also reflect
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the context in which drugs are used (i.e. response is the
result of a multimodal approach to neuroblastoma).
Furthermore, it can be inferred from the low therapeutic
failure in low- and intermediate-risk patients that the
presence of pharmacokinetic polymorphisms in those
groups does not alter treatment response rate. Assuming
that systemic pharmacokinetics is independent of disease
severity, it is conceivable that tumour factors associated
with tissue kinetics (e.g. changes in Pgp expression)
could lead to relevant differences in tumour exposure.
Even though such differences at tissue level cannot be
captured by the analysis of blood or plasma data,
pharmacodynamic variants may ultimately underlie dif-
ferences in response rates.

From the available data, only a few of the large number
of polymorphisms have a clinically relevant effect on
pharmacokinetics. Among these, SNPs UGT1A1*28 (already
part of the label of CAMPTOSAR in the USA) and
UGT1A1*6 were shown to affect the pharmacokinetic profile
of irinotecan. Both polymorphisms cause an increase in the
exposure to the active metabolite SN-38 and consequently the
risk for neutropenia. Moreover, it was shown that poly-
morphisms affecting the CYP3A5 can alter the pharmacoki-
netics of vincristine, given that this isozyme plays a key role in
vincristine elimination. The same can be assumed from the
investigation by Kelland et al. and Guo et al. on NQO1. This
enzyme metabolises 17-AAG to the active metabolite 17-
AAGH2; and the polymorphic variant NQO1*2, which
causes deletion of enzymatic activity, increases treatment
resistance by 32-fold.

From the examples above, it is clear that genetic
variation in drug metabolism is not always clinically
relevant per se. Its relevance depends on the enzyme
affected, its impact on the metabolic capacity and especially
on the contribution of the pathway to the overall clearance
of a given drug. The same concept is applicable to the role
of pharmacogenetics on active transporters and their
implications for drug disposition. Taking these consider-
ations into account, one needs to characterise a drug’s
overall pharmacokinetic profile to evaluate and demonstrate
the potential consequences of genetic polymorphisms.
Given that compensatory pathways are involved in the
disposition of the majority of drugs suitable for clinical use,
it can be anticipated that pharmacogenetic variation in
absorption, distribution, metabolism, and excretion
(ADME) will often have limited impact on the variability
observed in pharmacodynamics and response. On the other
hand, pharmacogenetic variation should not be overlooked
if single pathways are known to determine drug disposition.
This is one of the reasons so few drug labels yield useful
pharmacogenetic information. In fact, numerous other intrin-
sic and extrinsic factors can influence pharmacokinetics,
including variation in dosing regimen, treatment compliance,

drug–drug interactions, demographic covariates, disease and
organ function. For instance, in the specific case of neuro-
blastoma, most patients are aged between 0 and 4–5 years, and
the large variability in exposure could exclusively be assigned
to developmental growth (i.e. ontogeny) rather than genetic
variation. Furthermore, other important elements such as
organ function (i.e. disease severity) and drug–drug inter-
actions are likely to have equal or higher impact than
pharmacogenetic factors on drug disposition.

In brief, the scenario arising from this review confirms
the need for an integrated approach to the evaluation of
genetic variation in ADME processes. Inferences about the
clinical implications of a polymorphism depend upon an
integrated assessment of the exposure–response relation-
ship. With regard to drugs under clinical investigation, our
review has identified compounds with prominent pharma-
cological activity on neuroblastoma cells, irrespective of the
level of resistance and MYCN amplification. Amongst
them, oncolytic viruses have raised great interest due to the
evidence of a cancer stem cell, which may underlie the high
resistance to chemotherapy. Oncolytic treatment, circum-
venting the traditional mechanism of resistance, seems to be
a valuable solution to improve treatment outcome. At this
time, however, it is difficult to state whether such activity
translates into clinical efficacy. Further studies are needed
to confirm the clinical value of novel classes of drugs in
neuroblastoma treatment. Moreover, effective drug combi-
nations and dosing algorithms still need to be identified to
ensure maximum effectiveness for most compounds.

Going back to the role of pharmacogenetics, this review
shows the importance of the context in which a drug is used
for the evaluation of polymorphisms. Many intrinsic and
extrinsic factors influence pharmacokinetics, pharmacody-
namics and overall response to treatment. Therefore, an
isolated analysis of the role of pharmacogenetic factors on
ADME processes would probably lead to biased results. All
other relevant covariates should be considered in the
statistical analysis of pharmacogenetic data. In this sense,
many pharmacogenetic studies summarised in this review
have not considered such an integrated approach or included
details about the primary pharmacokinetic parameters.

In conclusion, pharmacogenetics is only one of many
factors associated with pharmacokinetic variability. A
model-based approach is required to address questions
regarding the impact of polymorphism on clinical response
and, as such, should become best practice in the analysis
of pharmacogenetic data [153–157]. In a model-based
approach, data analysis comprises the use of mathematical
and statistical concepts that describe longitudinal data (i.e. a
disease model), exposure–response relationships (i.e. a drug
model) and clinical trial design features (i.e., an implemen-
tation model) in an intergrated manner. The main advantage
of this approach is that all relevant covariates (such as age,
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weight, ethnicity, etc.) can be taken into account concur-
rently. Furthermore, between- and within-subject variability
is assessed parametrically in terms of physiological param-
eters, such as clearance and volume of distribution, rather
than relying on the observed variables (e.g. peak concen-
tration, Cmax), which are often prone to experimental
artefacts. In this sense, modelling represents an effective
strategy for translating the clinical implications of pharma-
cogenetic variation. Most importantly, it can support the
selection and individualisation of dosing regimens, which
may be more critical for efficacy than the effects of ADME
polymorphism in high-risk patients with neuroblastoma.

Acknowledgements This contribution is part of the Task-force in
Europe for Drug Development in the Young (TEDDY) Network of
Excellence supported by the European Commission’s Sixth Frame-
work Program (Contract n. 0005216 LSHBCT-2005-005126).

Conflict of interest statement There are no arrangements of
financial nature, or of any other kind, that could lead to conflict of
interests with regard to this manuscript.

Open Access This article is distributed under the terms of the
Creative Commons Attribution Noncommercial License which per-
mits any noncommercial use, distribution, and reproduction in any
medium, provided the original author(s) and source are credited.

Table 1 Influence of pharmacogenetics on the pharmacokinetic profile of cytotoxic drugs

EXPOSURE
IRINOTECAN VINCRISTINE CISPLATIN MELPHALAN ETOPOSIDE DOXORUBICIN

CYP1A2 NK
CYP2C19 NK
CYP2D6 NK
CYP2E1 NK
CYP3A4 NA *1B:  –392 A > G 115, 116, 124 NK 3A4 A/A77 NK

NA *2: 15713T > C 116

NA *3: 23172T > C 115, 116, 121

NA *4: 352A > G 124

NA *5: 653C > G 124

NA *6: 831 insA 124

NA *17: 15615T > C 116, 121

NA *18: 20070T > C 116, 121

NA *1G, *16B, *18B 93

CYP3A5 NA *3C: 22893G > A 115, 116, 121, 124 3A5*1/*161,69,70 3A5 G/G77

NA *6: 30597G > A 115, 116, 124 3A5*1/*361,69,70 3A5 A/A77

NA 6986 A>G 88 3A5*1/*661,69,70

3A5*3/*361,69,70

3A5*1/*761,69,70

GST NK NK P1 A/A77 NA GSTM1 null85

NA GSTT1 null 85

UGT NA 1A1*6: 211G > A 101, 102, 109, 118 1A1 7/777

(SN-38) 1A1*6: 211G > A107, 111

(SN-38) 1A1*6 G/G87, 89

(SN-38) haplotype with 1A1*690

NA 1A1*7: 1456T > G 115, 118

(SN-38) 1A1*7: 1456T > G107, 111

NA 1A1*27: 686C > A 109

(SN-38) 1A1*27: 686C > A107, 111

NA 1A1*28: (TA)7TAA88, 89, 94, 101,103,106,114,118,121,124

(SN-38) 1A1*28: (TA)7TAA86,90,91,108,109,110,116,117

(SN-38) 1A1: haplotype*6, haplotype*28120

(SN-38) 1A1*35: 1291T > C107

NA 1A1*36: (TA)5TAA 121

NA 1A1*37: (TA)8TAA 103

NA 1A1:  –3156G>A 88, 109

(SN-38) 1A1: 686C > T113

NA 1A6*2: 19T > G, 541A > G, 552A > C 103

NA 1A7*2: 387T > G, 391C > A, 392G > A 102

NA 1A7*2: 387T > G, 391C > A 103

NA 1A7*3: 387T>G,391C>A,392G>A,622T>C 102

NA 1A7*3: 387T > G, 391C > A, 622T > C 103

NA 1A7*4: 622T > C 102

NA 1A7:33C>A,343G>A,387T>G,391C>A,
392G>A,417G>C,582T>C 86

* “ ” indicates an increase in drug exposure, efficacy or toxicity;

† “ ” indicates a decrease in drug exposure, efficacy or toxicity;

‡ “NA” indicates that there is no association between the corresponding gene and the pharmacokinetics of the drug;

§“NK” (Not Known) indicates that pharmacogenetic data have not been found in the published literature;

|| “grey cells” indicate that the gene is not related to the pharmacokinetics of the drug.
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Table 1 (continued)

EXPOSURE
IRINOTECAN VINCRISTINE CISPLATIN MELPHALAN ETOPOSIDE DOXORUBICIN

UGT NA 1A7*2: 387T > G, 391C > A 107

NA 1A7*2: 387T > G, 391C > A 122

(SN-38) 1A7*3: 387T>G,391C>A,622T>C107

(SN-38) 1A7*3: 387T>G,391C>A,622T>C122

(SN-38) 1A7*4: 622T > C107

(SN-38) 1A7*4: 622T > C122

(SN-38) 1A7*5: (G115S)122

NA 1A7*6: (E139D) 122

NA 1A7*7: 387T > G, 391C > A, (E139D) 122

(SN-38) 1A7*8: 387T>G, 
391C>A,(E139D),622T>C122

(SN-38) 1A7*9: (G115S),387T>G,391C>A122

NA 1A9*2 86

NA 1A9*3: 98T > C 117

NA 1A9*3: 98T > C 86

NA 1A9*5: 766G > A 117

NA 1A9–118 (dT)9/9 103

NA Haplotype: UGT1A1*1, UGT1A6*1, 
UGT1A7*1,UGT1A9–118 (dT)10/10 103

NA 1A9*2: 8G > A 122

(SN-38) 1A9*3: 98T > C122

(SN-38) 1A9*5: 766G > A112

CBR1 NA c.219 G>C 79

c.627 C/C79

+967 G/G79

diplotype
(c.627C,+967G)79

1096 G/G80

V88I82

NA P131S 82

CBR3 NA79

CES1 NA 1440 A>T 115

NA 1525 A>C 115

CES2 NA 1647 C>T 115

NA *1: 803C>G,8721G>A,9938G>A,9943C>A 104

NA *2: 8721G > A 104

NA *3: 8721G > A, 9607C > T, 9624A > G,
9938G > A, 9943C > A 104

NA *4: 8721G > A, 9938G > A, 9943C > A 104

NA *7: 4595T > C 104

NA *8: 7339G > A 104

NA *10: 1216T > C, 9938G > A, 9943C > A 104

NA Haplotype 50-UTR-363, Intron1 + 1361 123

NA Haplotype 50-UTR-363, Intron1 + 947,
Intron1 + 1361, Intron1 + 1643 123
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Table 1 (continued)

EXPOSURE
IRINOTECAN VINCRISTINE CISPLATIN MELPHALAN ETOPOSIDE DOXORUBICIN

VDR intron 8AA/AG77

fok 1TT77

MDR1 NA C3435T 62 NK NK G571A 72 NA G571A 72

NA G2677T 62 3435 C/C77 NK G1199A 83

NK G1199A 71, 83 NK 3435 C/C 78 NA G1199A  71

NK G571A 72 2677 G/G77 NK G1199T 83

NK G1199T 83 NA G2677T 78

NK Haplotype 
2677G-3435C 78

MRP1 NK NK Gly671Val 
G/T, T/T 81

MRP2 NK
NK haplotype 
Val1188Glu-
Cys1515Tyr 81

ABCB1(MDR1) (SN-38) Haplotype: 1236C > T,
2677G > T, and 3435C > T119 NA 893-Ser 63

(SN-38) 1236C > T115 NA 893-Thr 63

NA 1236C > T 92, 116, 124

NA 2677G > T/A 92, 115, 116, 124

NA 3435C > T 88, 92, 115, 116, 121, 124

(SN-38) diplotype 2677G-3435C92

ABCC1(MRP1) NA 462C > T 115

NA 14008G > A 115

NA 34215C > G 115

ABCC2 NA –24T > C 80, 124

3972T > C86

NA 33449T > C 115

NA 156231A > G 124

*2 haplotype91

NA 1249G > A, 3972C > T 92

ABCG2 –19572–1957686, 124

NA –19202G > C 124

NA –18845T > C 124

NA –18604 delA 124

NA 34G > A 80,124

NA 376C > T 124

NA 421C > A 89, 92, 105, 124

421C > A86

NA 623T > C 115

NA 1444A > G, 1445G > C 124

ATP7A NK
ATP7B NK
CTR1 NK

LAT1/LAT2 NA74, 75

hOCT2 NA64

SLC22A16 c.146 G/G84

NA c.755 T>C 84

CyclinD1/D2/D3 NK
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Table 2 Influence of pharmacogenetics on the efficacy of cytotoxic drugs

EFFICACY
IRINOTECAN VINCRISTINE CISPLATIN MELPHALAN ETOPOSIDE DOXORUBICIN

CYP1A2 NK
CYP2C19 NK
CYP2D6 NK
CYP2E1 NK
CYP3A4 NA *1B:  –392A > G 115, 116, 124 NK NK NK

NA *2: 15713T > C 116

NA *3: 23172T > C 115, 116, 121

NA *4: 352A > G 124

NA *5: 653C > G  124

NA *6: 831 insA 124

NA *17: 15615T > C 116, 121

NA *18: 20070T > C 116, 121

NA *1G, *16B, *18B 93

CYP3A5 NA *3C: 22893G > A 115, 116, 121, 124 NK 3A5*1/*161,69,70 NK
NA *6: 30597G > A 115, 116, 124 NK 3A5*1/*361,69,70

NA 6986 A>G 88 NK 3A5*1/*661,69,70

NK 3A5*3/*361,69,70

NK 3A5*1/*761,69,70

GST NK NK NK NA GSTM1 null85

NA GSTT1 null 85

UGT NA 1A1*6: 211G > A 101, 102, 109, 118 NK
NA 1A1*6: 211G > A 107, 111

NK 1A1*6 87, 89, 90

NA 1A1*7: 1456T > G 107, 111, 115, 118

NA 1A1*27: 686C > A 107, 109, 111

NA 1A1*28: (TA)7TAA 88,89,94,101,103,106,114,118,121,124

NA 1A1*28: (TA)7TAA 86, 90, 91, 108, 109, 110, 116, 117

NA 1A1*35: 1291T > C 107

NA 1A1*36: (TA)5TAA 121

NA 1A1*37: (TA)8TAA 103

NA 1A1:  –3156G>A 88, 109

NA 1A1: 686C > T 113

NA 1A6*2: 19T > G, 541A > G, 552A > C 103

NA 1A7*2: 387T > G, 391C > A, 392G > A 102

1A7*2: 387T > G, 391C > A103

NA 1A7*3: 387T>G, 391C>A, 392G>A, 622T>C 102

1A7*3: 387T > G, 391C > A, 622T > C103

NA 1A7*4: 622T > C 102

NA 1A7: 33C>A,343G>A,387T>G,391C>A,
392G>A,417G>C,582T>C 86

NA 1A7*2: 387T > G, 391C > A 107

NA 1A7*2: 387T > G, 391C > A 122

NA 1A7*3: 387T > G, 391C > A, 622T > C 107

NA 1A7*3: 387T > G, 391C > A, 622T > C 122

* “ ” indicates an increase in drug exposure, efficacy or toxicity;

† “ ” indicates a decrease in drug exposure, efficacy or toxicity;

‡ “NA” indicates that there is no association between the corresponding gene and the pharmacokinetics of the drug;

§“NK” (Not Known) indicates that pharmacogenetic data have not been found in the published literature;

|| “grey cells” indicate that the gene is not related to the pharmacokinetics of the drug.
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Table 2 (continued)

EFFICACY
IRINOTECAN VINCRISTINE CISPLATIN MELPHALAN ETOPOSIDE DOXORUBICIN

UGT NA 1A7*4: 622T > C  107

NA 1A7*4: 622T > C122

NA 1A7*5: (G115S) 122

NA 1A7*6: (E139D) 122

NA 1A7*7: 387T > G, 391C > A, (E139D) 122

NA 1A7*8: 387T>G, 391C>A, (E139D), 622T>C 122

NA 1A7*9: (G115S), 387T > G, 391C > A 122

NA 1A9*2 86

NA 1A9*3: 98T > C 117

NA 1A9*3: 98T > C 86

NA 1A9*5: 766G > A 117

1A9–118 (dT)9/9103

Haplotype: UGT1A1*1,UGT1A6*1,
UGT1A7*1,UGT1A9–118(dT)10/10 103

NA 1A9*2: 8G > A 122

NA 1A9*3: 98T > C 122

NA 1A9*5: 766G > A 112

CBR1 NA c.219G>C 79

NK c.627C/C 79

NK 967 G/G 79

NK Diplotype 
(c.627C,+967G)79

NK 1096 G/G 80

NK V88I 82

NA P131S 82

CBR3 NA79

CES1 NA 1440 A>T 115

NA 1525 A>C 115

CES2 NA 1647 C>T 115

NA *1: 803C>G, 8721G>A, 9938G>A, 9943C>A 104

NA *2: 8721G > A 104

NA *3: 8721G>A, 9607C>T, 9624A>G, 
9938G>A, 9943C>A 104

NA *4: 8721G > A, 9938G > A, 9943C > A 104

NA *7: 4595T > C 104

NA *8: 7339G > A 104

NA *10: 1216T > C, 9938G > A, 9943C > A 104

NA Haplotype 50-UTR-363, Intron1 + 1361 123

NA Haplotype 50-UTR363,Intron1+947,
Intron1+1361,Intron1+1643 123

VDR NK
MDR1 NA C3435T 62 NA66 G571A 72 NA G571A 72

NA G2677T 62 NK 3435C/C 77 G1199A83

G1199A 71, 83 3435 C/C78 NA G1199A 71
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Table 2 (continued)

S98 Eur J Clin Pharmacol (2011) 67 (Suppl 1):S87–S107



Table 3 Influence of pharmacogenetics on the toxicity of cytotoxic drugs

TOXICITY
IRINOTECAN VINCRISTINE CISPLATIN MELPHALAN ETOPOSIDE DOXORUBICIN

CYP1A2 NK
CYP2C19 NK
CYP2D6 NK
CYP2E1 NK
CYP3A4 NA *1B:  –392A > G 115, 116, 124 NK NK NK

NA *2: 15713T > C 116

NA *3: 23172T > C 115, 116, 121

NA *4: 352A > G 124

NA *5: 653C > G 124

NA *6: 831 insA 124

NA *17: 15615T > C 116, 121

NA *18: 20070T > C 116, 121

NA *1G, *16B, *18B 93

CYP3A5 NA *3C: 22893G > A 115, 116, 121, 124 NK 3A5*1/*1 61,69,70 NK
NA *6: 30597G > A 115, 116, 124 NK 3A5*1/*3 61,69,70

NA 6986 A>G 88 NK 3A5*1/*6 61,69,70

NK 3A5*3/*3 61,69,70

NK 3A5*1/*7 61,69,70

GST NA M1,T1,Z1 65 NK NK NA GSTM1 null85

M3*B65 NA GSTT1 null85

P1 G/G 65

P1 A/G, A/A65

P1 105Val
/105Val 73

P1105Ile
/105Ile73

UGT NA 1A1*6: 211G > A 101, 102, 109, 118 NK
NA 1A1*6: 211G > A 107, 111

1A1*6 G/G87, 89

diplotype with 1A1*690

NA 1A1*7: 1456T > G 107, 111, 115, 118

NA 1A1*27: 686C > A 107, 109, 111

NA 1A1*28: (TA)7TAA
88,89,90,91,94,103,106,108,110,117,121,124

1A1*28: (TA)7TAA101

1A1*28: (TA)7TAA 86, 109, 116, 118

1A1*28: (TA)7TAA114

NA 1A1*35: 1291T > C 107

NA 1A1*36: (TA)5TAA 121

NA 1A1*37: (TA)8TAA 103

1A1:  –3156A/A88, 109

NA 1A1: 686C > T 113

NA 1A6*2: 19T > G, 541A > G, 552A > C 103

NA 1A7*2: 387T > G, 391C > A, 392G > A 102

* “ ” indicates an increase in drug exposure, efficacy or toxicity;

† “ ” indicates a decrease in drug exposure, efficacy or toxicity;

‡ “NA” indicates that there is no association between the corresponding gene and the pharmacokinetics of the drug;

§“NK” (Not Known) indicates that pharmacogenetic data have not been found in the published literature;

|| “grey cells” indicate that the gene is not related to the pharmacokinetics of the drug.
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Table 3 (continued)

TOXICITY
IRINOTECAN VINCRISTINE CISPLATIN MELPHALAN ETOPOSIDE DOXORUBICIN

UGT 1A7*2: 387T > G, 391C > A103

NA 1A7*3: 
387T>G,391C>A,392G>A,622T>C102

1A7*3: 387T > G, 391C > A, 622T > C103

NA 1A7*4: 622T > C 102

NA 1A7: 33C>A,343G>A,387T>G,
391C>A,392G>A,417G>C,582T>C 88

NA 1A7*2: 387T > G, 391C > A 107

NA 1A7*2: 387T > G, 391C > A 122

NA 1A7*3: 387T > G, 391C > A, 622T > C 107

NA 1A7*3: 387T > G, 391C > A, 622T > C 122

NA 1A7*4: 622T > C 107

NA 1A7*4: 622T > C 122

NA 1A7*5: (G115S) 122

NA 1A7*6: (E139D) 122

NA 1A7*7: 387T > G, 391C > A, (E139D) 122

NA 1A7*8:387T>G,391C>A,(E139D),622T>C122

NA 1A7*9: (G115S), 387T > G, 391C > A 122

NA 1A9*2 86

NA 1A9*3: 98T > C 117

NA 1A9*3: 98T > C 86

NA 1A9*5: 766G > A 117

1A9–118 (dT)9/9103

NA Haplotype: UGT1A1*1,UGT1A6*1,
UGT1A7*1,UGT1A9–118(dT)10/10 103

NA 1A9*2: 8G > A 122

NA 1A9*3: 98T > C 122

NA 1A9*5: 766G > A 112

CBR1 NA c.219 G>C79

NK c.627 C/C79

NK 967 G/G 79

NK Diplotype 
(c.627,+967G)79

NK 1096 G/G80

NK V88I 82

NA P131S 82

CBR3 NA79

CES1 NA 1440 A>T 115

NA 1525 A>C 115

CES2 NA 1647 C>T 115

NA *1: 
803C>G,8721G>A,9938G>A,9943C>A104

NA *2: 8721G > A 104

NA *3: 8721G>A, 9607C>T, 9624A>G, 
9938G>A, 9943C>A 104
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Table 3 (continued)

TOXICITY
IRINOTECAN VINCRISTINE CISPLATIN MELPHALAN ETOPOSIDE DOXORUBICIN

CES2 NA *4: 8721G > A, 9938G > A, 9943C > A 104

NA *7: 4595T > C 104

NA *8: 7339G > A 104

NA *10: 1216T > C, 9938G > A, 9943C > A 104

NA Haplotype 50-UTR-363, Intron1 + 1361 123

NA Haplotype 50-UTR-363,Intron1+947,
Intron1+1361,Intron1+1643 123

VDR NK
MDR1 NA C3435T 62 NK G571A72 NA G571A72

NA G2677T62 NK 3435 
C/C77,78 NK G1199A83

NK G1199A 71 NK 2677 G/G77 NA G1199A71

G571A72 NA G2677T78 NK G1199T83

NK G1199T 83 NK Haplotype 
2677G-3435C 78

MRP1 NK Gly671Val 
G/T, T/T81

MRP2 NK
haplotype 

Val1188Glu-
Cys1515Tyr81

ABCB1(MDR1) NA Haplotype: 1236C>T, 2677G>T 
and 3435C>T 119 NA 893-Ser 63

NA 1236C>T 92, 115, 116, 124 NA 893-Thr 63

NA 2677G > T/A 92, 115, 116, 124

NA 3435C > T 88, 92, 115, 116, 121, 124

2677G/G92

3435T/T92

ABCC1(MRP1) NA 462C > T 115

NA 14008G > A 115

NA 34215C > G 115

ABCC2 NA –24T > C 92, 124

NA 3972T > C 86

NA 33449T > C 115

NA 156231A > G 124

*2 91

NA 1249G > A, 3972C > T 92

ABCG2 NA –19572–19576 86, 124

NA –19202G > C 124

NA –18845T > C 124

NA –18604 delA 124

NA 34G > A 92, 124

NA 376C > T 124

NA 421C > A 86, 89, 92, 105, 124

NA 623T > C 115

NA 1444A > G, 1445G > C 124

ATP7A NK
ATP7B NK
CTR1 NK

LAT1/LAT2 NA74, 75

hOCT2 NA64

SLC22A16 NK c.146 G/G 84

NA c.755 T>C 84

CyclinD1/D2/D3 NK
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Table 6 Influence of pharmacogenetics on the toxicity of drugs in clinical development

TOXICITY
17AAG APREPITANT BMS-536924 EFLORNITHINE IMATINIB NUTLIN3 ONCOLYTIC VIRUS

CYP1A2 NK NK
CYP2C9 NA 99

CYP2C19 NK NA 99

CYP2D6 NA 2D6*4 99

CYP3A4 NK NK NA 99

CYP3A5 NA 3A5*3 96 NA 99, 100

ABCB1 (Pgp) NA 99 NK
NA 1236 TT 100

NA 2677 TT 100

NA 3435 TT 100

ABCG2 NA 99

NQO1 NA NQO1*2 96

* “ ” indicates an increase in drug exposure, efficacy or toxicity;

† “ ” indicates a decrease in drug exposure, efficacy or toxicity;

‡ “NA” indicates that there is no association between the corresponding gene and the pharmacokinetics of the drug;

§“NK” (Not Known) indicates that pharmacogenetic data have not been found in the published literature;

|| “grey cells” indicate that the gene is not related to the pharmacokinetics of the drug.

Table 5 Influence of pharmacogenetics on the efficacy of drugs in clinical development

EFFICACY
17AAG APREPITANT BMS-536924 EFLORNITHINE IMATINIB NUTLIN3 ONCOLYTIC VIRUS

CYP1A2 NK NK
CYP2C9 NA 99

CYP2C19 NK NA 99

CYP2D6 NA 2D6*4 99

CYP3A4 NK NK NA 99

CYP3A5 NA 3A5*3 96 NA 99, 100

ABCB1 (Pgp) NA 99 NK
NA 1236 TT 100

NA 2677 TT 100

NA 3435 TT 100

ABCG2 NA 99

NQO1 NQO1*2 95,96,97,98

* “ ” indicates an increase in drug exposure, efficacy or toxicity;

† “ ” indicates a decrease in drug exposure, efficacy or toxicity;

‡ “NA” indicates that there is no association between the corresponding gene and the pharmacokinetics of the drug;

§“NK” (Not Known) indicates that pharmacogenetic data have not been found in the published literature;

|| “grey cells” indicate that the gene is not related to the pharmacokinetics of the drug.

Table 4 Influence of pharmacogenetics on the pharmacokinetic profile of drugs in clinical development

EXPOSURE
17AAG APREPITANT BMS-536924 EFLORNITHINE IMATINIB NUTLIN3 ONCOLYTIC VIRUS

CYP1A2 NK NK
CYP2C9 NA 99

CYP2C19 NK NA 99

CYP2D6 NA 2D6*4 99

CYP3A4 NK NK NA 99

CYP3A5 3A5*3 
(homozygous) 96 NA 99, 100

ABCB1 (Pgp) NA 99 NK
1236 TT 100

2677 TT 100

3435 TT 100

ABCG2 NA 99

NQO1 NA NQO1*2 96

* “ ” indicates an increase in drug exposure, efficacy or toxicity;

† “ ” indicates a decrease in drug exposure, efficacy or toxicity;

‡ “NA” indicates that there is no association between the corresponding gene and the pharmacokinetics of the drug;

§“NK” (Not Known) indicates that pharmacogenetic data have not been found in the published literature;

|| “grey cells” indicate the gene is not related to the pharmacokinetics of the drug.
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