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Abstract
Baited cameras were deployed over a depth range of 532–5111 m in the Ionian Sea to characterise the large mobile fauna. 
The planned installation of a neutrino telescope also offers the potential for biological observatories. The current study was 
intended to aid observatory placement. At increasing depths, sediment was observed to become more uniform and animal 
burrows and tracks reduced. A total of 10 species of deep-sea fishes were identified from images; four elasmobranchs, which 
were not recorded deeper than 1841 m, and six teleosts. At depths > 3000 m, including Calypso Deep, the deepest point 
in the Mediterranean, only one fish species was observed; the Mediterranean grenadier, Coryphaenoides mediterraneus 
(3400–5111 m), extending this species’ maximum recorded depth to 5111 m. Four species of decapod crustacea could be 
identified from images. The dressed deep-sea shrimp, Acanthephyra eximia (1346–5111 m) was the only invertebrate recorded 
at abyssal depths, including the deepest point. A faunal change was detected at ~ 1000 m depth. Incorporating other studies 
from the Eastern Mediterranean identified additional faunal boundaries at ~ 1500 m and ~ 2500 m. The time from landing the 
observation equipment to the arrival of the first fish increased exponentially with depth at a slower rate to that observed in the 
Atlantic Ocean. The estimated density of bait-attending deep-sea fish was, therefore, significantly impoverished compared to 
the Atlantic Ocean at equivalent depth. Barriers to colonisation, low resource input, and high temperature at depth relative 
to the Atlantic Ocean are probable causes of the impoverished fauna.

Introduction

The Eastern Mediterranean Sea extends down to over 
4000 m depth in a series of fore-arc basins sometimes known 
collectively as the Hellenic Trench (Fig. 1) associated with 

the Hellenic Arc subduction zone, where the African plate 
descends beneath the European tectonic plates (Royden and 
Papanikolaou 2011). These deep basins constitute the largest 
area of warm abyssal ocean (depth > 3000 m) on the planet, 
where the deep-sea temperature is 13–14 °C (Roether et al. 
1996), compared with typical temperatures of 2–4 °C in the 
major oceans (Thistle 2014). This is considered similar to 
conditions that prevailed globally 100 million years ago dur-
ing the Cretaceous, before deep-sea cooling was established 
(Priede 2017).

There has been little faunal continuity in the Mediter-
ranean Sea since the Cretaceous. The majority of life in the 
Mediterranean was extinguished 6 million years ago when 
the sea dried out during the Messinian salinity crisis (Hsü 
et al. 1973). The present day fauna of the Mediterranean is 
largely the result of recolonization from the Atlantic Ocean 
(Pérès 1985; Bouchet and Taviani 1992) following the Zan-
clean flood that refilled the sea at the end of the Miocene, 
5.33 million years ago (Garcia-Castellanos et al. 2009). A 
small number of endemic species potentially survived the 
salinity crisis in isolated areas with riverine input (Pérès 
1985; Ryan 2009). The Mediterranean deep-sea fauna is, 
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therefore, impoverished relative to Western Europe Atlantic 
slope (Pérès 1985; Bouchet and Taviani 1992; Stefanescu 
et al. 1992); for example, there are no deep-sea anglerfishes 
(Lophiiformes, Ceratioidea; Pietsch 2009) or decapods of 
the Glyphocrangonidae, Lithodidae, and Chirostylidae, 
which are characteristic deep-sea families elsewhere (Cartes 
1993). Recolonization from the Atlantic is further limited 
by the Strait of Gibraltar, which connects the Atlantic to the 
Mediterranean. At only 280 m at its deepest point, potential 
colonisers must have at least a life history stage that allows 
them to pass through this shallow opening (Bouchet and 
Taviani 1992). It has been argued that the Mediterranean 
does not possess a true abyssal fauna and that the Strait of 
Gibraltar and high temperatures at depth may prevent colo-
nisation from the Atlantic by abyssal species (Pérès 1985; 
Cartes 1993). The Mediterranean appears to have a rather 
high proportion of eurybaric species, unhindered by the 
reduction in temperature usually associated with increasing 
pressure (Pérès 1985; Cartes 1993).

Low-surface productivity further constrains Mediterra-
nean deep-sea fauna, particularly in the Eastern Mediter-
ranean, where chlorophyll concentrations are < 0.15 mg m−3 

compared with 0.2–0.5 mg m−3 in the western Mediterranean 
(D’Ortenzio and Ribera d’Alcalà 2008) and 1.67 mg m−3 in 
the NE Atlantic (Raitsos et al. 2005). Low productivity cre-
ates a corresponding deficiency in export of organic matter 
from the surface to the deep sea in the Mediterranean (Rex 
and Etter 2010) and it has been suggested that the major-
ity of organic input to the Mediterranean deep sea may be 
from terrestrial sources (Fanelli et al. 2011). Organic carbon 
availability is further reduced by high prevailing tempera-
tures that accelerate microbial decomposition, potentially 
diminishing the fraction of surface productivity that reaches 
the deep sea (Laws et al. 2000), and increasing the meta-
bolic rate of the animals that live there (Clarke 2004; Seibel 
and Drazen 2007). The deep-sea fish biomass in the Eastern 
Mediterranean is very low, D’Onghia et al. (2004) estimated 
0.034 kg 1000 m−2 at mid slope depths (800–1300 m) in 
the Ionian Basin, 0.22 kg 1000 m−2 in the western Mediter-
ranean, whereas Bergstad et al. (2012) reported values of 
2–10 kg 1000 m−2 at the similar depths around the North 
Atlantic.

Surveys of mobile fauna from areas surrounding the 
current study have been performed using a variety of 

Fig. 1   Baited lander deployments in Eastern Mediterranean Sea, 
black circles—present study in the Ionian Sea numbered as they 
appear in Table  1. Insert is a closeup of the deployments at the 
NESTOR site. Grey symbols denote the previous studies included in 

analysis; triangles—Jones et  al. (2003), pentagons—Linley (2012), 
squares—Dan O. Jones, Andrew Gates and Jessica Craig. 2014 
unpublished data. NEMO and NESTOR are locations of deep-sea 
neutrino telescope experiments
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methods. In trawl surveys of the Ionian Sea, D’Onghia 
et al. (2004) recorded 44 species at depths from 600 to 
4000 m and Mytilineou et al. (2005) recorded 83 demersal 
species living between 300 and 1200 m depth on the slopes 
off mainland Greece. Gates et al. (2012) conducted R.O.V 
surveys using both fixed baits and line transects at 2720 m 
depth off northern Egypt and Jones et al. (2003) made 
baited trap and camera observations down to 4264 m depth 
off the Islands of Crete and Rhodos (Fig. 1). The afore-
mentioned studies identified the macrourid Coryphae-
noides mediterraneus (Mediterranean grenadier) as the 
dominant or only fish species recorded at abyssal depths. 
Despite its name, C. mediterraneus is found throughout 
the North Atlantic in addition to the Mediterranean Sea 
(Geistdoerfer 1986). It is an active predator and feeds 
mainly on peracarid crustaceans on or just above the sedi-
ment (Carrassón and Matallanas 2002; Gates et al. 2012; 
Pérez-i-García et al. 2017), and while it gathers at baited 
experiments, it has not been observed directly feeding on 
the bait (Jones et al. 2003; Gates et al. 2012). The only 
other fish species observed by Gates et al. (2012) and col-
lected at abyssal depths by D’Onghia et al. (2004) were 
the ipnopid (deep-sea tripod fish) Bathypterois dubius, 
a sit-and-wait predator which is unlikely to be attracted 
to bait, and the rare Bythitid (viviparous brotula) Cat-
aetyx laticeps which also does not appear to respond to 
bait (Gates et al. 2012; Jamieson et al. 2017). Lepidion 
lepidion (Mediterranean codling) was identified as one 
of the dominant fish between 1000 and 1400 m depth in 
the Mediterranean Sea (Stefanescu et al. 1993; D’Onghia 
et al. 2004). Only four shark species are known to live 
exclusively below 1000 m in the Mediterranean Sea (Sion 
et al. 2004) and sharks have only been reported in the 
Mediterranean to ~ 2800 m depth (Jones et al. 2003; Sion 
et al. 2004; Gates et al. 2012). The deepest reported shark 
species in the Mediterranean is Centroscymnus coelolepis 
(Portuguese dogfish; 1500–2800 m); however, it appears to 
have only colonised the western Mediterranean (Carrassón 
et al. 1992; Sion et al. 2004). Sharks may be physiologi-
cally or energetically restrained from occurring deeper 
(Priede et al. 2006; Treberg and Speers-Roesch 2016).

The decapod fauna found by Cartes (1993) in the west-
ern Mediterranean was similar to that found in the Atlantic. 
However, a small number of tropical species, Aristeus anten-
natus, Acanthephyra eximia, and Plesionika acanthonotus, 
are far more dominant in the Mediterranean community 
than they are in the North Atlantic. Cartes (1993) found 
them to be common down to depths of about 2000 m, with 
A. exima extending further, to the deepest areas sampled 
(2261 m). Aristeus antennatus (blue and red shrimp) is a 
large and abundant shrimp in the Mediterranean and as a 
result is not only of commercial interest but also of ecologi-
cal importance (Pérès 1985; Cartes 1994). It is a predator 

with a varied diet which may also exploit carrion as a pas-
sive scavenger (Cartes 1994).

The present study was undertaken as part of an evaluation 
of potential sites for the installation of biological observato-
ries incorporated into astronomical neutrino observatories 
(Feder 2002) as part of the KM3NeT project (Carr et al. 
2008) in the deep waters of the Ionian Sea. The Mediter-
ranean Sea is an excellent location of such a neutrino tel-
escope, the water has high transparency, there are areas of 
very deep water close to land, complete sky coverage is pos-
sible in conjunction with other global neutrino detectors, and 
the Mediterranean Sea faces the galactic centre two-thirds 
of the time (Circella 2009). Three first generation telescopes 
were installed in the Mediterranean sea; Antares off the 
Southern French coast (Spurio 2002; Circella 2009), NEMO 
close to the Sicilian coast (Taiuti et al. 2011) and NESTOR 
off the south-eastern tip of the Peloponnese near the Calypso 
Deep, in the vicinity of the town of Pylos (Rapidis 2009: 
Fig. 1). The installation of a neutrino telescope requires 
seabed modular junction boxes, which provide instrument 
power and data transfer to shore. Once this infrastructure 
is in place, additional sensors connected to these junction 
boxes are relatively inexpensive and expand the project into 
a multidisciplinary endeavour.

To identify locations of biological interest, where a per-
manent biological observatory could be placed, a series 
of baited camera lander deployments were made during 
2008–2011 at the NESTOR site at depths from 532 m down 
to 5111 m and one deployment near the NEMO site in the 
West at 3396 m. The additional aims of this study were to 
determine whether there is active life at the maximum depth 
of the Mediterranean Sea, and to identify the species present, 
while also comparing the abundance of deep-sea fishes in 
the Mediterranean Sea with the Atlantic Ocean.

Materials and methods

Baited landers

Baited photographic landers were first developed in 1969, 
specifically to study deep-sea mobile faunal (Isaacs and 
Schwartzlose 1975). The method is particularly suited to 
deep-sea research as the cost and time benefits relative 
to other survey methods become more pronounced with 
increasing depth (Jamieson 2016). Luring animals with bait 
to a camera helps to amplify the low density of deep-sea 
mobile faunal and is particularly adept at recording large 
mobile carnivores that are often able to avoid other sur-
vey methods (Bailey et al. 2007; Harvey et al. 2007). The 
method emulates a natural process, the arrival of a carcass 
at the seabed, which is distinct from the input of particulate 
material from the surface (Mahaut et al. 1990; Drazen et al. 
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2008; Higgs et al. 2014). The method is highly selective, 
however, and the proportion of the mobile fauna that respond 
to bait varies with location and depth (Priede and Merrett 
1996; Yau et al. 2001) and is likely related to how regularly 
that location experiences a natural food fall (Cartes et al. 
2016). The fauna which respond to baited systems are often 
referred to as scavengers; however, bait-attending fauna is a 
more accurate collective term for two trophic guilds recog-
nised by Gartner et al. (1997); the necrophages or scavengers 
that directly consume dead material and necrophagivores 
that feed on the necrophages, as well as other species that 
may use the carcase as habitat without consuming any mate-
rial. Species such as the European conger (Conger conger) 
intercept the bait rapidly and are seen to feed directly upon 
it, classifying them as necrophages when bait-attending 
(Bozzano and Sardaà 2002; Castro et al. 2005; Linley et al. 
2017b). This does not necessarily mean that carrion forms 
an important component of C. conger diet, rather that it is 
attracted to bait to feed upon it. Others rely on larger scav-
engers to perturb the bait before feeding, such as arrowtooth 
eels (Jamieson et al. 2011). Necrophagivores are attracted 
to bait to exploit the higher density of prey species, often 
amphipods, in the vicinity (Bozzano and Sardaà 2002; Cas-
tro et al. 2005; Kemp et al. 2006; Stoner et al. 2008; Linley 
et al. 2016, 2017a; Drazen and Sutton 2017), although they 
may use bait odour to locate the prey. Other species such 
as the blackbelly rosefish and some Zoarcid species may 
use the associated structures as a habitat as well as hunting 
grounds (Higgs et al. 2014; Jamieson et al. 2017; Linley 
et al. 2017b). For these reasons, the fauna observed by baited 
camera deployed using the lander methods are henceforth 
described as ‘bait-attending’.

Data were collected using two baited landers based on 
the ROBIO design (Jamieson and Bagley 2005) over three 
cruises using the RV Philia (HCMR, Greece), RV Pela-
gia (NIOZ, The Netherlands) and FS Meteor (Germany; 
Table 1).

All lander deployments at less than 1000 m depth used 
the baited camera orientated horizontally, focussed at bait 

mounted on a rigid arm 90 cm in front of the camera. Ani-
mals were, therefore, photographed in profile. Bait was a 
locally sourced whole mackerel (Scomber spp.). The sci-
entific payload included a temperature and pressure sensor 
(UCM-60; Sensortec, Norway) with a 30 s sample interval. 
All deployments > 1000 m was conducted with the lander 
connected to the ballast weight, with bait attached, via a 2 m 
metal strop to suspend the lander 2 m above the seabed with 
the camera facing downwards, so that animals were viewed 
from above. The tethered lander also measured conductivity, 
temperature, pressure, current speed, and direction through-
out at 5 min intervals using a Seaguard system (Aanderaa 
Instruments, Norway).

The landers were deployed by free-fall from the ship 
and, following arrival on the seabed, a digital stills camera 
(OE14-208, Kongsberg Maritime, Norway) with white light 
strobe (OE11-242, Kongsberg Maritime, Norway) was pro-
grammed to take an image every minute. Images were JPEG; 
2592 × 1944 pixels with a field of view of approximately 
3.4 m2 in the deeper vertical images and 2.6 m wide on 
the > 1000 m depth horizontal images.

Species identity and indicators of local density

The camera resolution was sufficient to identify all species 
larger than approximately 2 cm total length, omitting amphi-
pods, isopods, and mysids from the analysis. Species identi-
fication was aided by reference to the literature (Campagno 
1984; Whitehead et al. 1986; Cohen et al. 1990; Wilson et al. 
1996; Ebert and Stehmann 2013; Daly-Engel et al. 2018) and 
previous lander images of known species (Jones et al. 2003; 
Bailey et al. 2005; Linley et al. 2017b). Coryphaenoides 
mediterraneus was distinguished from C. guentheri by its 
more rounded snout and iridescent appearance (Gates et al. 
2012) supported by voucher specimens captured by Jones 
et al. (2003) and Bailey et al. (2003). As mentioned by Gates 
et al. (2012), there is the possibility that C. guentheri is also 
present in the minority; however, it was not positively identi-
fied in any of the images.

Table 1   Baited lander 
deployments within the Ionian 
Sea numbered in order of 
increasing depth

Location is given in decimal degrees. The duration is the amount of time recorded on the seabed

Deployment 
no.

Depth (m) Location Vessel Date Duration (h)

1 532 36.91761°N, 21.59818°E Philia 15/10/2008 6
2 737 36.91420°N, 21.56850°E Philia 14/10/2008 1.8
3 943 36.90412°N, 21.56541°E Philia 16/10/2008 3.6
4 1346 37.08767°N, 21.31767°E Meteor 02/02/2011 4
5 1841 36.93517°N, 21.43233°E Meteor 28/01/2011 3.2
6 3396 36.47450°N, 15.84533°E Meteor 24/01/2011 1
7 4204 36.61898°N, 21.48337°E Pelagia 14/12/2009 17.3
8 5111 36.55050°N, 21.11617°E Meteor 30/01/2011 4.1
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For each species, the first arrival time (tarr) was determined 
by the number of minutes elapsed from bait arrival on the sea 
floor until the first individual appears within the field of view 
of the camera. The maximum number of a given species (Nmax) 
was the most observed simultaneously and % images are the 
percentage of images in which a given species was observed. 
Data were combined with comparable studies from around the 
study site; from Santa Maria de Luca off the coast of southern 
Italy (Linley et al. 2017b), the Cretan Sea (Jones et al. 2003), 
and the Gulf of Sirte (Dan O. Jones, Andrew Gates and Jessica 
Craig. 2014 unpublished data; Fig. 1).

Statistical analysis

Multivariate analysis was conducted in PRIMER v 7.0.11 
(Clarke and Gorley 2015) on square root transformed Nmax 
data. This transformation was selected to reduce the influ-
ence of dominant species, but was not excessively powerful 
as species counts tended to be low. A resemblance matrix was 
formed based on Bray–Curtis similarity. SIMPROF (similar-
ity profile permutation test) analysis was used to identify the 
significant groups within the ecological data and these groups 
were further validated with one-way ANOSIM (analysis of 
similarities) and visualised via CLUSTER (dendrogram of 
hierarchical grouping of samples) analysis. SIMPER (Simi-
larity percentage) analysis identified the species which drove 
the intra group similarity. The current study was compared 
with the previous studies which had used the same methodol-
ogy. Abiotic data; depth, latitude, longitude, and the duration 
of the deployment, were compared to identify any differences 
between the studies/basins. However, there was not sufficient 
replication to allow distinction between the multiple environ-
mental gradients which exist between the studies, e.g., season, 
year, temperature, productivity, fishing pressure, etc. LINK-
TREE (linkage tree) analysis identified the abiotic variables 
which correlated with the significant faunal divisions identified 
in the CLUSTER analysis.

Density estimation

To compare the bait-attending Eastern Mediterranean Sea 
deep-sea demersal fish density to the Atlantic Ocean, tarr of 
the first fish to arrive of any species was combined from stud-
ies using comparable lander configuration. The Mediterranean 
data set was compared against studies from the Atlantic Ocean 
(Armstrong et al. 1992; Priede et al. 1994; Smith et al. 1997; 
Henriques et al. 2002; King et al. 2006; Cousins et al. 2013; 
Jamieson et al. 2017). In both locations, tarr increased logarith-
mically (base 10) with increasing depth in accordance with the 
fitted relationship shown in the following equation:

(1)Log10
(

tarr

)

= a + Depth (m) × b,

where a and b are constants. Comparisons between the 
Mediterranean Sea and the Atlantic Ocean were tested via 
ANCOVA of tarr, with “depth” as a covariate and “location” 
as a factorial explanatory variable. Statistical analysis was 
conducted in R (R Development Core Team 2005) and plots 
were made using ggplot2 (Wickham and Chang 2007).

To illustrate how tarr relates to fish population density, the 
theoretical fish density (A, km−2) was calculated using the 
equations from Priede et al. (1990):

where r is the radius of the space occupied by each fish, Vf 
is the average speed of the fish over the ground, and Vw is 
the speed of dispersal of the odour plume on the bottom cur-
rent. It is assumed that Vf = Vw = 0.05 m s−1, typical of deep 
ocean conditions (Priede et al. 1990). tarr is first arrival time 
expressed in seconds.

Results

The baited lander system was successfully deployed eight 
times from 532 to 5111 m water depth. Almost two and a 
half thousand seabed images were taken. The seabed at all 
deployments was open sandy sediment without visible hard 
surfaces or complex habitats. In the Calypso Deep, the sea-
bed was exceptionally uniform with no visible biologically 
formed changes to the sediment, e.g. tracks, burrows, faecal 
casts, etc. (lebensspuren). The three deepest deployments 
showed increasingly uniform and clean sediment (Fig. 2). 
Table 2 gives the recorded environmental conditions and 
bait-attending fauna identified. Temperature varied between 
13.8 and 14.3 °C and appeared to get warmer with increas-
ing depth beyond ~ 2000 m. Salinity was stable at 38.7 PSU. 
Current speeds were generally low, < 10 cm s−1, but an aver-
age current speed of 17.9 cm s−1 was recorded at 4202 m 
depth (no. 7), more than double any other measurement. Ten 
fish species (Fig. 3) and four invertebrate species (Fig. 4) 
could be identified from the lander images.   

Community structure

There was no species overlap between the three deploy-
ments at < 1000 m and those > 1000 m depth. As a result, 
SIMPROF analysis (Fig. 5) identified a significant fau-
nal divide between deployments shallower and deeper 
than ~ 1000 m (confirmed by ANOSIM; R = 1, p = 0.018). 

(2)r =
tarr

(

1

Vf

+
1

Vw

)

(3)A =
106

3r2
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SIMPER analysis identified those species which contrib-
uted the most to the within group similarity (Table 3). All 
deployments within the shallower groups contained the 
gulper shark Centrophorus granulosus, while all deeper 
deployments contained the shrimp Acanthephyra eximia. 
Deployments between 1000 and 2000 m depth would also 
have no species overlap with those > 2000 m, if not for the 
inclusion of the shrimp Acanthephyra eximia in all deploy-
ments > 1000 m. No elasmobranch species were reported 
beyond 1841 m depth. Only two species were observed in 
the three deepest deployments, A. exima and the macro-
urid Coryphaenoides mediterraneus. At 5111 m deep in 
the Calypso Deep, the deepest point in the Mediterranean 
Sea, C. mediterraneus arrived within the field of view after 
2.9 h and only one individual was seen for a brief period 
of time. Acanthephyra eximia was immediately present on 
landing but present in fewer images (22.1%) and reached 
a lower maximum number (8) than at 4203 m, where Nmax 

(29) and % of images (99.4%) would indicate it was most 
abundant.

Comparable Mediterranean studies

Studies using very similar sampling methodology have been 
conducted at sites around the current study (Fig. 1). An East-
ern Mediterranean data set was created from Jones et al. 
(2003) to the East of the current study, Linley (2012) from 
the northwest and Dan O. Jones, Andrew Gates and Jessica 
Craig (2014) unpublished data from the southwest. Including 
these studies identified four significant faunal groups which 
appeared to be organised by depth (groups were identified 
through SIMPROF analysis and verified through ANOSIM; 
R = 0.769, p = 0.001). LINKTREE analysis indicated that all 
the significant faunal divides identified were driven solely by 
depth (or by a factor correlated with depth; Fig. 6). SIMPER 
analysis was used to identify the species which contributed 

Fig. 2   Downward-looking 
views from the tethered lander 
of the ballast, bait and scale 
cross (image centre), approach-
ing fauna and the surrounding 
sediment at abyssal depths 
in the Ionian Sea. a is in the 
western Ionian Sea, b and c 
are in the eastern Ionian Sea. 
Evidence of animal tracks and 
bioturbation diminish with 
increasing depth until appearing 
completely smooth and uniform 
at the deepest deployment (c)
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most to the similarity within the identified groups (Table 4). 
A complete list of the SIMPER and LINKTREE analysis is 
included in the supplementary material. 

Eastern Mediterranean fish density relative 
to the Atlantic Ocean

The time from the arrival of the lander to the arrival of the 
first fish (tarr) had a significant positive relationship with 
depth (F3,107 = 41.18, p < 0.001). The Mediterranean had sig-
nificantly higher intercept than the Atlantic (F1,107 = 39.716, 
p < 0.001). Interaction between location and depth was 
detected (F1,107 = 4.421, p = 0.038) indicating that the rate 
at which tarr increase with increasing depth was greater 
in the Atlantic (Fig. 7a). At 1000 m depth, the estimated 
time taken for the first fish to arrive at a baited lander in the 
Atlantic ocean was one-fifth that of the Eastern Mediter-
ranean (2.4 vs. 12.3 min), but at 4000 m, the Atlantic was 
approximately half the Mediterranean (23.0 m vs. 49.1 min). 

The two regression lines (equations given in Table 5) would 
cross at 6507 m depth, beyond the maximum depth of the 
Mediterranean Sea, and therefore, estimated arrival times 
were always longer in the Eastern Mediterranean relative to 
the Atlantic Ocean at equivalent depth.

The theoretical density of bait-attending deep-sea fishes 
in the Eastern Mediterranean was much lower than in the 
Atlantic Ocean: estimated as 972 and 27022 fish km−2, 
respectively, at 1000 m depth and 25 and 61 fish km−2 at 
5000 m depth (Fig. 7b, Table 5).

Discussion

This is the first study to extend baited lander observations 
to the deepest area in the Mediterranean Sea, allowing the 
study of faunal zonation from 532 to 5111 m depth in the 
Eastern Mediterranean. All the fish species found in the 
present study have been recorded in the previous Ionian 

Table 2   Environmental conditions and bait-attending animals recorded during deployments numbered in increasing depth order as in Table 1 
and Fig. 1

Each identified species is reported as: maximum number in a single image (in bold), (time of first arrival in minutes), % of seabed images 
observed in

Deployment no. 1 2 3 4 5 6 7 8

Depth (m) 532 737 943 1346 1823 3396 4204 5111
Current (cm s−1) 2.7 ± 0.7 5.7 ± 1.5 7.9 ± 1.2 17.9 ± 1.8 2.4 ± 0.82
Temperature (°C) 14.2 13.9 13.8 13.8 13.8 14 14.2 14.3
Salinity (PSU) 38.7 38.7 38.7 38.7 38.7
Elasmobranchii
 Hexanchus griseus (bluntnose sixgill 

shark)
1 (116) 6.2

 Etmopterus spinax (velvet belly shark) 2 (4) 9.4
 Centrophorus granulosus (gulper shark) 1 (99) 3.1 2 (28) 31.5 3 (14) 25.0
 Dipturus oxyrinchus (longnosed skate) 1 (49) 1.9

Teleostei
 Nettastoma melanurum (blackfin 

sorcerer)
3 (58) 19.8

 Conger conger—(European conger) 1 (4) 6.5
 Coryphaenoides mediterraneus (Medi-

terranean grenadier)
7 (8) 79.6 8 (67) 84.9 1 (174) 0.4

 Lepidion lepidion (Mediterranean 
codling)

1 (55) 2.1 2 (76) 8.4

 Helicolenus dactylopterus (blackbelly 
rosefish)

1 (23) 27.5 1 (91) 4.6

 Polyprion americanus (wreckfish) 2 (63) 34.4
Crustacea: Decapoda
 Plesionika heterocarpus (arrow shrimp) 4 (1) 28.7
 Aristeus antennatus (blue and red 

shrimp)
3 (31) 7.2 2 (19) 10.2

 Acanthephyra eximia (dressed deep-sea 
shrimp)

7 (12) 59.5 14 (2) 89.0 2 (6) 13.0 29 (3) 99.4 8 (1) 22.1

 Chaceon mediterraneus 1 (156) 12.6
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Sea trawl surveys (D’Onghia et al. 2004; Mytilineou et al. 
2005) with the exception of the Longnose skate Dipturus 
oxyrinchus, which is recorded from the Western Mediter-
ranean (Griffiths et al. 2011), the Aegean Sea (Yigin and 
Ismen 2010) and the Gulf of Sirte (Dan O. Jones, Andrew 
Gates and Jessica Craig. 2014 unpublished data). D’Onghia 
et al. (2012) found that that Conger conger, Helicolenus 
dactylopterus and Polyprion americanus generally occur in 
higher abundance in cold-water coral areas than on open 
slopes of the Northern Ionian Sea at 450–650 m depth. The 

presence of the shark Etmopterus spinax is consistent with 
the depth range 1500–2300 m in the Cretan and Levantine 
Seas (Jones et al. 2003), 820–2209 m in the Gulf of Sirte, 
Ionian Sea (Dan O. Jones, Andrew Gates and Jessica Craig. 
2014 unpublished data) and 600–2200 m reported from the 
Eastern Ionian Sea, near the site of the current study (Sion 
et al. 2004).

A distinct boundary in the bait-attending assemblage was 
found at ~ 1000 m depth. The shark Centrophorus granulo-
sus, the decapod Aristeus antennatus and the scorpaeniform 

Fig. 3   Observed fish species. 
Identity is given as scientific 
name (Family, common name); 
the sharks, a Hexanchus griseus 
(Hexanchidae, bluntnose sixgill 
shark), b Etmopterus spinax 
(Etmopteridae, velvet belly 
shark), and c Centrophorus 
granulosus (Centrophori-
dae, gulper shark), d the ray 
Dipturus oxyrinchus (Rajidae, 
longnosed skate), the eels, e 
Nettastoma melanurum (Net-
tastomatidae, blackfin sorcerer) 
and f Conger conger (Con-
gridae, European conger), the 
Gadiformes, g Coryphaenoides 
mediterraneus (Macrouridae, 
Mediterranean grenadier) and 
h Lepidion lepidion (Moridae, 
Mediterranean codling), the 
Scorpaeniformes, i Helicole-
nus dactylopterus (Sebasti-
dae, blackbelly rosefish) and 
the Perciformes, j Polyprion 
americanus (Polyprionidae, 
wreckfish)
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Helicolenus dactylopterus were exclusively found at the 
shallower sites, while Acanthephyra eximia, Coryphaenoides 
mediterraneus and Lepidion lepidion were only observed at 
the deeper sites. When combining studies from around the 
Eastern Mediterranean additional boundaries were found 
at ~ 1500 m and ~ 2500 m, which all contained A. exima, but 
were separated by the fish Nettastoma melanurum and Etm-
opterus spinax, respectively. Beyond ~ 2500 m depth, only 
two species, A eximia and C. mediterraneus, were observed 
to maximum depth in the Calypso Deep.

The previous studies using different methodology have 
found faunal changes at similar depths within the Mediter-
ranean Sea. Within the decapod fauna, Cartes (1993) found 

faunal changes between 1000 and 1200 m and at around 
2000 m depth. At 1200 m depth Stefanescu et al. (1992, 
1993) found a turnover in fish species, a more diverse and 
heterogeneous group of larger fish species with higher ener-
getic requirements were replaced with a small number of 
species and homogeneous community of smaller, less active 
fish with lower energetic demands. The replacement of large 
fish species with smaller ones was not compensated by 
increased abundance, and as a result, this turnover also leads 
to a drop in overall fish biomass (Stefanescu et al. 1992). 
The faunal boundary at 1200–1400 m depth is thought to be 
the result of an abrupt reduction in available prey, namely, 
of mesopelagic organisms as prey items (Stefanescu et al. 
1993). Deposit feeding becomes more important in decapods 
with increasing depth (Cartes 1998). With respect to the 
decapod fauna, Cartes (1993) hypothesised that the Mediter-
ranean decapod fauna was unlikely to change significantly 
below 2265 m depth (the deepest sampling depth in the 
study) and was likely to include Acanthephyra eximia as a 
dominant species. Our study appears to support this. Cartes 
(1993) suggested that due to the environmental stability in 
the Mediterranean, the depth zonation observed in decapods 
was not the result of pressure tolerance but rather other fac-
tors, likely relating to food supply. For fish, there was no 
species turnover of bait-attending species at abyssal depths 
in agreement with Jones et al. (2003), and while D’Onghia 
et al. (2004) captured a wider variety of species via trawl, 
there was a single fish faunal group > 1500 m depth common 
to the three locations studied. It would, therefore, appear 
that within the large mobile fauna of the Mediterranean Sea, 
there is little turnover at abyssal depths and no indication of 
specifically abyssal large mobile fauna.

The Red Sea provides an interesting comparison to 
the Mediterranean Sea in which to explore how pressure, 
temperature and productivity effect faunal composition. 

Fig. 4   Observed invertebrate species were all decapods. Identity 
is given as scientific name (Family, common name); a Plesionika 
heterocarpus (Pandalidae, arrow shrimp), b Aristeus antennatus 
(Aristeidae, blue and red shrimp), c Acanthephyra eximia (Acanth-
ephyridae, dressed deep-sea shrimp), d Chaceon mediterraneus (Ger-
yonidae)

Fig. 5   Dendrogram expressing faunal similarity between deploy-
ments. Deployments are labelled by their depth (m). Solid line indi-
cates significant (p = 0.018) faunal division identified by SIMPROF 
and confirmed through ANOSIM

Table 3   Similarity percentage analysis (SIMPER) of the species 
which contributed to the similarity within the identified faunal groups

Average Nmax, average similarity and each species’ percentage contri-
bution to the within group similarity are presented

Average Nmax Average 
similar-
ity

Percentage 
contribution

Shallower sites—532–943 m. Average similarity: 38.66%
 Centrophorus granulosus 1.38 26.26 67.92
 Aristeus antennatus 1.05 7.27 18.79
 Helicolenus dactylopterus 0.67 5.14 13.29

Deeper sites—1346–5111 m. Average similarity: 51.06%
 Acanthephyra eximia 3.29 41.41 81.11
 Coryphaenoides mediter-

raneus
1.33 8.17 16

 Lepidion lepidion 0.48 1.48 2.89
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Compared to the Mediterranean, the Red Sea has a more 
extreme environment, namely, higher temperature and 
increased salinity throughout the water column (Khalaf and 

Zajonz 2007). The Red Sea also experienced a hypersaline 
event, but faunal continuity was maintained by appropri-
ate conditions in the Gulf of Aqaba and southern Red Sea 
(Dibattista et al. 2016). As a result, the Red Sea appears 
to possess a high proportion of endemism (Dibattista et al. 
2016), 17% endemic deep-sea fish species (Zajonz 2007), 
and 30% in the invertebrates (Türkay 1996). Primary produc-
tion in the Red Sea is higher than in the Mediterranean, how-
ever, at 1.69 g C m−2 day−1 rather than 0.59, respectively, for 
whole sea satellite-derived estimates (Longhurst et al. 1995). 
Similarities in conditions between the two seas have allowed 
the introduction of invasive species into the Mediterranean 
following the opening of the Suez Canal in 1869 (Ben-Tuvia 
1966). Both pressure and temperature affect proteins in simi-
lar ways (Somero 2003) and a combined piezo-thermal effect 
may limit faunal depth ranges (Carney 2005). Carney (2005) 
suggested that the presence of vertical zonation of deep-sea 
fauna in areas of high temperature at depth may indicate 
that pressure is a greater adaptive barrier than temperature. 
Still, it would appear that adaptation to increasing pressure, 
without the associated decrease in temperature found in most 
waterbodies, is less of a barrier to shallow species being 
found deeper. Similar to the Mediterranean Sea, the uniform 
temperature throughout the water column in the Red Sea 
allows for wide vertical distributions in the fauna (Türkay 
1996; Zajonz 2007). The Red Sea lacks what would be con-
sidered a truly deep-sea fauna, but instead, there has been 

Fig. 6   LINKTREE analysis of Eastern Mediterranean baited lander 
Studies. Deployments are labelled by depth with symbols denoting 
location: Triangle—the current study in the Ionian Sea, cross—Cre-
tan Sea, square—Rhodos Basin and diamond—Ierapetra Basin from 
Jones et al. (2003), circle—Gulf of Sirte from Dan O. Jones, Andrew 

Gates and Jessica Craig (2014) unpublished data and plus—Santa 
Maria de Luca from Linley (2012). Thick lines indicate significant 
(p = 0.001) divides in the fauna identified by SIMPROF and con-
firmed through ANOSIM, which are annotated with their correlations 
with the abiotic data

Table 4   Similarity percentage analysis (SIMPER) of the species 
which contributed to the similarity within the identified faunal groups 
of the combined Eastern Mediterranean data set up to 70% of the 
cumulative within group similarity

Full analysis output is included in Supplementary information 1. 
Headings as in Table 3

Average Nmax Average 
similar-
ity

Percentage 
contribution

Depth < 943 m. Average similarity: 32.32%
 Aristeus antennatus 0.95 7.81 24.16
 Conger conger 0.82 7.60 23.52
 Plesionika heterocarpus 0.84 4.59 14.20
 Helicolenus dactylopterus 0.60 3.69 11.42

Depth 1208–1346 m. Average similarity: 66.50%
 Acanthephyra eximia 2.53 29.93 45.01
 Nettastoma melanurum 1.73 23.18 34.86

Depth 1503–2307 m. Average similarity: 66.56%
 Acanthephyra eximia 8.67 39.80 59.80
 Etmopterus spinax 2.24 12.19 18.32

Depth > 3396 m. Average similarity: 67.24%
 Acanthephyra eximia 4.32 39.63 58.93
 Coryphaenoides mediter-

raneus
2.98 25.17 37.43
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a downward extension of near-surface species which enter 
through the shallow Strait of Bab al Mandab at its southern 
entrance: 137 m deep (Dibattista et al. 2016).

Decapods are often studied in less ecological detail than 
fish (Cartes and Sarda 1993), despite being an abundant and 
important element of the Mediterranean deep-sea commu-
nities (Cartes 1998). Aristeus antennatus (the blue and red 
shrimp) is a large and abundant deep-sea shrimp, making 
it important to fisheries (Cartes and Sardà 1989). Aristeus 
antennatus was responsible for a large proportion of within 
group similarity < 1000 m depth (18.79–24.16%; Tables 3 
and 4), but was not observed deeper, explaining its absence 
from the Jones et al. (2003) study, which sampled > 1503 m 
depth and the ROV survey of Gates et al. (2012) at 2720 m 
depth. Aristeus antennatus was reported in Linley (2012, 
2017b) at 642–670 m. Aristeus antennatus is, however, 
known from 2266 m in the western Mediterranean (Cartes 
1993) and is understood to vary in distribution seasonally 
(Cartes and Sardà 1989). Cartes (1994) found a dietary shift 
in A. antennatus at 1200 m depth, which may also represent 
a shift in response to bait. Cartes and Sardà (1989) found 

the stomach contents of A. antennatus to be predominantly 
invertebrate prey with bivalves becoming increasingly 
important and Ophiuroids becoming less important com-
ponents as the animal grew larger. Fish were found to be a 
small component of their diet and may suggest a scaveng-
ing component. However, the prey species identified are all 
benthic, and pelagic organisms would also be expected if 
A. antennatus were necrophagous (Cartes and Sardà 1989; 
Cartes 1998).

Only one species of fish, the macrourid Coryphaenoides 
mediterraneus, and one species of crustacean, the shrimp 
Acanthephyra eximia, were observed at abyssal depths 
(> 3000 m) in the current study, with a new depth record 
of 5111 m for the former. In the Eastern Hellenic arc, Jones 
et al. (2003) also found C. mediterraneus to be the only 
demersal fish species at abyssal depths. Coryphaenoides 
mediterraneus was also the dominant demersal abyssal spe-
cies both in number and weight in the deep trawl survey 
of the Ionian Sea (D’Onghia et al. 2004). Observation of 
both fish and shrimps at 5111 m confirms the presence of 
mobile megafauna at maximum depth even in the unusually 

Fig. 7   Comparison of depth-related trends in fish arrival times and 
theoretical density in the Eastern Mediterranean and the Atlantic. 
a First fish arrival times (tarr) against depth. b Shows the estimated 
density of fishes calculated from the first arrival times (Priede et al. 

1990). Data from the Eastern Mediterranean (circle, filled circles 
from this study, with solid regression line), data from the Atlantic 
(triangle, dashed regression line). Shaded area represents the 95% 
confidence interval of the model fit

Table 5   Equations and statistics 
of the regression lines plotted 
in Fig. 7

N = the number of datapoints

Arrival time (tarr) Equation N R2 Test statistic P value

Atlantic Log10(tarr (min)) = 0.0386 + 0.000331 × depth (m) 83 0.613 F3,107 = 41.18 < 0.001
Mediterranean Log10(tarr (min)) = 0.892 + 0.000200 × depth (m) 28
Fish density
 Atlantic Log10(fish km−2) = 5.093—0.000662 × depth (m) 83 0.613 F3,107 = 41.18 < 0.001
 Mediterranean Log10(fish km−2) = 3.387—0.000400 × depth (m) 28
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warm and oligotrophic conditions of the Mediterranean Sea. 
The trend in C. mediterraneus of longer first arrival time 
and lower Nmax with increasing depth indicates a very low 
population density at maximum depth (Priede and Merrett 
1998) equivalent to about 25 fish km−2 or 3000–4000 indi-
viduals in the whole of the area of the Calypso Deep beyond 
5000 m. Coryphaenoides mediterraneus is much smaller 
in the Mediterranean (ca. 15 cm total length in this study) 
than in the North Atlantic Ocean, where it can reach 73 cm 
(Geistdoerfer 1986). A reduction in the maximum size in 
the Mediterranean relative to Atlantic populations has been 
observed in multiple species (Carrassón et al. 1992; Cartes 
and Sarda 1993; Cartes et al. 2015). Catarino et al. (2015) 
show that the shark Centroscymnus coelolepis in the Medi-
terranean has become genetically isolated from populations 
in the Atlantic Ocean and may have become specialised to 
the prevailing conditions. Coryphaenoides mediterraneus 
in the Mediterranean Sea may be genetically isolated from 
their conspecifics in the NE Atlantic by a bathymetric barrier 
to gene flow at the Straits of Gibraltar and have developed 
a smaller phenotype. In general, fish size beyond 1000 m 
depth decreases with increasing depth (Stefanescu et al. 
1992). Growth is presumably stunted in the Eastern Mediter-
ranean owing to food limitation (D’Onghia et al. 2004; Wei 
et al. 2010). Collins et al. (2005) found that in the Atlantic, 
necrophagous species tended to increase in size with increas-
ing depth, while the inverse was true in the remaining fish 
species. Overall, there is an increase in fish size with depth 
in the Atlantic, both generally and at the species level (Min-
del et al. 2016); however, the opposite is reported in the 
western Mediterranean Sea (Stefanescu et al. 1992), where 
necrophagy does not appear to be an important feeding mode 
in the fish observed > 1000 m depth. The lower rate at which 
tarr increased with increasing depth in the Mediterranean 
relative to the Atlantic may be the result of the reduction in 
fish size compensating for the reduction in biomass, as tarr is 
a proxy for animal density rather than biomass.

The rate of increase in tarr and, therefore, decrease 
in estimated bait-attending fish density with increasing 
depth, differed for the Mediterranean and Atlantic data sets 
(Table 5). However, both were of the same order of magni-
tude found by the global assessment of megafauna biomass 
(− 0.000307 Log10 mg C m−2 per m depth) and abundance 
(− 0.000228 Log10 individuals m−2 per m depth) by Wei 
et al. (2010). These depth trends have been further demon-
strated in global benthopelagic plankton biomass (− 0.00034 
Log10 g 1000 m−3 per m depth) as well as bioluminescent 
zooplankton, where near seafloor densities in the Atlantic 
Ocean (− 0.000546 Log10 bioluminescent sources m−3 per 
m depth) were 8 times higher than those of the Mediter-
ranean Sea (− 0.000622 Log10 bioluminescent sources m−3 
per m depth), although rates of decrease with depth were 
not significantly different (Craig et al. 2015). Measurements 

of number of bioluminescent targets as a proxy for pelagic 
abundance provide evidence for the low density of organ-
isms throughout the water column in the eastern compared 
to the western Mediterranean Sea, where values are typi-
cally 2–10 times higher, and in the north Atlantic Ocean, 
where pelagic densities are an order of magnitude greater 
(500–5000 m depth; Priede et al. 2008; Craig et al. 2011, 
2015).

Deep-sea communities are thought to be primarily food 
limited (Gage and Tyler 1991; Ruhl et al. 2008; Smith et al. 
2008). Surface primary productivity in the oligotrophic 
eastern basins of the Mediterranean Sea is lower and expe-
riences less seasonal and inter-annual variation than the 
western Mediterranean (Bricaud et al. 2002; Moutin and 
Raimbault 2002; Bosc et al. 2004; D’Ortenzio and Ribera 
d’Alcalà 2008). Productivity in surface layers is exported 
into deeper water supporting deep-sea populations (Tselepi-
des and Eleftheriou 1992; Riaux-Gobin et al. 2004; Guidi-
Guilvard et al. 2007; Papiol et al. 2013). In the Eastern 
Mediterranean, the fraction of primary production exported 
below 2000 m depth is 0.3% of the already meagre 145 g 
C m−2 year−1 net particulate primary production (Gogou 
et al. 2014). Low levels of exported organic material from 
the surface and its rapid bacterial degradation due to the 
high water temperatures throughout the water column (Laws 
et al. 2000; Tselepides et al. 2000) result in the relatively low 
densities of megafauna (Cartes et al. 2004; Massutí et al. 
2004), macrofauna (Kröncke et al. 2003), and meiofauna 
(Danovaro et al. 2000, 2010) in the Mediterranean compared 
to the Atlantic Ocean. Furthermore, the dominance of highly 
mobile predatory decapods within the deep Mediterranean 
invertebrate assemblages indicates a differing optimal feed-
ing strategy in an environment with less particulate organic 
carbon input, in comparison with the Atlantic, where spe-
cialised suspension feeders and echinoderms dominate the 
deep sea (Cartes and Sardà 1992; Cartes et al. 2004). In the 
northwest Mediterranean, Fanelli et al. (2011) found that 
fresh food was only available to suspension feeders for a 
short period after a phytoplankton bloom and that they relied 
on resuspended material for the rest of the time. All of the 
deployments within the current work occurred outside of the 
spring phytoplankton bloom (Fanelli et al. 2011) which may 
explain the very clean appearance of the sediment at depth.

Since 2005 commercial trawling has been banned in the 
Mediterranean Sea at depths greater than 1000 m (Garcia 
et al. 2014), which means that data for the deep basins will 
only be obtained through specific scientific studies. Long-
term monitoring via cabled observatories may complement 
scientific trawling by providing temporally high-resolution 
data of a specific faunal boundary (which are likely to shift 
temporally). Through the combined analysis presented 
herein, and its agreement with the wider literature, the place-
ment of long-term observatories at specific faunal depth 
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boundaries is possible. An observatory will not be limited 
to bait-attending fauna, or differences in bait response, and 
may offer a more complete picture of the community. The 
Mediterranean Sea is an environmentally distinct marine 
habitat, increasingly so toward the east. The cost-effective 
placement of networked observatories on existing infra-
structure provides an opportunity to explore the adaptations 
of marine fauna to extreme conditions, particularly those 
relating to energy budgets and optimal feeding strategies. It 
also provides continued monitoring of the sea’s colonisation 
via the Suez Canal and likely future environmental changes 
(Lejeusne et al. 2010).
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