Skip to main content
Log in

Element content and pH value in American black cherry (Prunus serotina) with regard to colour changes during heartwood formation and hot water treatment

  • Original
  • Published:
Wood Science and Technology Aims and scope Submit manuscript

Abstract

Element content and pH value in wood tissues of veneer grade logs of P. serotina Ehrh. were investigated with regard to wood colour variations, measured in the CIEL*a*b* system. The average pH value of heartwood tissue was about pH 4.0 and medium colour parameters of veneer sheets were determined at L* = 73, a* = 9.8, and b* = 23.5. Optical emission spectroscopy (ICP-OES) analyses showed differences in the element contents between two regional forest sites coming from Pennsylvania and West Virginia, USA, respectively. The latter is mainly characterised by higher variations of micro-element content in the transition zone (influencing heartwood formation) and also pH value of wood tissue, which contributes to higher variations in colour response of industrially produced veneer sheets. Investigations under industrial conditions underline the correlation between length and intensity of heat treatment in veneer production and colour development: with increasing duration and temperature of hot water treatment, veneer surfaces become darker and wood colour is intensified (ΔL = 3.6, Δa = 2.1, comparing 12 and 72 h of hot water treatment at 60°C). However, no equalisation of wood colour was achieved by modifying the treatment conditions. Artificial radiation by UV–visible light, quickly and extensively darkens and intensifies wood colour (ΔL = 16, Δa = 3.5, and Δb = 4.0 after 15 h of artificial radiation), but variations in wood colour deriving from different treatment conditions during veneer production, were not reduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ayadi N, Lejeune F, Charrier F, Charrier B, Merlin A (2003) Color stability of heat treated wood during artificial weathering. Holz Roh-Werkst 61:221–226

    CAS  Google Scholar 

  • Bauch J, Schmidt O, Yazaki Y, Starck M (1985) Significance of bacteria in the discoloration of ilomba wood (Pycnanthus angolensis Exell). Holzforschung 39:249–252

    Article  CAS  Google Scholar 

  • Bauer G, Schulze ED, Mund M (1997) Nutrient contents and concentrations in relation to growth of Picea abies and Fagus sylvatica along an European transect. Tree Physiol 17:777–786

    PubMed  Google Scholar 

  • Böcker J (1997) Spektroskopie. Vogel Buchverlag, Würzburg

    Google Scholar 

  • Burtin P, Jay-Allemand Ch, Charpentier JP, Janin G (1998) Natural wood colouring process in Juglans sp. (J. nigra, J. regia and hybrid J. nigra 23 x J. regia) depends on native phenolic compounds accumulated in the transition zone between sapwood and heartwood. Trees 12:258–264

    Google Scholar 

  • Burtin P, Jay-Allemand Ch, Charpentier JP, Janin G (2000) Modifications of hybrid walnut (Juglans nigra 23 x Juglans regia) wood colour and phenolic composition under various steaming conditions. Holzforschung 54:33–38

    Article  CAS  Google Scholar 

  • Chang S-T, Cheng S-S (2001) Effects of environmental factors on the color of Sugi (Cryptomeria japonica D. Don) yellowish heartwood. Holzforschung 55:459–463

    Article  CAS  Google Scholar 

  • Charrier B, Charrier F, Janin G, Kamdem DP, Irmouli M, Goncalez J (2002) Study of industrial boiling process on walnut colour: experimental study under industrial conditions. Holz Roh-Werkst 60:259–264

    Article  Google Scholar 

  • Dünisch O, Bauch J (1994) Influence of mineral elements on wood formation of old growth spruce (Picea abies [L.] Karst.). Holzforschung 48:5–14

    Article  Google Scholar 

  • Eklund L, Eliasson L (1990) Effects of calcium ion concentration on cell wall synthesis. J Exp Bot 41:863–867

    Article  CAS  Google Scholar 

  • Feist WC, Hon DNS (1984) Chemistry of weathering and protection. In: Rowell RM (ed) The chemistry of solid wood. American Chemical Society, Washington DC, pp 401–451

    Google Scholar 

  • Forkmann G, Heller W, Grisebach H (1980) Anthocyanin biosynthesis in flowers of Matthiola incana. Flavanone 3-and flavonoid 3prime-hydroxylases. Z Naturforsch Teil C 35:691–695

    Google Scholar 

  • Glavac V, Koenies H, Ebben U (1990) Seasonal variation of calcium, magnesium, potassium, and manganese contents in xylem sap of beech (Fagus sylvatica L.) in a 35-year-old limestone beech forest stand. Trees 4:75–80

    Article  Google Scholar 

  • Gregor HD (1976) Studies on tyrosine ammonia lyase activity in castor bean endosperm. Z Pflanzenphysiol 77:372–375

    Google Scholar 

  • Hillis WE (1987) Heartwood and tree exudates. Springer, Berlin

    Google Scholar 

  • Hon DNS (1991) Photochemistry of wood. In: Hon DNS, Shiraishi N (Eds) Wood and cellulosic chemistry. Marcel Dekker, New York, pp 525–556

    Google Scholar 

  • Jäckle S (2000) Charakterisierung der Verteilung wichtiger Nährelemente und löslicher Kohlenhydrate in waldfrischem Buchen- (Fagus sylvatica L.) und Eichenholz (Quercus robur L.). Diplomarbeit, Fachbereich Biologie der Universität, Hamburg

    Google Scholar 

  • Koch G, Bauch J, Puls J, Welling J (2002) Ursachen und wirtschaftliche Bedeutung von Holzverfärbungen. AFZ Der Wald 57:315–318

    Google Scholar 

  • Koch G, Puls J, Bauch J (2003) Topochemical characterisation of phenolic extractives in discoloured beechwood (Fagus sylvatica L.). Holzforschung 57:339–345

    Article  CAS  Google Scholar 

  • Koljo B (1957) Untersuchungen über Holzverfärbungen durch Eisen. Holz Roh-Werkst 15:496–499

    CAS  Google Scholar 

  • Kollmann F, Keylwerth R, Kübler H (1951) Verfärbungen des Vollholzes und der Furniere bei der künstlichen Holztrocknung. Holz Roh-Werkst 9:382–391

    Article  CAS  Google Scholar 

  • Krilov A, Gref R (1986) Mechanism of sawblade corrosion by polyphenolic compounds. Wood Sci Technol 20:369–375

    Article  CAS  Google Scholar 

  • Mayer I, Koch G, Puls J (2006) Topochemical investigations on wood extractives and their influence on colour changes in American black cherry (Prunus serotina Borkh.). Holzforschung 60:589–594

    Article  CAS  Google Scholar 

  • Pandey KK (2005) A note on the influence of extractives on the photo-discolouration and photo-degradation of wood. Polym Degrad Stab 87:375–379

    Article  CAS  Google Scholar 

  • Rademacher P (1986) Morphologische und physiologische Eigenschaften von Fichten (Picea abies [L.] Karst.), Tannen (Abies alba Mill.), Kiefern (Pinus sylvestris L.) und Buchen (Fagus sylvatica L.) gesunder und erkrankter Waldstandorte. GKSS-Forschungszentrum Geesthacht GmbH, GKSS 86/E/10. 274 p

  • Sandermann W, Lüthgens M (1953) Untersuchungen über Verfärbungen von Hölzern. Holz Roh-Werkst 11:435–440

    Article  CAS  Google Scholar 

  • Sandermann W, Rothkamm M (1959) Über die Bestimmung der pH-Werte von Handelshölzern und deren Bedeutung für die Praxis. Holz Roh-Werkst 17:433–440

    Article  CAS  Google Scholar 

  • Schardt M (2004) Black Cherry für Furnier immer beliebter. Holz-Zent bl 130:635–638

    Google Scholar 

  • Spribille R, Forkmann G (1984) Conversion of dihydroflavonols to flavonols with enzyme extracts from flower buds of Matthiola incana R. Br Z Naturforsch 39:714–719

    Google Scholar 

  • Sundqvist B (1999) Colour stability of capillary phase heat-treated wood exposed to UV-light. In: Proceedings of the 4th International conference on the development of Wood Science. Wood Technology and Forestry (ICWSF), Missenden Abbey, pp 172–182

  • Tolvaj L, Faix O (1995) Artificial ageing of wood monitored by DRIFT spectroscopy and CIEL L*a*b color measurements. Holzforschung 49:397–404

    CAS  Google Scholar 

  • Wardrop AB (1981) Lignification and xylogenesis. I: xylem cell development. In: Barnett JR (ed) Castle House Publ. Ltd, London, pp 115–155

  • Westermark U (1982) Calcium promoted phenolic coupling by superoxide radical – a possible lignification reaction in wood. Wood Sci Technol 16:71–78

    Article  CAS  Google Scholar 

  • Yazaki Y, Bauch J, Endeward R (1984) Extractive components responsible for the discolouration of Ilomba wood (Pycnanthus angolensis Exell). Holz Roh-Werkst 43:359–363

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the DGfH-German Society for Wood Research and the AIF-German Federation of Industrial Cooperative Research Associations “Otto von Guericke” for financial support. Furthermore, the authors are very much obliged to the FURNIERWERK WINSEN GmbH for providing production capacity, both technical and practical support for the investigations on an industrial scale. The assistance of Mr. V. Lange for providing the test logs is highly appreciated. The authors also gratefully acknowledge the cooperation of the R. ULLRICH & Co GmbH and the FURNIERWERK PRIGNITZ GmbH for providing the trunk disks and veneer sheets for the investigations of different growing sites. The authors also thank Mr. T. Schwarz for elemental analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ingo Mayer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mayer, I., Koch, G. Element content and pH value in American black cherry (Prunus serotina) with regard to colour changes during heartwood formation and hot water treatment. Wood Sci Technol 41, 537–547 (2007). https://doi.org/10.1007/s00226-007-0144-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00226-007-0144-7

Keywords

Navigation