Skip to main content
Log in

Non-random feeding enhances the contribution of oceanic zooplankton to the diet of the planktivorous coral reef fish Dascyllus flavicaudus

  • Original paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Combining gut content analysis and sampling of ambient zooplankton, we examine departures from random feeding in a planktivorous coral reef fish and explore the effects of apparent non-random feeding behavior on the relative contribution of oceanic versus reef-associated zooplankton to fish diet. The planktivorous damselfish Dascyllus flavicaudus appears to exhibit strong positive electivity for oceanic copepods including Candacia spp. and copepods from the families Oncaeidae and Corycaeidae and consistent negative electivity for cyclopoid copepods (Oithonidae). In total, prey taxa categorized as oceanic in origin contributed 10–76 % of total zooplankton biomass in fish guts. The summed contribution of oceanic prey taxa to fish diet was significantly higher than expected under a model of random feeding based on the availability of oceanic versus reef-associated prey as sampled by zooplankton net tows. The feeding behavior of D. flavicaudus appears to be visibility-selective rather than or in addition to size-selective, as electivity across prey taxa could not be explained by differences in prey size alone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alldredge AL (1972) Abandoned larvacean houses: a unique food source in the pelagic environment. Science 177:885–887. doi:10.1126/science.177.4052.885

    Article  CAS  Google Scholar 

  • Alldredge AL, King JM (2009) Near-surface enrichment of zooplankton over a shallow back reef: implications for coral reef food webs. Coral Reefs 28:895–908. doi:10.1007/s00338-009-0534-4

    Article  Google Scholar 

  • Almeda R, Calbet A, Alcaraz M et al (2010) Effects of temperature and food concentration on the survival, development and growth rates of naupliar stages of Oithona davisae (Copepoda, Cyclopoida). Mar Ecol Prog Ser 410:97–109. doi:10.3354/meps08625

    Article  CAS  Google Scholar 

  • Baguley JG, Hyde LJ, Montagna PA (2004) A semi-automated digital microphotographic approach to measure meiofaunal biomass. Limnol Oceanogr Methods 2:181–190

    Article  Google Scholar 

  • Baker J, Polovina J, Howell E (2007) Effect of variable oceanic productivity on the survival of an upper trophic predator, the Hawaiian monk seal Monachus schauinslandi. Mar Ecol Prog Ser 346:277–283. doi:10.3354/meps06968

    Article  Google Scholar 

  • Chong-Seng KM, Cole AJ, Pratchett MS, Willis BL (2010) Selective feeding by coral reef fishes on coral lesions associated with brown band and black band disease. Coral Reefs 30:473–481. doi:10.1007/s00338-010-0707-1

    Article  Google Scholar 

  • Clements KD, Raubenheimer D, Choat JH (2009) Nutritional ecology of marine herbivorous fishes: ten years on. Funct Ecol 23:79–92. doi:10.1111/j.1365-2435.2008.01524.x

    Article  Google Scholar 

  • Cleveland A, Verde EA, Lee RW (2010) Nutritional exchange in a tropical tripartite symbiosis: direct evidence for the transfer of nutrients from anemonefish to host anemone and zooxanthellae. Mar Biol 158:589–602. doi:10.1007/s00227-010-1583-5

    Article  Google Scholar 

  • Cole AJ, Pratchett MS, Jones GP (2008) Diversity and functional importance of coral-feeding fishes on tropical coral reefs. Fish Fish 9:286–307. doi:10.1111/j.1467-2979.2008.00290.x

    Article  Google Scholar 

  • DeMartini EE, Friedlander AM, Sandin SA, Sala E (2008) Differences in fish-assemblage structure between fished and unfished atolls in the northern Line Islands, central Pacific. Mar Ecol Prog Ser 365:199–215. doi:10.3354/meps07501

    Article  Google Scholar 

  • Depczynski M, Fulton CJ, Marnane MJ, Bellwood DR (2007) Life history patterns shape energy allocation among fishes on coral reefs. Oecologia 153:111–120. doi:10.1007/s00442-007-0714-2

    Article  Google Scholar 

  • Drenner RW, Strickler JR, O’Brien WJ (1978) Capture probability: the role of zooplankter escape in the selective feeding of planktivorus fish. J Fish Res Board Canada 35:1370–1373

    Article  Google Scholar 

  • Emery AR (1973) Comparative ecology and functional oseteology of fourteen species of damselfish (Pisces: Pomacentridae) at Alligator Reef, Florida Keys. Bull Mar Sci 23:649–770

    Google Scholar 

  • Frederich B, Pilet A, Parmentier E, Vandewalle P (2008) Comparative trophic morphology in eight species of damselfishes (Pomacentridae). J Morphol 269:175–188. doi:10.1002/jmor

    Article  Google Scholar 

  • Glynn PW (1973) Ecology of a Caribbean coral reef. The Porites reef-flat biotope: part II. Plankton community with evidence for depletion. Mar Biol 22:1–21. doi:10.1007/BF00388905

    Article  Google Scholar 

  • Gorsky G, Ohman MD, Picheral M et al (2010) Digital zooplankton image analysis using the ZooScan integrated system. J Plankton Res 32:285–303. doi:10.1093/plankt/fbp124

    Article  Google Scholar 

  • Grice G (1963) A revision of the genus Candacia (Copepoda: Calanoida) with an annotated list of the species and a key for their identification. Zool Meded 38:171–194

    Google Scholar 

  • Hamner WM, Jones MS, Carleton JH et al (1988) Zooplankton, planktivorous fish, and water currents on a windward reef face: Great Barrier Reef, Australia. Bull Mar Sci 42:459–479

    Google Scholar 

  • Hamner W, Colin P, Hamner P (2007) Export-import dynamics of zooplankton on a coral reef in Palau. Mar Ecol Prog Ser 334:83–92. doi:10.3354/meps334083

    Article  Google Scholar 

  • Hessen DO (1985) Selective zooplankton predation by pre-adult roach (Rutilus rutilus): the size-selective hypothesis versus the visibility-selective hypothesis. Hydrobiologia 124:73–79

    Article  Google Scholar 

  • Hobson ES (1991) Trophic relationships of fishes specialized to feed on zooplankters above coral reefs. In: Sale P (ed) The ecology of fishes on coral reefs. Academic Press, San Diego, CA, pp 69–93

    Chapter  Google Scholar 

  • Holzman R, Genin A (2005) Mechanisms of selectivity in a nocturnal fish: a lack of active prey choice. Oecologia 146:329–336. doi:10.1007/s00442-005-0205-2

    Article  Google Scholar 

  • Hwang J, Turner J (1995) Behaviour of cyclopoid, harpacticoid, and calanoid copepods from coastal waters of Taiwan. Mar Ecol 16:207–216

    Article  Google Scholar 

  • Johnson AS, Sebens KP (1993) Consequences of a flattened morphology: effects of flow on feeding rates of the scleractinian coral Meandrina meandrites. Mar Ecol Prog Ser 99:99–114

    Article  Google Scholar 

  • Kingsford MJ, MacDiarmid AB (1988) Interrelations between planktivorous reef fish and zooplankton in temperate waters. Mar Ecol Prog Ser 48:103–117

    Article  Google Scholar 

  • Kiørboe T, Andersen A, Langlois VJ, Jakobsen HH (2010) Unsteady motion: escape jumps in planktonic copepods, their kinematics and energetics. J R Soc Interface 7:1591–1602. doi:10.1098/rsif.2010.0176

    Article  Google Scholar 

  • Lazzaro X (1987) A review of planktivorous fishes—their evolution, feeding, behaviors, selectivities and impacts. Hydrobiologia 146:97–167

    Article  Google Scholar 

  • Lee RF, Hirota J (1973) Wax esters in tropical zooplankton and nekton and the geographical distribution of wax esters in marine copepods. Limnol Oceanogr 18:227–239

    Article  CAS  Google Scholar 

  • Lee RF, Hagen W, Kattner G (2006) Lipid storage in marine zooplankton. Mar Ecol Prog Ser 307:273–306

    Article  CAS  Google Scholar 

  • Lefevre M (1986) Variations spatio-temporelles du peuplement zooplanctonique du lagon de l’isle de Moorea (Archipel de La Societe, Polyneise Francaise). l’Universite Pierre et Marie Curie, Paris

    Google Scholar 

  • Llopiz J, Cowen R (2009) Variability in the trophic role of coral reef fish larvae in the oceanic plankton. Mar Ecol Prog Ser 381:259–272. doi:10.3354/meps07957

    Article  Google Scholar 

  • Logerwell EA, Ohman MD (1999) Egg-brooding, body size and predation risk in planktonic marine copepods. Oecologia 121:426–431. doi:10.1007/s004420050948

    Article  Google Scholar 

  • Manly BFJ, McDonald LL, Thomas DL et al (2002) Resource selection by animals: statistical design and analysis for field studies, 2nd edn. Springer, Berlin

    Google Scholar 

  • Nadon MO, Baum JK, Williams ID et al (2012) Re-creating missing population baselines for Pacific reef sharks. Conserv Biol 26:493–503. doi:10.1111/j.1523-1739.2012.01835.x

    Article  Google Scholar 

  • Norris JE, Parrish JD (1988) Predator-prey relationships among fishes in pristine coral reef communities. In: Proceedings of the 6th international coral reef symposium, vol 2, Australia, pp 107–113

  • O’Neil JM (1998) The colonial cyanobacterium Trichodesmium as a physical and nutritional substrate for the harpacticoid copepod Macrosetella gracilis. J Plankton Res 20:43–59. doi:10.1093/plankt/20.1.43

    Article  Google Scholar 

  • Odum AJ, Odum EP (1955) Trophic structure and productivity of a windward coral reef community on Eniwitok Atoll. Ecol Monogr 25:291–320

    Article  Google Scholar 

  • Paffenhöfer GA (1993) On the ecology of marine cyclopoid copepods (Crustacea, Copepoda). J Plankton Res 15:37–55

    Article  Google Scholar 

  • Pastorok RA (1981) Prey vulnerability and size selection by Chaoborus larvae. Ecology 62:1311–1324

    Article  Google Scholar 

  • Pratchett M, Gust N, Goby G, Klanten SO (2001) Consumption of coral propagules represents a signicant trophic link between corals and reef fish. Coral Reefs 20:13–17

    Article  Google Scholar 

  • Renon J (1989) Le zooplancton des milieux reifo-lagonaires de Polynesie. l'Université d'Orléans, Orléans, France

  • Rivers TJ, Morin JG (2012) The relative cost of using luminescence for sex and defense: light budgets in cypridinid ostracods. J Exp Biol 215:2860–2868. doi:10.1242/jeb.072017

    Article  Google Scholar 

  • Robertson D (1982) Fish feces as fish food on a Pacific coral reef. Mar Ecol Prog Ser 7:253–265. doi:10.3354/meps007253

    Article  Google Scholar 

  • Sampey A, McKinnon AD, Meekan MG, McCormick MI (2007) Glimpse into guts: overview of the feeding of larvae of tropical shorefishes. Mar Ecol Prog Ser 339:243–257. doi:10.3354/meps339243

    Article  Google Scholar 

  • Sargent MC, Austin TS (1954) Biologic economy of coral reefs. Bikini and nearby atolls. Part 2. Oceanography (biologic). U.S. Geological Survey Professional Paper 260-B, pp 293–300

  • Satapoomin S (1999) Carbon content of some common tropical Andaman Sea copepods. J Plankton Res 21:2117–2123. doi:10.1093/plankt/21.11.2117

    Article  Google Scholar 

  • Schmitz OJ, Hawlena D, Trussell GC (2010) Predator control of ecosystem nutrient dynamics. Ecol Lett 13:1199–1209. doi:10.1111/j.1461-0248.2010.01511.x

    Article  Google Scholar 

  • Sebens KP, Vandersall KS, Savina LA, Graham KR (1996) Zooplankton capture by two scleractinian corals, Madracis mirabilis and Montastrea cavernosa, in a field enclosure. Mar Biol 127:303–317

    Article  Google Scholar 

  • Shimomura O, Johnson FH, Masugi T (1969) Cypridina bioluminescence: light-emitting oxyluciferin–luciferase complex. Science 164(80):1299–1300

    Article  CAS  Google Scholar 

  • Stier AC, Hanson KM, Holbrook SJ et al (2014) Predation and landscape characteristics independantly affect reef fish community organization. Ecology 95:1294–1307

    Article  Google Scholar 

  • Utne-Palm AC (1999) The effect of prey mobility, prey contrast, turbidity and spectral composition on the reaction distance of Gobiusculus flavescens to its planktonic prey. J Fish Biol 54:1244–1258. doi:10.1111/j.1095-8649.1999.tb02052.x

    Article  Google Scholar 

  • Westneat MW, Resing JM (1988) Predation on coral spawn by planktivorous fish. Coral Reefs 7:89–92

    Article  Google Scholar 

  • Williams DM, Hatcher AI (1983) Structure of fish communities on outer slopes of inshore, mid-shelf and outer shelf reefs of the Great Barrier Reef. Mar Ecol Prog Ser 10:239–250. doi:10.3354/meps010239

    Article  Google Scholar 

  • Williams ID, Baum JK, Heenan A et al (2015) Human, oceanographic and habitat drivers of central and western Pacific coral reef fish assemblages. PLoS One 10:e0120516. doi:10.1371/journal.pone.0120516

    Article  Google Scholar 

  • Wyatt ASJ, Lowe RJ, Humphries S, Waite AM (2013) Particulate nutrient fluxes over a fringing coral reef: source-sink dynamics inferred from carbon to nitrogen ratios and stable isotopes. Limnol Oceanogr 58:409–427. doi:10.4319/lo.2013.58.1.0409

    Article  CAS  Google Scholar 

  • Yúfera M, Parra G, Santiago R, Carrascosa M (1999) Growth, carbon, nitrogen and caloric content of Solea senegalensis (Pisces: Soleidae) from egg fertilization to metamorphosis. Mar Biol 134:43–49

    Article  Google Scholar 

  • Zaret TM, Kerfoot C (1975) Fish predation on Bosmina longirostris: body-size selection versus visibility selection. Ecology 56:232–237

    Article  Google Scholar 

Download references

Acknowledgments

We thank M. D. Ohman for providing access to ZooScan equipment and for guidance on the design and analysis of the study. We thank A. Stier, L. Bentley, D. Combosch, W. Boudreau, K. Willis, and L. Sala for their contributions to collections, imaging and image analysis. Comments from M. D. Ohman, L. Levin, L. Aluwihare, and I. Abramson improved the manuscript and analyses. This research was supported by awards from the National Science Foundation through the Moorea Coral Reef LTER program and NSF award OCE-0927448 to JJL, a Northeastern University Three Seas Teaching Fellowship to KMH, and an NSF REU fellowship to ELS via the California Current Ecosystem LTER. Fish collection was approved by French Polynesian research permits and the UCSD Institutional Animal Care and Use Committee (Protocol # S06369).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katharine M. Hanson.

Additional information

Responsible Editor: K. D. Clements.

Reviewed by Undisclosed experts.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hanson, K.M., Schnarr, E.L. & Leichter, J.J. Non-random feeding enhances the contribution of oceanic zooplankton to the diet of the planktivorous coral reef fish Dascyllus flavicaudus . Mar Biol 163, 77 (2016). https://doi.org/10.1007/s00227-016-2849-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00227-016-2849-3

Keywords

Navigation