Skip to main content
Log in

Phylogenetic diversity of Archaea in prawn farm sediment

  • Research Article
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

The structure and diversity of the Archaea collected from prawn farm sediment were investigated for the first time. A partial 16S ribosomal DNA library was constructed with Archaea-specific primers. Subsequently, 80 randomly selected archaeal clones from the library were analyzed by restriction fragment length polymorphism (RFLP), and resulted in 50 different RFLP patterns. Sequence analysis of representatives from each unique RFLP type revealed high diversity in the archaeal populations, and the majority of archaeal clones were either members of novel lineages or most closely related to uncultured clones. In the phylogenetic analysis, the archaeal clones could be grouped into discrete phylogenetic lineages within the two kingdoms Crenarchaeota and Euryarchaeota. Euryarchaeota dominated in our archaeal library, with up to 72.2% of the total clones, and Crenarchaeota represented 27.8%. Of all the Euryarchaeota clones, three clones (5.6%) were affiliated with Methanosarcinales, four clones (7.4%) were related to Methanomicrobiales, three clones (5.6%) were related to Halobacterium (with 93% similarity), and the remaining clones (81.5%) were related to those uncultured Euryarchaeota in the aquatic sediment ecosystem. None of the crenarchaeal clones were associated with any known cultured lineages. The selective dispersal of the archaeal population indicates that their ecological niches are associated with environmental characteristics. Novel phylotypes of Archaea would expand our understanding of the genetic diversity of Archaea in aquatic sediment systems and would be significant in the phylogenetic study of Archaea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Amann RI, Krumholz L, Stahl DA (1990) Flurorescent-oligonucleotide probing of whole cells for determinative, phylogenetic, and environmental studies in microbiology. J Bacteriol 172:762–770

    CAS  PubMed  Google Scholar 

  • Amann RI, Ludwig W, Schleifer KH (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143–169

    CAS  PubMed  Google Scholar 

  • Arahal DA, Dewhirst FE, Paster B, Volcani BE, Ventosa A (1996) Phylogenetic analyses of some extremely halophilic Archaea isolated from Dead Sea water, determined on the basis of their 16S rRNA sequences. Appl Environ Microbiol 62:3779–3786

    CAS  PubMed  Google Scholar 

  • Barns SM, Fundyga RE, Jeffries MW, Pace NR (1994) Remarkable archaeal diversity detected in a Yellowstone National Park hot spring environment. Proc Natl Acad Sci USA 91:1609–1613

    CAS  PubMed  Google Scholar 

  • Barns SM, Delwiche CF, Palmer JD, Pace NR (1996) Perspectives on archaeal diversity, thermophily and monophily from environmental rRNA sequences. Proc Natl Acad Sci USA 93:9188–9193

    Article  CAS  PubMed  Google Scholar 

  • Benson DA, Boguski MS, Lipman DJ, Lipman DJ, Ostell J, Ouellette BFF (1998) GenBank. Nucleic Acids Res 26:1–7

    Article  CAS  PubMed  Google Scholar 

  • Bowman JP, Rea SM, McCammon SA, McMeekin TA (2000) Diversity and community structure within anoxic sediment from marine salinity meromictic lakes and a coastal meromictic marine basin, Vestfold Hills, eastern Antarctica. Environ Microbiol 2:227–237

    Article  CAS  PubMed  Google Scholar 

  • Boyd CE (1990) Water quality in ponds for aquaculture. Alabama Agricultural Experimental Station, Aubum University, Ala., USA

  • Boyd CE (1992) Shrimp pond bottom soil and sediment management. In: Wyban J (ed) Proceedings special session on shrimp farming. World Aquaculture Society, Baton Rouge, L.A., USA, pp 166–181

  • Boyd CE, Massaut L (1999) Risks associated with the use of chemicals in pond aquaculture. Aquacult Eng 20:113–132

    Article  Google Scholar 

  • Chou CL, Haya K, Paon LA (2002) Aquaculture-related trace metals in sediments and lobsters and relevance to environmental monitoring program ratings for near-field effects. Mar Pollut Bull 44:1259–1268

    Article  CAS  PubMed  Google Scholar 

  • Cifuentes A, Anton J, Benlloch S, Donnelly A, Herbert RA, Rodriguez-Valera F (2000) Prokaryotic diversity in Zostera noltii—colonized marine sediments. Appl Environ Microbiol 66:1715–1719

    Article  CAS  PubMed  Google Scholar 

  • Cytryn E, Dror M, Oremland RS, Cohen Y (2000) Distribution and diversity of Archaea corresponding to the limnological cycle of a hypersaline stratified lake (Solar Lake, Sinai, Egypt). Appl Environ Microbiol 66:3269–3276

    Article  CAS  PubMed  Google Scholar 

  • Delong EF (1992) Archaea in coastal marine environments. Proc Natl Acad Sci USA 89:5685–5689

    Google Scholar 

  • Dojka MA, Hugenholtz P, Haack SK, Pace NR (1998) Microbial diversity in a hydrocarbon- and chlorinated-solvent-contaminated aquifer undergoing intrinsic bioremediation. Appl Environ Microbiol 64:3869–3877

    CAS  PubMed  Google Scholar 

  • Fuhrman JA, Davis AA (1997) Widespread Archaea and novel Bacteria from the deep-sea as shown by 16S rRNA gene sequences. Mar Ecol Prog Ser 150:275–285

    Google Scholar 

  • Godon JJ, Zumstein E, Dabert P, Habouzit F, Moletta R (1997) Molecular microbial diversity of an anaerobic digestor as determined by small-subunit rDNA sequence analysis. Appl Environ Microbiol 63:2802–2813

    CAS  PubMed  Google Scholar 

  • Grant S, Grant WD, Jones BE, Kato C, Li L (1999) Novel archaeal phylotypes from an East African alkaline saltern. Extremophiles 3:139–145

    Article  CAS  PubMed  Google Scholar 

  • Gräslund S, Bengtsson BE (2001) Chemicals and biological products used in south-east Asian shrimp farming, and their potential impact on the environment—a review. Sci Total Environ 280:93–131

    Article  PubMed  Google Scholar 

  • Han JB, Mu YL, Wang LM (1999) Advances in research of marine aquaculture and coastal water pollution. Fish Sci (Tokyo) 18:40–43

    Google Scholar 

  • Hershberger KL, Barns SM, Reysenbach AL, Downson SC, Pace NR (1996) Wide diversity of Crenarchaeota. Nature 345:60–63

    Google Scholar 

  • Hinrichs KU, Hayes JM, Sylva SP, Brewer PG, DeLong EF (1999) Methane-consuming Archaebacteria in marine sediments. Nature 398:802–805

    Article  CAS  PubMed  Google Scholar 

  • Hopkins JS, Sandifer PA, Browdy CL (1994) Sludge management in intensive pond culture of shrimp: effects of management regime on water quality, sludge characteristics, nitrogen extinction, and shrimp production. Aquacult Eng 13:11–30

    Article  Google Scholar 

  • Huber H, Hohn MJ, Rachel R, Fuchs T, Wimmer VC, Stetter KO (2002) A new phylum of Archaea represented by a nanosized hyperthermophilic symbiont. Nature 417:63–67

    Article  CAS  PubMed  Google Scholar 

  • Hugenholtz P, Goebel BM, Pace NR (1998a) Impact of culture independent studies on the emerging phylogenetic view of bacterial diversity. J Bacteriol 180:4765–4774

    CAS  PubMed  Google Scholar 

  • Hugenholtz P, Pitulle C, Hershberger KL, Pace NR (1998a) Novel division level bacterial diversity in a Yellowstone hot spring. J Bacteriol 180:366–376

    CAS  PubMed  Google Scholar 

  • Leahy JG, Colwell RR (1990) Microbial degradation of hydrocarbons in the environment. Microbiol Rev 54:305–315

    CAS  PubMed  Google Scholar 

  • Lyimo TJ, Pol A, Op den Camp HJM, Harhangi HR, Vogels GD (2000) Methanosarcina semesiae sp. nov., a dimethylsulfide-utilizing methanogen from mangrove sediment. Int J Syst Evol Microbiol 50:171–178

    CAS  PubMed  Google Scholar 

  • Macgregor BJ, Moser DP, Alm EW, Nealson KH, Stahl DA (1997) Crenarchaeota in Lake Michigan sediment. Appl Environ Microbiol 63:1178–1181

    CAS  PubMed  Google Scholar 

  • Maguire GB, Allen G (1986) Pilot scale studies into New South Wales prawn farming. Aust Fish 45:26–32

    Google Scholar 

  • Massana R, Murray AE, Preston CM (1997) Vertical distribution and phylogenetic characterization of marine planktonic Archaea in the Santa Barbara channel. Appl Environ Microbiol 63:50–56

    CAS  PubMed  Google Scholar 

  • Mau B, Newton M (1997) Phylogenetic inference for binary data on dendrograms using Markov chain Monte Carlo. J Comput Graph Stat 6:122–131

    Google Scholar 

  • Mau B, Newton M, Larget B (1999) Bayesian phylogenetic inference via Markov chain Monte Carlo methods. Biometrics 55:1–12

    Article  CAS  PubMed  Google Scholar 

  • McCaig AE, Glover A, Prosser JI (1999) Molecular analysis of bacterial community structure and diversity in unimproved and improved upland grass pastures. Appl Environ Microbiol 65:1721–1730

    CAS  PubMed  Google Scholar 

  • Mullins TD, Britschgi TB, Krest RL, Giovannoni SJ (1995) Genetic comparisons reveal the same unknown bacterial lineages in Atlantic and Pacific bacterioplankton communities. Limnol Oceanogr 40:148–158

    CAS  Google Scholar 

  • Munson MA, Nedwell DB, Embley TM (1997) Phylogenetic diversity of Archaea in sediment samples from a coastal salt marsh. Appl Environ Microbiol 63:4729–4733

    CAS  PubMed  Google Scholar 

  • Nedwell DB (1984) The input and mineralization of organic carbon in anaerobic aquatic sediments. Adv Microb Ecol 7:93–130

    CAS  Google Scholar 

  • Ni S, Boone DR (1991) Isolation and characterization of a dimethyl sulfide-degrading methanogen, Methanolobus siciliae HI350, from an oil well, characterization of M. siciliae T4/MT, and emendation of M. siciliae. Int J Syst Bacteriol 41:410–416

    CAS  PubMed  Google Scholar 

  • Ni S, Woese CR, Aldrich HC, Boone DR (1994) Transfer of Methanolobus siciliae to the genus Methanosarcina, naming it Methanosarcina siciliae, and emendation of the genus Methanosarcina. Int J Syst Bacteriol 44:357–359

    Google Scholar 

  • Oremland RS, Marsh LM, Polcin S (1982) Methane production and simultaneous sulfate reduction in anoxic, salt marsh sediments. Nature 296:143–145

    CAS  Google Scholar 

  • Paez-Osuna F (2001) The environmental impact of shrimp aquaculture: a global perspective. Environ Pollut 112:229–231

    Article  CAS  PubMed  Google Scholar 

  • Pillay TVR (1992) Aquaculture and the environment. Wiley, New York

  • Posada D, Crandall KA (1998) MODELTEST: testing the model of DNA substitution. Bioinformatics 14:817–818

    Article  CAS  PubMed  Google Scholar 

  • Rannala B, Yang ZH (1996) Probability distribution of molecular evolutionary trees: a new method of phylogenetic inference. J Mol Evol 43:304–311

    CAS  PubMed  Google Scholar 

  • Reed DW, Fujita Y, Delwiche ME, Blackwelder DB, Sheridan PP, Uchida T, Colwell FS (2002) Microbial communities from methane hydrate-bearing deep marine sediments in a forearc basin. Appl Environ Microbiol 68:3759–3770

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez F, Oliver JF, Marín A, Medina JR (1990) The general stochastic model of nucleotide substitution. J Theor Biol 142:485–501

    PubMed  Google Scholar 

  • Sako Y, Nomura N, Uchida A, Ishida Y, Morii H, Koga Y, Hoaki T, Maruyama T (1996) Aeropyrum pernix gen. nov., sp. nov., a novel aerobic hyperthermophilic archaeon growing at temperatures up to 100°C. Int J Syst Bacteriol 46:1070–1077

    CAS  PubMed  Google Scholar 

  • Schleper C, Holben W, Klenk HS (1997) Recovery of crenarchaeal ribosomal DNA sequences from freshwater lake sediments. Appl Environ Microbiol 63:321–323

    CAS  PubMed  Google Scholar 

  • Smith PT (1993) Prawn farming in Australia—sediment is a major issue. Aust Fish 52:29–32

    Google Scholar 

  • Swofford DL (2000) PAUP*. Phylogenetic analysis using parsimony (* and other methods), version 4. Sinauer, Sunderland, Mass., USA

  • Takai K, Horikoshi K (1999) Genetic diversity of Archaea in deep-sea hydrothermal vent environments. Genetics 152:1285–1297

    CAS  PubMed  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F (1997) The Clustal X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  CAS  PubMed  Google Scholar 

  • Ward DM, Bateson MM, Weller R, Ruff-Roberts AL (1992) Ribosomal rRNA analysis of microorganisms as they occur in nature. Adv Microb Ecol 12:219–287

    CAS  Google Scholar 

  • Vetriani C, Reysenbach AL, Doré J (1998) Recovery and phylogenetic analysis of archaeal rRNA sequences from continental shelf sediments. FEMS Microbiol Lett 161:83–88

    Article  CAS  PubMed  Google Scholar 

  • Vetriani C, Jannasch HW, Macgregor BJ, Stahl DA, Reysenbach AL (1999) Population structure and phylogenetic characterization of marine benthic Archaea in deep-sea sediments. Appl Environ Microbiol 65:4375–4384

    CAS  PubMed  Google Scholar 

  • von Wintzingerode F, Gobel UB, Stackebrandt E (1997) Determination of microbial diversity in environmental samples: pitfalls of PCR-based rRNA analysis. FEMS Microbiol Rev 21:213–229

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by NSFC projects (no. 40176037, 40232021) and the Red Tide Key Project of the National Natural Science Foundation of Guangdong province, China (no. 011208). The experiments comply with current laws of the country in which the experiments were performed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yueqin Chen.

Additional information

Communicated by O. Kinne, Oldendorf/Luhe

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shao, P., Chen, Y., Zhou, H. et al. Phylogenetic diversity of Archaea in prawn farm sediment. Marine Biology 146, 133–142 (2004). https://doi.org/10.1007/s00227-004-1431-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-004-1431-6

Keywords

Navigation