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Abstract
Anthropogenic global warming generates profound metabolic alterations in marine ectotherm invertebrates capable of lead-
ing a wide range of these species to extinction. To evaluate the cross-generational effect of thermal stress on the cephalopod 
Octopus maya, groups of females were exposed at 24 and 30 °C until spawn. After, embryos of each female group were 
incubated at 24 and 30 °C allowing for evaluating the transgenerational effects on embryos exposed to high and low tem-
peratures. We analyzed the morphology, oxygen consumption, antioxidant mechanisms, and oxidative stress indicators of the 
embryos. The results demonstrate that thermally stressed females produced smaller eggs with lower yolk content as observed 
in nonthermally stressed females. Also was observed that embryos from females acclimated at 30 °C had lower body weight 
and higher respiratory rates when compared with nonthermal stressed females. Embryos from females acclimated at 30 °C 
showed a collapse of the antioxidant defense system measured as lower both catalase activity and total glutathione concentra-
tions. Additionally, glutathione-s transferase activity increased in embryos incubated at 30 °C and in females maintained at 
high temperatures in a clear deleterious and cross-generational effect of thermal stress on this octopus species. No changes 
were observed in the activity of B-esterases in octopus embryos linked with the thermal stress of females. Embryos from 
thermally stressed females had smaller sizes, less yolk, and higher metabolic rates. Additionally, a collapse in the antioxidant 
defense system was observed indicating they were unable to control the high load of ROS and oxidative damage, which was 
partially acquired by maternal inheritance.

Keywords Reactive oxygen species · Respiratory metabolisms · Antioxidant system · Life history · Global climate change · 
Thermal stress

Introduction

An increment in seawater temperature from 1 to 3 °C is 
expected for the next three decades (Pörtner et al. 2022). 
Such increment can generate profound metabolic alterations 
in marine ectotherm invertebrates, affecting the distribution 
and abundance of a wide number of species (Gillooly et al. 
2001; Lefevre 2016; Madeira et al. 2016). The mitochon-
drial respiratory chain is one of the main producers of reac-
tive oxygen species (ROS) (e.g., hydroxyl and superoxide 
radicals, singlet oxygen, etc.) and reactive nitrogen species 
(RNS) (e.g., nitric oxide, peroxynitrite, etc.) that are pro-
duced naturally through physiological and non-physiological 
processes (Feidantsis et al. 2021; Fridovich 1986). Oxida-
tive stress produced by ROS consists of a set of deleterious 
cumulative biomolecular cell damage, mainly oxidation of 
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lipids, proteins, and nucleic acids (Storey and Storey 1978; 
Hulbert et al. 2007). The cell antioxidant defense mecha-
nisms (ANTIOX) consist in groups of enzymes (e.g. cata-
lase, glutathione peroxidase, peroxydoxin, superoxide dis-
mutase; Sillero-Ríos et al. 2018) complemented by some low 
molecular weight (LMW) non-enzymatic molecules (e.g. 
glutathione, vitamins A, C, and E, bilirubin, beta-carotene, 
uric acid, and flavonoids). These LMW non-enzymatic mol-
ecules progressively reduce ROS into safe compounds (e.g. 
 O2 and  H2O; Halliwell 2013) or break the autocatalytic radi-
cal chain reactions (Cadenas 1989), respectively. However, 
in organisms subjected to thermal stress, ROS production 
can surpass the ANTIOX system, provoking cell damage 
and in the end, reducing survival (Pörtner 2010; Pörtner 
et al. 2017; Rodríguez-Fuentes et al. 2017). The most wor-
rying consequence of global climate change and local ther-
mal anomalies could be that the effect of thermal stress can 
overpass the capacity of individual generations to neutralize 
ROS, with profound costs to the ecology of populations and 
communities (Moreira et al. 2016). Moreover, increasing 
periods of thermal stress during reproductive phases result 
in a stronger transgenerational response (Salinas et al. 2013). 
Evidence suggests that thermal tolerance between genera-
tions can be enhanced through thermal preconditioning of 
adults to trigger an epigenetic response that could increase 
the thermal tolerance of their offspring (Klosing et al. 2019). 
That process has been defined as (1) cross-generation plas-
ticity or transgenerational plasticity (CGP and TCP, respec-
tively) (when the environment experienced by parents influ-
ences offspring phenotype: F0–F1); (2) multigenerational 
plasticity (MGP) (when the environment experienced by pre-
vious generations is evident to the F2 and beyond: F1–F2 +); 
and (3) carry-over effects (COE) that occur within the devel-
opment (e.g. embryo to larva) (Byrne et al. 2019; Ross et al. 
2016). Until now, two hypotheses have been used to explain 
how thermal stress could affect or is transgenerationally 
affecting ectothermic species. One of those postulates that 
thermal stress in parents is an effective mechanism for cop-
ing with temperature increases because it enhances progeny 
performance under thermal stress through epigenetic inher-
itance (Eirin-Lopez and Putnam 2019; Fellous et al. 2015, 
2021). Another one, based on results obtained from mussels 
(Mytilus californicus), provided evidence for adverse paren-
tal effects on offspring thermal tolerances suggesting that 
not all species could benefit from epigenetic alterations in 
the context of thermal alterations caused by warming (Waite 
and Sorte 2022).

Octopus maya (an endemic cephalopod adapted to com-
paratively low environmental temperatures of the Yucatan 
Peninsula) has been documented as a tropical species rela-
tively sensible to thermal stress (Ángeles-González et al. 
2020, 2021). When the temperature was evaluated (above 

27 ºC) in adult O. maya females, the number of spawned 
and fertilized eggs was lower than in females maintained 
at 24 ºC (Juárez et al. 2015). Essential genes involved in 
fertilization and egg-laying are downregulated in both 
optic and oviducal glands of thermally stressed O. maya 
females (Domínguez-Estrada et  al. 2022; Juárez et  al. 
2022). These and more recent results have indicated that 
high temperatures affect negatively, not only the capacity 
of females to produce eggs but also how sperms fertilize 
the eggs in the oviductal gland (Juárez et al. 2022). In 
experiments with male octopuses, temperatures of 28 ºC 
or higher provoked testicular damage, reducing their pater-
nal contribution to progeny (López-Galindo et al. 2018). 
These results evidence that temperatures from 28 °C to 
30 °C deeply affected the reproductive performance of this 
octopus species.

Transgenerational effects of thermal stress were docu-
mented previously in this octopus species (Juárez et al. 
2016) where thermally stressed females produced smaller 
embryos, and metabolic rates 2.5–3.5 fold than those from 
unstressed females, suggesting that maternal thermal stress 
can drastically affect the energetic mechanisms of the 
juveniles. Strong differences were also observed in rou-
tine metabolism, suggesting that physiological unbalance 
observed was at a maintenance metabolism level, where ani-
mals from stressed females showed higher metabolic rate 
than octopuses from unstressed females. The authors sug-
gested that such effects could have epigenetic bases (Juárez 
et al. 2015, 2016).

In a study conducted on O. mimus embryos, Olivares 
et al. (2019) hypothesized that negative parental influence 
on offspring is related to ROS transferred from females 
to oocytes during oogenesis, causing an ulterior overload 
for embryos. In this regard, during spawning, female optic 
glands (located close to the brain) focus on maintaining 
a balance between energy and ROS production (Ventura-
López et al. 2022), but high temperatures drastically affect 
this process (Domínguez-Estrada et al. 2022). Moreover, 
at high temperatures, the optic gland in females up-reg-
ulates the expression of genes related to stress response 
and the production of stress molecules like corticosterone 
(Domínguez-Estrada et al. 2022), which may alter embry-
onic development (Hayward and Wingfield 2004; Vagnerová 
et al. 2008).

During the reproductive phase, females use their energy 
reserves for parental care (Lin et al. 2019; Roumbedakis 
et al. 2017; Ventura-López et al. 2022). Biological pro-
cesses like the oxidation–reduction process, respiratory 
electron transport chain and precursor metabolite, and 
energy generation are conspicuous during spawning in 
this octopus species (Ventura-López et al. 2022; Meza-
Buendia et al. 2021). However, thermally stressed females 
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showed a lower metabolic scope than females maintained 
in thermally optimal conditions. Therefore, elevated tem-
peratures could be affecting the ability of females to chan-
nel enough energy to all events involved in reproduction 
(Meza-Buendia et al. 2021).

According to Blount et al. (2016), in mammals and 
birds, females might, therefore, gain from pre-emptive 
reduction of oxidative damage in preparedness for repro-
duction, to reduce the oxidative costs of reproductive 
effort, or to ensure that levels of oxidative damage do 
not subsequently exceed some critical thresholds above 
which it may be impossible to maintain cellular homeo-
stasis. Also, those authors hypothesized that reductions 
in oxidative damage in reproducing females might also 
serve to shield gametes and develop healthy offspring. In a 
study made on O. mimus, Olivares et al. (2019) postulated 
that under thermal stress, female octopuses fail to reduce 
oxidative damage transfer to their embryos, provoking an 
additional charge of ROS that affects embryonic develop-
ment (Olivares et al. 2019). Additionally, O. vulgaris and 
O. maya embryos showed limited abilities to neutralize 
ROS when the maternal charge is summed to ROS pro-
duced during their growth. ROS increases as the metabolic 
rate reach its maximum level at temperatures beyond the 
thermal optima (Repolho et al. 2014; Sánchez-García et al. 
2017).

Based on the above, this research study addresses four 
questions to know the effect of maternal thermal stress 
transferred to O. maya embryos as follows: (i) Do embryos 
from thermally stressed females show alterations in their 
development (e.g. smaller amount of yolk), regardless of 
their incubation temperature? (ii) Does maternal thermal 
stress before spawning affect the metabolic response of 
embryos (e.g. faster respiratory rates)? (iii) Does maternal 
thermal stress and/or high incubation temperature increase 
oxidative stress in embryos at a specific developmental 
stage? And (iv) is the antioxidant system of embryos from 
thermally stressed females subjected to thermal stress dur-
ing their incubation able to cope with oxidative stress? 
Based on these questions and the fact that females under 
thermal stress may not be able to regulate ROS or oxidized 
biomolecule transfer to their embryos, as previously sug-
gested by the studies done in octopus (Olivares et al. 2019; 
Meza-Buendia et al. 2021), their embryos are expected to 
show deleterious morphophysiological differences due to 
a decreased antioxidant system because of overwhelming 
oxidative stress. Moreover, those embryos incubated under 
thermal stress, will not be able to metabolically compen-
sate for it.

To answer these questions, this research was directed to 
experimentally test in the cephalopod Octopus maya, the 
effect of thermal maternal stress on embryonic morphology, 
oxygen consumption, oxidative damage, and antioxidant 

defense mechanisms in embryos exposed to thermal and 
optimal temperatures during their development.

Material and methods

Animals and experimental design

Wild mature males (754 ± 43  g  ww) and females 
(682 ± 59 g ww) were collected on the coast of Sisal, 
Yucatán by the local capture method called “gareteo”, 
which comes from adrift (“al garete” in Spanish, Secreta-
ría de Agricultura, Ganadería, Desarrollo Rural, Pesca y 
Alimentación 2014). The octopuses were then transferred 
to the experimental cephalopod production unit at the 
Teaching and Research Multidisciplinary Unity (UMDI-
UNAM) at Universidad Autónoma de México located 
approximately 1–2 km far from the sampling zone. The 
octopuses were conditioned for 2 weeks in 6000 L open-
air tanks, allowing them to copulate. In the tanks, ani-
mals were maintained from 26 to 28 °C. During that time, 
brooders were fed ad libitum twice a day with a paste made 
with squid (Dosidicus gigas), and crab (Callinectes spp) 
bound gelatin (Tercero-Iglesias et al. 2015). Then, six 
females were acclimated into individual dark tanks con-
nected to a seawater recirculation system with continuous 
seawater flow at 24 ºC (n = 3) or 30 ºC (n = 3) for 30 days. 
Seawater in tanks was kept in a semi-closed recirculation 
system coupled with a rapid-rate sand filter and 36 ± 1 
part per thousand (ppt) salinity, dissolved oxygen higher 
than 5 mg/L, pH above 8, photoperiod of 12L/12D, and 
a light intensity of 30 Lux in the tank surface. Seawater 
temperature was gradually increased by 1ºC/day until the 
experimental temperature (30 ºC) was reached and main-
tained with two 1800 Watt heaters connected to automatic 
temperature controllers. The temperature of 24 ºC was 
controlled with a titanium chiller (Pentair; United States 
of America) and room air conditioner. Octopus females 
were maintained until spawning, with fiberglass boxes 
(30 × 15 × 20  cm; length, wide, high) that served as a 
nest. The animals were fed twice a day with the previously 
described paste (Tercero-Iglesias et al. 2015) during the 
conditioning period and maintained in their experimental 
temperatures. Embryos of each female were obtained after 
eight days, just when spawning ends. After, 80 eggs per 
spawn (240 embryos per experimental temperature) were 
randomly sampled and artificially incubated at 24 ºC or 
30 °C (Fig. 1). This study was performed following the 
European directive related to the use of cephalopods as 
experimental organisms (DIRECTIVA 2010/63/UE) and 
approved by the Bioethical Commission at UNAM (Uni-
versidad Nacional Autónoma de México) Faculty of Sci-
ences (CEARC/Bioética/25102021).
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Routine oxygen consumption in vivo

Every five days, respiratory metabolism was measured 
individually: embryos were placed in micro-plate clear 
glass vials with integrated sensor spots (750 μL volume, 
Loligo Systems, Copenhagen, DK) and maintained in 
seawater in experimental incubation temperature (Fig. 1). 
Simultaneously, oxygen consumption of five control cham-
bers (vials without an embryo) was also measured. Prior to 
each trial, the flow-through cell O2 sensor was calibrated 
at each acclimation temperature using air-saturated seawa-
ter (100%) and with 1–1.5% anhydrous sodium sulphite (at 
0%). Vials were submerged in a transparent glass container 
with temperature-controlled seawater maintained at 24 or 
30 °C. The container was placed on a Sensor Dish Reader 
(Presens, Regensburg, DE) that recorded oxygen concen-
tration measurements every 15 s. The measurement time 
was adjusted according to the oxygen concentration in the 
vial, which was never lower than 80% of the saturation 
level. All measurements were graphed according to time 
and embryo oxygen consumption  (MO2) was calculated 
as follows:

(1)MO2 = (O2(A) − O2(B)) ×
V∕t

M
,

where MO2 is respiration rate (mg  O2  h−1 mg  WW−1); O2(A) 
is initial oxygen concentration in the chamber (mg  O2  L−1); 
O2(B) is final oxygen concentration in the chamber (mg  O2 
 L−1); V  is water volume in the chamber minus water volume 
displaced by the embryo (expressed as L); t is time elapsed 
during measurement (h); and M is egg body mass containing 
the embryo (mg WW).

Embryonic development

Immediately after respiration rate measurements, eggs, and 
their corresponding embryos were photographed, (Fig. 1) 
maintaining eggs at the same experimental temperature. 
Morphological parameters of O. maya eggs (eye diameter, 
mm; arm length, mm; yolk length, mm; egg length, mm; egg 
wide, mm; and wet weight, g) were measured. Each egg was 
observed and photographed using Leica EZ4 HD (Wetzlar, 
DE) stereoscopic microscope whose software (Leica LAS EZ, 
Wetzlar, DE) allows identification of embryonic stage and size. 
The developmental stages were identified (Caamal-Monsreal 
et al. 2016; Naef 1928) and grouped as organogenesis (before 
heart activity started; stages X–XIV), activation (when the 
heart starts its activity; stages XV–XVI), and growth (stages 
XVII–XIX). Afterward, the weight (g) of each embryo was 
obtained (± = 0.001 g), and immediately stored in liquid nitro-
gen on Eppendorf tubes, and stored at -80ºC until analysis.

Fig. 1  Experimental design and 
sample procedures to evaluate 
the effect of transgenerational 
thermal stress on the physi-
ological condition of Octupus 
maya embryos. Please note 
that females were exposed for 
30 days at each experimen-
tal temperature and that the 
embryos sampled every 5 days 
were used to evaluate oxygen 
consumption, morphological 
changes during development, 
antioxidant defense mechanisms 
(ANTIOX) and oxidant damage 
(OXD)
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Antioxidant defense mechanisms and oxidative 
damage

The frozen embryos, at activation and growth phases, were 
individually homogenized in cold buffer 0.05 M Tris pH 
7.4 at 100 mg tissue/mL using a Potter–Elvehjem homog-
enizer. Homogenate samples used for Catalase (CAT), glu-
tathione-s-transferase (GST), and esterases were centrifuged 
at 10,000 g for 5 min at 4 °C, and the supernatant was sepa-
rated for analysis. All samples were stored at − 80 °C until 
analysis; all assays were done in duplicates. Catalase activity 
was measured according to Góth (1991) modified by Had-
wan and Abed (2016). In this method, undecomposed  H2O2 
is measured with ammonium molybdate after three minutes 
to produce a yellowish color with maximum absorbance at 
374 nm. Total glutathione (GSH) was measured with Sigma-
Aldrich Glutathione Assay Kit (CS0260) (St. Louis MO, 
US). This kit utilizes an enzymatic recycling method with 
glutathione reductase (Baker et al. 1990). The GHS sulf-
hydryl group reacts with Ellman’s reagent and produces a 
yellow-colored compound read at 405 nm. The glutathione-
s-transferase (GST) activity was determined from the reac-
tion between reduced glutathione and 1-chloro-2.4-dini-
trobenzene at 340 nm (Habig and Jakoby 1981). Proteins 
were analyzed in supernatant according to Bradford (1976) 
and used to normalize enzyme activities. To evaluate oxida-
tive damage (OXD) caused by radical oxygen species (ROS), 
carbonyl groups in oxidized proteins (PO) were measured in 
the sampled embryos, estimating PO by using the 2,4-dini-
trophenylhydrazine alkaline protocols developed by Mes-
quita et al. (2014) and reported in nmol/mg wet weight. For 
this assay, 200 µl of 2,4 dinitrophenylhydrazine (10 mM 
in 0.5 M HCL) were incubated with 200 µl of the sample 
homogenate and 100 µl of NaOH (6 M). Absorbance was 
read at 450 nm after 10 min of incubation at room tempera-
ture against a blank where an equal volume of homogeniza-
tion buffer substitutes the protein solution.

For this study, two esterases—acetylcholinesterase 
(AChE) and carboxylesterase (CbE) – were measured to 
evaluate the physiological condition of embryos. AChE 
activity was measured using a modification of the method 
of Ellman et  al. (1961) adapted to a microplate reader 
(Rodríguez-Fuentes et al. 2008). Each well contained 10 µL 
of the enzyme supernatant and 180 µL of 5, 5-dithiobis (2 
nitrobenzoic acids) (DTNB) 0.5 mM in 0.05 M Tris buffer 
pH 7.4. The reaction started by adding 10 µL of acetylthi-
ocholine iodide (final concentration 1 mM). Absorbance 
rate of change at 405 nm was measured for 120 s; CbE 
activity was measured using ρ-nitrophenyl-α- arabinofura-
noside (ρNPA) substrate, as indicated by Hosokawa and 
Satoh (2001) with some modifications. Each assay included 
25 μL of the supernatant and 200 μL of ρNPA. The reac-
tion was recorded for 5 min at 405 nm. SOD, AChE, and 

CbE activities were reported per mg protein in the sample 
(Bradford 1976).

Statistical analyses

The relationship between oxygen consumption and egg 
wet weight was linearized using a semi-log transforma-
tion (Ln wet weight). After that, an analysis of covariance 
(ANCOVA) was performed to identify statistical differ-
ences between the linear models obtained. Changes in each 
parameter measured (morphological, ANTIOX, and OXD) 
were also analyzed to show how temperature is affecting 
each one. We made an ANOVA analysis of each parameter 
(morphological, ANTIOX, or ODA) to show a more con-
ventional analysis of the data (see supplementary data). To 
evaluate how the maternal thermal stress affected embryo 
performance (morphological changes, ANTIOX, and OXD) 
of the embryos exposed at different temperatures, a multi-
variate analysis, permutational MANOVA (PERMANOVA), 
and Principal Coordinate Analysis (PCO) were performed 
using Primer v 7.0 + PERMANOVA add on. Raw data of 
this study were stored in ZENODO repository (Domínguez-
Castanedo et al. 2022). In the end, we used the PCO to inter-
pret the results obtained because of the high integrative 
value that have this type of analysis.

Results

Routine oxygen consumption in vivo

When embryo routine metabolism was related to the 
embryo’s wet weight, was noted that the respiratory metab-
olism was affected by the maternal thermal condition but 
not by the embryo's thermal condition (Fig. 2). For that 
reason,  MO2 data of embryos from each thermal female 
treatment (24 or 30 °C) were grouped (Fig. 2). The results 
obtained from the ANCOVA showed that no statistical dif-
ferences were recorded between the slopes obtained from 
the Ln  MO2–Ln embryo wet weight relationship of embryos 
from females conditioned at 24 or 30 °C (F = 2.9; DFn = 1; 
DFd = 242; p = 0.09). However, statistical differences were 
observed between intercepts (F = 28; DFn = 1, DFd = 243; 
p = 0.001) with lower values in embryos from females main-
tained at 24 °C (Ln  MO2–24 °C = Ln 1.3x–Ln 0.98; p ˂ 0.0001; 
F = 491; DFd = 1.16) than those obtained of embryos from 
females maintained at 30 °C (Ln  MO2–30 °C = Ln 1.1x—ln 
1.6; p ˂ 0.0001; F = 75; DFd 1.81) (Fig. 2).

Embryonic development

The PCO analysis indicated that the transgenerational effect 
of the maternal thermal condition affected the morphometric 



 Marine Biology (2023) 170:41

1 3

41 Page 6 of 14

characteristics of the embryos of the next generation. 
Embryos from females maintained at 24 °C (incubated at 
24 and 30 °C) showed larger yolks and eggs than those of 
embryos from females maintained at 30 °C (incubated at 24 
and 30 °C; Fig. 3; Figure S-1A and B).

Embryos in the growth phase from females maintained 
at 24 °C (incubated at 24 °C and 30 °C) and from females 
maintained at 30 °C showed higher eye diameter and mantel 
length than embryos from females maintained at 30 °C and 
incubated at 24 °C (p ˂ 0.001; Figure S-1C and D). Also, was 
observed that at the end of embryo development (phase 4) 
embryos from females maintained at 24 °C and incubated at 

24 °C had larger arms than the rest of the embryos, being the 
shorter arms observed in embryos from females maintained 
at 30 °C and incubated at 30 °C (p ˂ 0.001; Fig. 3; Fig S-1E). 
Exponential curves were obtained from the wet weight of 
embryos during embryo development (Fig S-1F). ANCOVA 
analysis showed that there were no statistical differences 
between slopes but differences between intercepts were 
detected with higher wet weight of embryos from females 
maintained at 24 (incubated at 24 and 30 °C) than embryos 
from females maintained at 30  °C (p ˂ 0.001; F = 23. 
DFn = 2, DFd = 244; Fig. S-1F). When PERMANOVA was 
applied to all morphological data was evident that from an 
integrative analysis, embryo from females maintained at 
24 °C was larger and heavier than embryos from females 
maintained at 30 °C (Fig. 3).

Survival

Embryo survival was affected by maternal temperature 
(Fig. 4). Embryos from females maintained at 30 °C had 
significantly lower survival (mean value of 34.5% survival) 
than observed in embryos from females held at 24 °C (76.5% 
survival).

Antioxidant enzymes and oxidant damage

Pair-wise tests indicated statistical differences for pair levels 
of maternal temperature within levels of embryo temperature 
during the activation phase. The antioxidant defense mecha-
nism of the embryos from the females maintained at 24 °C 
and incubated at 24 and 30 °C showed higher concentrations 
of PO and CAT activity (Fig. S-2A and D). High variability 
in GST and GSH values were observed in embryos from 
females maintained at 24 °C and incubated at 30 °C (Fig. 
S-2B and C). In contrast, the results of the embryos from 
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Fig. 2  Transgenerational effect of Octopus maya female thermal 
condition (24 and 30 °C) on the respiratory metabolism of embryos 
exposed at 24  °C and 30  °C. Blue dots indicate the metabolism of 
embryos from females conditioned at 24  °C and incubated at 24 
and 30  °C. Red squares indicate the metabolism of embryos from 
females conditioned at 30  °C and incubated at 24 and 30  °C. (Ln 
 MO2(Fem 30  °C, n = 248) = Ln 1.1 ww–Ln 1.6;  R2 = 0.48; p ˂ 0.0001; 
 LnMO2(Fem 24  °C, n = 165) = Ln 1.3 ww–Ln 0.98;  R2 = 0.75; ANCOVA 
Slope: F = 2.9; DFn 1; DFd = 242; p = 0.09;  ANCOVAIntercept: F = 28; 
DFn = 1; DFd = 243; p < 0.0001)

Fig. 3  Principal coordi-
nates PCO1 vs PCO2 of the 
transgenerational effect of 
Octopus maya female thermal 
condition (24: blue and green; 
and 30 °C: orange and red) on 
morphological characteristics of 
the embryos exposed at 24 °C 
and 30 °C. In the codes for the 
treatments, the first number 
identifies the thermal condition 
of females and the second one 
thermal condition of embryos
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females maintained at 30 °C showed low activities of CAT 
both in activation and growth phases (Fig. S-2A; Table S-1).

In the activation phase, PERMANOVA indicated that 
the variable maternal temperature and embryo incubation 
temperature have a significant effect on antioxidant defense 
mechanisms and oxidant damage (Fig. 5). Pair-wise tests 
indicated statistical differences for pair levels of maternal 
temperature within levels of embryo temperature during 
the activation phase. The antioxidant defense mechanism 
of the embryos from the females maintained at 24 °C and 
incubated at 24 and 30 °C showed higher concentrations of 
PO and CAT activity (Fig. S-2A and D). High variability 
in GST and GSH values were observed in embryos from 
females maintained at 24 °C and incubated at 30 °C (Fig. 
S-2B and C). In contrast, the results of the embryos from 
females maintained at 30 °C showed low activities of CAT 
both in activation and growth phases (Fig. S-2A; Table S-1).

The results of the antioxidant defense mechanisms during 
the growth phase indicated no interaction of the variables 
maternal and incubation temperatures of embryos. However, 
a significant effect of maternal stress and thermal stress in 
embryos significantly affected the antioxidant defense mech-
anisms in embryos during the growth phase (Table S-2). 
Samples of embryos from females kept and incubated at 
30 °C showed lower CAT activity, total GSH concentration 
and higher activities of GST. Samples from female embryos 
maintained at 24 °C and kept at 24 and 30 °C showed the 
highest PO levels (Fig. S-2; Table S-2).

Esterase

Esterase activities were not affected by the thermal ori-
gin of the embryos nor incubation temperature (p ˃ 0.05; 
Fig. 6). Differences in activities of CbE and AChE were 
only detected according to development stage, with low 
values at heart activation and circulatory system activation 

in comparison with activities measured during the growth 
phase (SS 1507; DF = 1; MS 1507; F = 44.9; p ˂ 0.0001; 
Fig. 6).

Discussion

The present study shows a transgenerational effect of tem-
perature on cross-generation plasticity (CGP) in O. maya. 
Thermally stressed females produced embryos with high 
metabolic rates and less yolk than females maintained in 
optimal conditions. At the end of the embryo development, 
maternal thermal stress provoked the smallest hatchlings 
than females non-thermally stressed, indicating that paren-
tal thermal stress can have severe impacts, at least between 
two generations.

Several studies made in O. maya embryos, juveniles and 
adults have demonstrated that this species is relatively sen-
sitive to high temperatures, of which the thermal limit for 
embryos and spawners is around 27 °C (Ángeles-González 
et al. 2021; Caamal-Monsreal et al. 2016; Domínguez-
Estrada et al. 2022; Juárez et al. 2015, 2016, 2022; López-
Galindo et al. 2018; Meza-Buendia et al. 2021; Noyola et al. 
2013). In a previous study, Juarez et al. (2016) observed 
that juveniles of thermally stressed females had a growth 
rate of approximately half of that recorded in animals of 
non-stressed females, suggesting that a transgenerational 
high-temperature effect could be occurring in this octopus 
species (Juarez et al. 2016). Additionally, these authors 
observed that egg fecundity was affected by temperatures 
of 30 °C (Juárez et al. 2015). The existence of endocrine 
control mechanisms in optic (Domínguez-Estrada et al. 
2022) and oviducal glands to inhibit spawning at elevated 
temperatures (Juárez et  al. 2022) was recently demon-
strated, suggesting that when the temperature is stress-
ing, females avoid potential stress for embryos inhibiting 
spawning. These results support the hypothesis assuming 
that in warming scenarios, adults could migrate to deeper 
waters searching for lower temperatures (22–26 °C) where 
reproductive processes can occur successfully (Angeles-
Gonzalez et al. 2021; Pimentel et al. 2012). Unfortunately, 
ecological adjustments as migrations require time (decades, 
hundreds of years?) due to deep and complex modifications 
in the ecosystem that is invaded and inevitably provokes 
overlapping niches (Ángeles-González et al. 2021; Eddy 
et al. 2020). Sadly, ocean warming is occurring faster than 
physiological adjustments in species and structure of the 
ecosystems, leaving adaptations linked to phenotypic plas-
ticity of the population ability (or not) to respond to the 
rapid environmental changes (Tittensor et al. 2021). In this 
sense, it is highly probable that female octopuses that can-
not migrate to cooler waters during ovarian maturation (i.e. 

Fig. 4  Transgenerational effect of temperature on Octopus maya 
embryo survival. Values as mean ± SD of the three groups of embryos 
from each female maintained at 24 or 30 °C. Different letters (a and 
b) indicate statistical differences between treatments at p < 0.05
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due to niche overlap with O. americanus (Avendaño et al. 
2020) would experience negative transgenerational conse-
quences of high temperatures in their progeny.

Several potential mechanisms can explain the negative 
transgenerational effect of thermal stress in O. maya. First, 
embryos from thermally stressed females had morpho-
logical alterations, showing a smaller amount of yolk and 

smaller sizes than embryos of non-stressed females. Second, 
embryos from thermally stressed females had higher meta-
bolic rates than those observed in embryos of non-stressed 
females. Third, embryos from thermally stressed females 
had lower GSH levels and lower CAT activities, suggesting 
stress in those embryos due to high temperatures (Olivares 
et al. 2019).

Fig. 5  Principal coordinates PCO1 vs PCO2 of the transgenera-
tional effect of Octopus maya female thermal condition (24: blue; 
and 30  °C: red) on antioxidant defense mechanisms of the embryos 
at activation stage (A), and growth stage (B) and exposed at 24  °C 
and 30  °C. In the symbols, the first number identifies the thermal 

condition of females and the text the phase of embryo development. 
Centroids of each PCO at the right side of each one. CAT  Catalase, 
GST Glutathione-s-Transferace, GSH Total Glutathione, PO Protein 
carbonilation
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The negative transgenerational effects of thermal stress 
in O. maya can be associated with the use of yolk reserves 
and consequences on embryo morphology and physiol-
ogy, which compose an energetic mechanism. In octopus 
embryos, as in many other aquatic organisms, yolk quan-
tity and quality are key aspects of this phase of their life 
cycle (Caamal-Monsreal et al. 2016). In fish, embryonic and 
early larval development and metabolism are fueled entirely 
by maternally-derived nutritional resources (yolk and oil) 
before the onset of exogenous feeding, which is a good indi-
cator of parental physiological condition (Hou and Fuiman 
2022). Thus, the transgenerational effect of high tempera-
ture in O. maya could start with the inability of females to 
store enough yolk (or yolk with enough quality?) in the eggs. 
Previous experiments made at the UNAM-Sisal laboratory 
demonstrated that adult females exposed to 30 °C experi-
enced a reduction in aerobic scope. This result suggests that 
in such thermal conditions, females had not enough energy 
to reach an adequately ovarian maturation (Meza-Buendia 
et al. 2021), even when in laboratory conditions, females 
were fed ad libitum with a paste that covered nutritional 
requirements for reproduction (Tercero-Iglesias et al. 2015). 
In this sense, hypothesizing that embryos from thermally 

stressed females were equipped with limited yolk quantities 
(quality?) by reducing the energy available for tissue and 
organ synthesis, the final size of the animals was affected 
(Fig. 6). In adults of the coral colonies of Pocillopora acuta 
exposed to thermal stress, offspring were also smaller than 
those obtained in adults without thermal stress, which sug-
gests, as observed in octopus embryos, that smaller progeny 
can be a transgenerational effect in other ectotherm animals 
(McRae et al. 2021).

Although the reason why embryos of thermally stressed 
females have high metabolic rates is still not known, we 
may hypothesize that some epigenetic alterations could be 
involved (Eirin-Lopez and Putnam 2019; Zhao et al. 2018) 
(Fig. 7). Invertebrates have wide breathing strategies to 
facilitate oxygen extraction of the surrounding water (Bell 
and Syed 2012). In cephalopod embryos, in the absence of 
any circulatory mechanism to aid oxygen transport to the 
tissue, oxygen must pass by diffusion from the external envi-
ronment through the egg capsule to the embryo (Pimentel 
et al. 2012). During embryo development, changes occur in 
surface area and reduction of the egg wall thickness when, 
at the same time, the metabolic demand rises due to cellular 
growth, organogenesis, and muscular activity (Caamal-Mon-
sreal et al. 2016; Cronin and Seymour 2000; Sánchez-García 
et al. 2017; Uriarte et al. 2012). What kind of mechanisms 
could then be epigenetically altered because of parental ther-
mal stress?

According to Eirin-López and Putnam (2019), a wide 
range of epigenetic mechanisms might be modulated 
because of environmental stress, ending up with changes in 
the phenotypes of organisms. One of these stressors is the 
temperature, which is known to modify the use of nutrients 
that are channeled to yolk production (Caamal-Monsreal 
et al. 2016). It has been reported that levels of acetyl-CoA, 
a donor to acetylation reactions, are correlated with the 
extent of histone acetylation and, that this epigenetic mark 
favors gene expression (Gibney and Nolan 2010; Lu and 
Thompson 2012; Sidoli et al. 2019; Tsuchiya et al. 2014). If 
embryos from stressed females have less yolk content, it can 
be proposed that suboptimal available levels of acetyl-CoA 
might thus trigger a histone hypoacetylation event which 
in turn might favor the silencing of a set of genes (prob-
ably, metabolism-related genes) that under normal embryo 
development conditions are necessary for growth. In fact, a 
direct link between the acetyl-CoA levels and the subsequent 
acetylation of histones at growth-related genes has been 
observed (Cai et al. 2011). Another mechanism by which 
hypoacetylation might be occurring is because elevated tem-
peratures could alter the degradation of amino acids (AA) in 
the female during yolk synthesis processes in the embryo. 
If temperature modifies how AA are used as a cellular 
energy source in the ovary, then NAD + can be synthesized 
de novo from AA as tryptophan. NAD + is an obligatory 

Fig. 6  Effect of incubation temperature on Carboxylesterase (A; 
CbE) and acetylcholinesterase (B; AChE) activities of Octopus maya 
embryos (Stages XIV–XVI = activation; VII–XIX = growth) from 
females acclimated at 24 °C (blue circle) and 30 °C (red circle). The 
first number on X-axis indicates the female temperature acclimation. 
The second number indicates the embryo incubation temperature. 
Values ± SD. Different letters (a and b) mean statistical differences 
between phases at p < 0.0001
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co-factor of sirtuin (SIRT1 and SIRT 6) activities, which 
deacetylate histones H3K9/14 and H3K9/56, respectively. 
The deacetylation of histone H3 by these SIRT could down-
regulate the expression of metabolic genes in the embryo, 
thereby altering various metabolic pathways. The latter 
would cause the uncoupling of blocks 1 and 2, (the latter 
comprising mostly the tri-carboxylic acid cycle) with block 
3 (electron transport system ETS); the consequent escape of 
protons, and an increase in ROS production (Etchegaray and 
Mostoslavsky 2016) provokes at the same time an increment 
in mitochondrial oxygen consumption as a compensatory 
reaction (Wallace and Fan 2010), which is consistent with 
what was observed in embryos of O. maya (Fig. 2). Con-
currently, several questions can be addressed as follows: Is 
it possible that as a consequence of epigenetic alteration, 
octopus embryos from thermally stressed females have more 
mitochondria than those coming from non-stressed females? 
Are more enzymes participating in the energetic pathways 
of the embryos even if they have the same number of mito-
chondria? Do embryos have a lower chorion thickness that 
facilitates oxygen flow from water to the embryo? Moreo-
ver, other possibilities could be included in the epigenetic 
alterations due to parental thermal stress. Imperadore et al. 
(2019) showed that two pallial nerves innervate two stellate 
ganglia in O. vulgaris mantle, controlling mantle breathing 
movements. Are there any chances that epigenetic altera-
tions affect the embryo’s nervous central system changing 
the control ability of the pallial nerves and provoking an 

uncontrolled muscle activity in embryos during activation 
and growth phases, enhancing energy requirements and 
causing higher oxygen consumption? AChE are β-esterases 
that degrade choline-based esters; their role in cephalopods, 
as in many other organisms, is to act as a neurotransmitter in 
the nervous system, controlling excitatory stimulus (Omedes 
et al. 2022). This study did not observe that female thermal 
stress provoked alterations in AChE activity levels, suggest-
ing that if thermal stress provoked alterations in the nervous 
system, it was not through AChE inhibition. Esterases such 
as AChE and other esterases have other physiological roles, 
such as cell differentiation, apoptosis and arm regeneration, 
suggesting that other aspects of the embryo metabolism 
should be studied to find how the epigenome could be alter-
ing O. maya embryo metabolism.

Among the mechanisms involved in maintaining homeo-
stasis in aquatic invertebrates, antioxidant defense mecha-
nisms (ANTIOX) have a key role in neutralizing ROS and 
RNS overproduction (Abele et al. 2007; Rodríguez-Fuentes 
et al. 2017). Although ANTIOX mechanisms work all the 
time to neutralize ROS, in extreme temperatures, the rate 
of ROS production overwhelms ANTIOX capability and 
repair mechanisms, leading to cellular disparities (Raha-
man and Rahaman 2021). These systems might sometimes 
fail to counteract the toxic effects of amplified oxygen and 
nitrogen radical formation, elevating lipid peroxidation 
levels and producing cellular oxidative stress (Regoli and 
Giuliani 2014). The magnitude of oxidative stress depends 

Fig. 7  The flow diagram shows the hypothesis to explain the nega-
tive transgenerational effect of maternal thermal stress in Octopus. 
maya embryos (red circle) and embryos from non-stressed females 
(blue circle). Yellow arrows indicate that although thermally stressed 
females had a high routine metabolic rate, this stress prevents the 
use of enough energy for yolk synthesis. Also, epigenetic altera-

tions could modify the energetic metabolism, provoking high meta-
bolic rates in embryos. As a result, embryos from thermally stressed 
females with high metabolic rates have less yolk and, consequently, a 
smaller size than embryos laid by non-stressed females. RMR Routine 
metabolic rate, SMR Standard metabolic rate, AS Aerobic scope
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on temperature and exposure time besides the ability of 
organisms to upregulate the enzymes involved in antioxi-
dative defenses (Matozzo et al. 2013; Parisi et al. 2021). It 
is interesting to note that carbonyl groups in oxidized pro-
teins (PO) and CAT activity were higher in embryos from 
non-thermally stressed females than those from stressed 
females suggesting differences in the form in which ROS and 
ANTIOX acted in the two groups of embryos. In O. mimus 
embryos, a part of ROS and oxidized biomolecules are trans-
ferred by the female through the yolk even in optimal ther-
mal conditions (Olivares et al. 2019). To neutralize the ROS 
inherited and the ones produced at respiration, embryos turn 
on the antioxidant mechanisms once the circulatory system 
is activated, allowing the enzymes to neutralize ROS after 
organogenesis when the heart and circulatory system start 
working (Sánchez-García et al. 2017). A similar sequence 
of events was observed in O. maya embryos of non-stressed 
females. High levels of PO at the time of activation may 
be closely related to inherited PO levels plus PO produced 
during respiration. In the case of embryos of thermally 
stressed females, other mechanisms could be operating. In 
those embryos, CAT activities were low evidencing that the 
antioxidant system is collapsing. CAT is an enzyme that 
catalyzes hydrogen peroxide to  H2O +  O2 and is linked to 
the superoxide dismutase (SOD) enzyme that alternately 
catalyzes the dismutation (or partitioning) of the superoxide 
radical into ordinary molecular oxygen and hydrogen per-
oxide. It means that being CAT and SOD are the first lines 
of defense of the antioxidant mechanisms of vertebrates and 
invertebrates, both enzymes are key in the neutralization of 
ROS processes (Regoli and Giuliani 2014). In this sense, 
it is possible to hypothesize that low activity of CAT in O. 
maya embryos should have hard consequences in juvenile 
stages, mainly if those hatchlings are exposed to thermally 
stressed environments.

Conclusion

The results in this research are consistent with the adverse 
parental carry-over of thermal effects, which may be associ-
ated with trade-offs between the female condition (less aero-
bic scope and energy for yolk synthesis at high temperatures) 
and the investment required (yolk quality/quantity?) to have 
a successful offspring. Embryos from thermally stressed 
females had smaller sizes, less yolk, and higher metabolic 
rates. Additionally, a collapse in the antioxidant defense 
system was observed in embryos from thermally stressed 
females, indicating they were unable to control the high load 
of ROS and oxidative damage, which was partially acquired 
by maternal inheritance.

To conclude, further research should (i) assess if, as a 
consequence of epigenetic alteration, octopus embryos 

-from thermally stressed females- have more mitochondria 
than those coming from non-stressed females; (ii) confirm, 
if more enzymes are participating in the embryo energetic 
pathways even if they have the same number of mitochon-
dria; (iii) observe if the embryo chorion wall thickness 
depends on the female thermal condition. Confirm if global 
acetylations levels are minors in embryos coming from 
stressed females. Other possibilities could be included in 
epigenetic alterations due to parental thermal stress. Thus, 
future studies need be performed with the purpose of know-
ing if epigenetic alterations affect the organism nervous cen-
tral system, changing the control ability of pallial nerves and 
provoking an uncontrolled muscle activity during activa-
tion and growth phases, enhancing energy requirements, and 
causing higher oxygen consumption.
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