
https://doi.org/10.1007/s00224-020-09993-6

Space Lower Bounds for the Signal Detection
Problem

Faith Ellen1 ·Rati Gelashvili1 ·PhilippWoelfel2 · Leqi Zhu1

© The Author(s) 2020

Abstract
Many shared memory algorithms have to deal with the problem of determining
whether the value of a shared object has changed in between two successive accesses
of that object by a process when the responses from both are the same. Motivated
by this problem, we define the signal detection problem, which can be studied on
a purely combinatorial level. Consider a system with n + 1 processes consisting of
n readers and one signaller. The processes communicate through a shared black-
board that can store a value from a domain of size m. Processes are scheduled by
an adversary. When scheduled, a process reads the blackboard, modifies its contents
arbitrarily, and, provided it is a reader, returns a Boolean value. A reader must return
true if the signaller has taken a step since the reader’s preceding step; otherwise it
must return false. Intuitively, in a system with n processes, signal detection should
require at least n bits of shared information, i.e., m ≥ 2n. But a proof of this con-
jecture remains elusive. For the general case, we prove a lower bound of m ≥ n2.
For restricted versions of the problem, where the processes are oblivious or where
the signaller must write a fixed sequence of values, we prove a tight lower bound of
m ≥ 2n. We also consider a version of the problem where each reader takes at most
two steps. In this case, we prove that m = n+ 1 blackboard values are necessary and
sufficient.

Keywords Signal detection · ABA problem · Space complexity · Lower bounds

This article belongs to the Topical Collection: Special Issue on Theoretical Aspects of Computer
Science (2019)
Guest Editors: Rolf Niedermeier and Christophe Paul

� Philipp Woelfel
woelfel@ucalgary.ca

Extended author information available on the last page of the article.

Theory of Computing Systems (2021) 65:687–705

Published online: 20 July 2020

http://crossmark.crossref.org/dialog/?doi=10.1007/s00224-020-09993-6&domain=pdf
http://orcid.org/0000-0002-7847-4631
mailto: woelfel@ucalgary.ca

1 Introduction

1.1 The Signal Detection Problem

Consider a system consisting of n + 1 processes, one signaller, s, and n readers,
r1, . . . , rn, that communicate through a shared blackboard. The blackboard can con-
tain one value from a domain of size m. Processes are scheduled to take steps one
at a time by an adversarial scheduler. Whenever a process takes a step, it atomically
reads the blackboard and can modify its contents arbitrarily without interruption from
other processes.

In the signal detection problem, each time a reader, ri , has taken a step, it must
return a Boolean value. If ri has no preceding step, it can return either true or false.
Otherwise, it must return true if and only if the signaller has taken a step since ri’s
preceding step. We are concerned with how large m has to be for this problem to be
solvable.

1.2 Simple Signal Detection Algorithms

For large or unbounded values of m, there are some simple solutions to the signal
detection problem. For example, the blackboard could store an unbounded signal
counter that is initially 0. Each time the signaller takes a step, it increments the
counter. When a reader is scheduled, it simply memorizes the counter value, but does
not change it. To detect whether a signal has occurred since its last step, a reader
only needs to compare the current counter value with the one it read in its previous
step. The value stored on the blackboard grows with the number of signals that have
occurred, which can be unbounded.

A similar algorithm is for the signaller to increment the counter whenever it sees
the value is odd and for each reader to increment the counter whenever it sees the
value is even. A reader also memorizes the resulting value of the counter. It detects
whether a signal has occurred since its last step by comparing this value with the
value it previously memorized. If there are many consecutive steps by the signaller,
the value of the counter grows more slowly than in the previous algorithm.

The following simple algorithm stores an n-bit string (b1, . . . , bn) on the black-
board, i.e. the domain size is m = 2n. Initially, b1 = · · · = bn = 0. Whenever the
signaller takes a step, it sets all bits to 1. For each j ∈ {1, . . . , n}, reader rj resets bit
bj to 0, it returns false if the old value of bj was 0, and it returns true if the old value
of bj was 1.

1.3 ABA Detection

Signal detection is related to the fundamental ABA detection problem in asyn-
chronous shared memory systems. In such systems, a process that observes the same
value A in some shared object in two successive accesses cannot tell whether the
value of the object remained unchanged between them. More formally, it cannot
distinguish between an execution in which the shared object did not change and an
execution in which the value of the object changed from A to some other value

Theory of Computing Systems (2021) 65:687–705688

B and then back to A. Many shared memory algorithms have to deal with this
problem.

A well-known example is the double-collect algorithm for performing an atomic
scan of an array [1]: A process repeatedly performs a collect (reading all components
of the array one by one) until the sequences of values read in two consecutive collects
are the same. This algorithm is only correct (linearizable) if no ABAs occur, mean-
ing that any two consecutive reads of the same array entry return the same value if
and only if the value of the array entry was not changed between the two reads. This
is because it can be shown that, provided no ABAs occur, the sequence returned by
a scan must be the contents of the array at the end of its second last collect and the
beginning of its last collect. However, in executions in which ABAs occur, this imple-
mentation might incorrectly return a sequence of values that was not the contents of
the array at any point during the execution.

A standard approach to dealing with ABAs is tagging, as introduced by IBM [4],
whereby a shared object gets augmented with a tag that changes with every write
operation. If tags are never reused, the ABA problem can be avoided. From a theory
perspective, this solution is unsatisfactory: If there is no bound on the length of exe-
cutions, then unbounded sized objects are required to accommodate ever increasing
tag values. Even though, in many practical scenarios, a system may never run out of
tags, it is often desirable or even necessary to use an entire word for data. In such
scenarios, the tag associated with a data word could be stored in a subsequent mem-
ory location and double-width atomic instructions could be used. However, these are
not supported by most of today’s mainstream architectures [7].

In some cases, it is possible to store the tag in an unrelated memory location [6],
but this requires technically difficult algorithms and tedious correctness proofs. As a
result, algorithm designers often deal with ABAs in an ad-hoc way. For example, a
pair of handshaking bits between each pair of processes can be used to detect changes
in the components of the array in a wait-free implementation of a snapshot object [1].
Such solutions are algorithm specific and require individual correctness proofs.

ABAs can also occur when using compare-and-swap (CAS) objects, which are
provided by most existing multiprocessor systems and are much more powerful than
read/write registers. Algorithms devised in theoretical research often use load-linked
store-conditional (LL/SC) objects, which do not suffer from ABAs, and can easily
replace CAS objects. Unfortunately, only a small number of multiprocessor systems
provide LL/SC and they are weaker than the LL/SC specification used in theoreti-
cal research. Variants of LL/SC available in modern hardware restrict programmers
severely in how the objects can be used [9], and “offer little or no help with preventing
the ABA problem” [8].

To study the complexity of ABA detection, Aghazadeh and Woelfel [2] defined
an ABA detecting register, which extends a read/write register with the ability to
detect ABAs. It supports the operations DWrite(x), which changes the value of
the object to x, and DRead(), which returns the current value of the object together
with a Boolean flag. The flag is true if and only if the process has previously
performed DRead() and, since its last preceding DRead(), some process per-
formed DWrite(). The authors proved space lower bounds and time-space-tradeoffs
for linearizable implementations of ABA detecting registers in shared memory

Theory of Computing Systems (2021) 65:687–705 689

systems with n processors that provide bounded atomic base objects, such as bounded
read/write registers or bounded CAS objects. For example, if only bounded read/write
registers are available as base objects, then at least n − 1 of them are needed
to obtain an obstruction-free ABA detecting register. If bounded CAS objects are
also available, then any implementation using m base objects has step-complexity
�(n/m).

All the lower bound results in [2] are specific to the base objects provided by the
system, and provide no insights for systems using different sets of base objects. But
we conjecture that there is a large, general lower bound for the amount of informa-
tion that needs to be stored in a system for processes to detect ABAs: Intuitively, the
system state needs to keep track of whether the value of the object has changed since
each process last accessed the object. This requires at least n bits of information.
Hence, it seems believable that detecting ABAs in any system with arbitrarily pow-
erful base objects requires at least n bits of information to be stored either in the base
object or in the hardware implementing the base objects (for example, implement-
ing LL/SC objects). Using the reasonable assumption that a single base object can
store O(log n) bits of information, this would imply that �(n/ log n) base objects are
required for implementing a single ABA detecting object.

The signal detection problem is a restricted version of the problem of detect-
ing ABAs in asynchronous shared memory systems, stripped down to the essentials
necessary for determining the information theoretic requirements. Its definition is
self-contained, and the problem can be studied without any background knowledge of
shared memory systems. If n processes can detect ABAs in a standard asynchronous
shared memory system with arbitrarily strong primitives, then they can also solve
signal detection. A reader simply remembers the last value it read from the black-
board. When it reads the blackboard again, it returns true if it sees a different value or
it detected an ABA; otherwise it returns false. Therefore, if signal detection requires
that the blackboard has domain size at least m∗, then log2 m∗ is a lower bound for the
number of bits needed for ABA detection.

1.4 Results

We conjecture that any solution to the signal detection problem requires the domain
size, m, of the blackboard to be at least 2n. Although we prove this conjecture when
there are n ≤ 2 readers, a proof when n ≥ 3 has eluded us. This simply defined
combinatorial problem does not seem to have a simple solution. Even a proof of a
polynomial lower bound is surprisingly non-trivial. We show the following result in
Section 6.

Theorem 1 In any algorithm for the signal detection problem, the blackboard has
domain size at least n(n + 1)/2.

To obtain better understanding, we consider several restricted versions of the
signal detection problem and prove tight upper and lower bounds for them.

First, we consider the b-read-bounded version of signal detection, where no reader
takes more than b steps, but the signaller can take arbitrarily many steps. In this case,

Theory of Computing Systems (2021) 65:687–705690

the second algorithm from Section 1.2 uses a domain of size 2bn + 1. We show how
to improve this algorithm.

Theorem 2 For b ≥ 2, the b-read-bounded signal detection problem can be solved
using a blackboard with domain size (b − 1)n + 1.

Thus, the b-read-bounded problem is strictly easier than the unrestricted problem
when b ≤ �n/2�. For b = 2, we also prove that this algorithm is optimal.

Theorem 3 In any algorithm for the 2-read-bounded signal detection problem, the
blackboard has domain size at least n + 1.

Next, we consider signal detection when the actions of the signaller do not depend
on what steps the readers have taken. Signal detection with fixed signals is the special
case where the signaller writes the same sequence of values to the blackboard in every
execution. Note that the simple algorithm above with m = 2n uses fixed signals.

Theorem 4 In any algorithm for the signal detection problem with fixed signals, the
blackboard has domain size at least 2n.

Then we consider the case of write oblivious processes. Here each process p is
equipped with a fixed function fp : {0, . . . , m−1} → {0, . . . , m−1}. When taking a
step it replaces the blackboard contents x with fp(x). Hence, what a process writes to
the blackboard is independent of the internal state of the process. However, the return
value of a reader’s step may depend on its internal state. In the simple algorithm
above, which uses m = 2n blackboard values, processes are write oblivious. We
prove that, when processes are write oblivious, no better algorithm exists.

Theorem 5 In any algorithm for the signal detection problem with write oblivious
processes, the blackboard has domain size at least 2n.

The signal detection problemwith write oblivious processes is similar to determin-
ing the minimum size of a dictionary in a sequential system. A dictionary supports
three operations, insert(x), query(x), and reset(), where x is a parameter chosen from
a domain of size n. A call to query(x) returns true if there has been an insert(x)
operation since the last reset() operation or since the beginning of the execution, if
there has been no reset(). Otherwise, it returns false. A dictionary implemented using
b(n) bits immediately yields a solution to the signal detection problem with obliv-
ious processes as follows: A blackboard with m = 2b(n) possible values is used to
store the dictionary. When a signaller takes a step, it simulates a reset() operation
on the dictionary stored on the blackboard. Similarly, when reader ri takes a step, it
simulates query(i) followed by insert(i) on the dictionary and then returns the return
value of its query operation. However, an arbitrary solution to the signal detection
problem does not seem to yield an implementation of a dictionary. The difficulty is
that the return value of a step by a reader ri can depend on the state of the reader and,
thus, its entire past execution. In contrast, the result of a query(i) operation is only a

Theory of Computing Systems (2021) 65:687–705 691

function of the state of the dictionary. Hence, the n-bit information theory lower
bound for implementing a dictionary cannot be used to obtain Theorem 5.

In the simple algorithm that uses m = 2n blackboard values, the response each
reader returns also does not depend on its internal state, but only on the contents of the
blackboard. We call such processes response oblivious. The same lower bound holds
for any algorithm with response oblivious processes, even if the algorithm supports
only 2 steps by each reader.

Theorem 6 In any algorithm for 2-read-bounded signal detection with response
oblivious processes, the blackboard has domain size at least 2n.

Theorem 2 implies that, for the unrestricted signal detection problem when there is
only n = 1 reader, the domain size is at least 2 = 2n. In Section 7, we investigate the
unrestricted signal detection problem for the case of n = 2 readers. First, we prove
a tight lower bound of 4 for the size of the blackboard domain. Then we present an
algorithm for two readers, r1 and r2, which uses a bounded number of blackboard val-
ues, and for which every reachable configuration C satisfies the following property:
As long as only readers take steps starting in C, at most three different blackboard
values are obtained. This observation indicates that a tight lower bound of m ≥ 2n

for n readers for the unrestricted signal detection problem may have to be fundamen-
tally different from our lower bound proof for fixed signals. In that proof, we showed
that one can reach a configuration, C, from which 2n different blackboard values
result from the 2n schedules that are sub-sequences of (r1, . . . , rn). In our third sim-
ple algorithm for n readers in Section 1.2, each execution that ends with the signaller
taking a step results in a configuration with this property. But our two reader algo-
rithm indicates that a lower bound proof for the unrestricted signal detection problem
cannot rely on this property.

2 Preliminaries

We consider a deterministic, asynchronous system in which n + 1 processes,
s, r1, . . . , rn communicate with one another using a single shared blackboard. Each
time a process takes a step, it atomically reads the blackboard, may change the value
of the blackboard based on its state and the value it read, and updates its state.

A configurationC consists of a value, v(C), for the blackboard and a state for each
process. An execution is an alternating sequence of configurations and steps, starting
and ending with a configuration, such that each step can be performed in the config-
uration that precedes it, resulting in the configuration that follows it. Configuration
C is reachable if there is an execution starting with an initial configuration and end-
ing with C. For any set of processes, P , a P -only execution is an execution in which
only processes in P take steps in the execution. A solo execution is a P -only execu-
tion in which P contains only one process, i.e., all steps in the execution are by the
same process.

A schedule is a sequence of processes (in which the same process can occur mul-
tiple times). A P -only schedule is a schedule in which only processes in P appear.

Theory of Computing Systems (2021) 65:687–705692

For any deterministic algorithm and for any configuration C, a schedule determines a
unique execution starting from C in which the processes take steps in the order spec-
ified by the schedule. If α is a finite schedule, then Cα denotes the configuration at
the end of this execution.

Two configurations, C and C′, are indistinguishable to a set of processes, P , if
v(C) = v(C′) and each process in P has the same state in C as it does in C′. If
C and C′ are indistinguishable to P and α is a finite P -only schedule, then the
same sequence of steps is taken in the executions determined by α from C and C′.
Moreover, Cα and C′α are indistinguishable to P .

Given a set of readers, R, let R denote the schedule consisting of one occur-
rence of each reader in R, in order of their identifiers, and let M(R) denote the set
{ri : i ≤ j for some rj ∈ R} of all readers whose identities are less than or equal
to the largest identity of the readers in R. In particular, M(∅) = ∅. For example,
M({r1, r4, r8}) = {r1, r2, . . . , r8}. Notice that, for any two sets of readers R and
R′, either M(R) ⊆ M(R′) or M(R′) ⊆ M(R). There are n + 1 such sets, i.e.,
|{M(R) : R ⊆ {r1, . . . , rn}}| = n + 1.

Lemma 1 For every signal detection algorithm in which the domain size of the
blackboard is finite, there is a reachable configuration D such that, for every set of
readers, T , v(DTsβT) = v(DT) for some (M(T) ∪ {s})-only schedule βT .

Proof Consider any signal detection algorithm. Assume that, for each reachable
configuration C, there is a set of readers, T , such that v(CTsβ)
= v(CT) for
all (M(T) ∪ {s})-only schedules β. We define an infinite sequence of reachable
configurations as follows. Let C0 be the initial configuration. Let j ≥ 1 and sup-
pose that Cj−1 is a reachable configuration. Let Tj be a set of readers such that
v(Cj−1Tj sβ)
= v(Cj−1Tj) for all (M(Tj)∪{s})-only schedules β. The existence of
Tj follows from the assumption, since Cj−1 is reachable. Let Cj = Cj−1Tj s.

Since there is only a finite number of readers, there exists a set M such that {j ∈
Z

+ : M(Tj) = M} is infinite. Let M be the largest such set, let J = {j ∈ Z
+ :

M(Tj) = M}, and let k∗ = min{k ≥ 1 : M(Tj) ⊆ M for all j ≥ k}. Note that, for
all k, � ∈ J such that k∗ ≤ k < �, the schedule Tk+1sTk+2s · · ·T� is (M ∪{s})-only.
Thus, by definition of Tk , v(CkTk)
= v(CkTksTk+1s · · ·T�) = v(C�T�). Hence, the
domain size of the blackboard is infinite.

3 Read-Bounded Signal Detection

In the b-read-bounded signal detection problem, no reader takes more than b steps,
but the signaller can take arbitrarily many steps.

Consider the following algorithm that solves this restricted problem for b = 2
using a blackboard with domain size m = n + 1:

– The blackboard initially has value 0.
– Whenever s takes a step, it resets the blackboard contents to 0.
– When ri takes its first step, it changes the blackboard contents to i if it reads

0; otherwise it leaves the blackboard unchanged. In either case, ri locally stores

Theory of Computing Systems (2021) 65:687–705 693

the value vi
= 0 of the blackboard immediately after its first step and returns
true.

– When ri takes its second step, it returns false if it reads vi from the blackboard;
otherwise it returns true. It does not change the value of the blackboard in either
case.

Note that only the signaller changes the blackboard contents to 0 and readers only
change the blackboard contents from 0. Thus, if the signaller does not take any steps
between the two steps of reader ri , then the value of the blackboard remains vi during
this interval and ri returns false.

If the signaller does take a step between the two steps of reader ri , then the black-
board is reset to 0. Consider the last step, S′, by the signaller during this interval. If
no reader takes its first step after S′, but before the second step by ri , then ri will
read 0 from the blackboard on its second step and return true. Otherwise, consider
the first step after S′ in which a reader rj takes its first step. It will change the black-
board contents to j . Note that j
= vi , since rj is the only reader that can change the
blackboard contents to j and rj has not previously taken a step. In this case, ri will
read j from the blackboard on its second step and return true.

A similar algorithm works for b-read-bounded signal detection for any larger b,
but the size of the blackboard domain also increases.

Theorem 2 For b ≥ 2, the b-read-bounded signal detection problem can be solved
using a blackboard with domain size (b − 1)n + 1.

Proof Consider the following algorithm for a signaller and n readers:

– The blackboard domain is {0} ∪ {(i, j) : 1 ≤ i ≤ n and 1 ≤ j ≤ b − 1}. The
blackboard initially has value 0.

– Whenever s takes a step, it resets the blackboard contents to 0.
– Each reader ri has a local b-bounded counter ci , which is initially 0 and is incre-

mented each time ri reads 0 from the blackboard. It also has a local variable vi in
which it stores a non-zero value from the blackboard domain. It initially contains
(i, 1).

– When ri takes a step, it reads the blackboard. It will return false if the value read
is the same as the value stored in vi . Otherwise, it returns true. If the value read is
non-zero, it stores the result in vi and does not change the blackboard. If ri reads
0, it increments ci and, if ci < b, it changes the blackboard to (i, ci) and also
sets vi to the same value. When ci = b, reader ri can take no additional steps.

The counter ci is initially 0. Before changing the blackboard to (i, ci), reader ri incre-
ments ci and checks that it is less than b. Hence, the blackboard only contains values
in its domain. Note that only ri changes the blackboard to (i, j) for 1 ≤ j ≤ b − 1.
Thus, whenever the blackboard is changed to a nonzero value, its new value is a value
that it never previously had.

Since the blackboard initially contains 0 and vi initially contains (i, 1), the first
time ri takes a step, it will read a value different from vi and will return true.

Theory of Computing Systems (2021) 65:687–705694

At the end of each step by ri , the blackboard contains vi . Readers only change the
blackboard when it contains 0. Thus, if the signaller does not take any steps between
two steps of reader ri , then the value of the blackboard remains vi during this interval
and ri returns false.

If the signaller does take a step between two consecutive steps of reader ri , then
the blackboard is reset to 0. Then either the blackboard has value 0 when it is later
read during the second of these steps, or some other process changed the blackboard
to have a value it never previously had. In either case, its value is not equal to vi and
ri returns true.

The counter ci is incremented each time ri reads 0 from the blackboard. Since it
is initially 0 and otherwise is not incremented, it records the number of times that ri
reads 0 from the blackboard. If ri takes at most b steps, then ci < b at the beginning
of each of its steps, so ri does not stop prematurely.

Note that, if b ≤ �n/2�, then (b − 1)n + 1 ≤ (n − 1)n/2 + 1 < n(n + 1)/2 for
n ≥ 2. Hence, the domain size used in this algorithm is strictly less than the lower
bound in Theorem 1 for any algorithm solving signal detection with an unbounded
number of reads.

When b = 2, we can show that the domain size of this algorithm cannot
be any smaller. The following simple lemma is the key to our lower bound for
2-read-bounded signal detection.

Lemma 2 Let C be a configuration and let r be a reader. If α is an
({r1, . . . , rn} − {r})-only schedule and β is a ({s, r1, . . . , rn} − {r})-only schedule,
then, for every configuration D in the execution determined by α from C′ = Cr and
for every configuration E in the execution determined by β from C′αs, v(D)
= v(E).

Proof Suppose not. Then there are some such configurations D and E such that
v(D) = v(E). Since r does not occur in the schedule αsβ, D and E are indistinguish-
able to r . Note that r must return false if it takes a step in configuration D, because s

has not taken any steps since r last took a step. However, r must return true if it takes
a step in configuration E, because s has taken a step since r last took a step. This is
impossible, because D and E are indistinguishable to r .

We can now prove Theorem 3.

Theorem 3 In any algorithm for the 2-read-bounded signal detection problem, the
blackboard has domain size at least n + 1.

Proof Let C0 be the initial configuration. For 1 ≤ j ≤ n, let Cj = Cj−1srj and let
Cn+1 = Cns. Let α denote the empty schedule.

For 1 ≤ i < n, let β denote the schedule ri+1 · · · srns. By Lemma 2 with C′ = Ci

and r = ri , v(Ci)
= v(E) for all configurations E in the execution starting from Cis

determined by β. In particular, v(Ci)
= v(Cj) for i + 1 ≤ j ≤ n + 1.

Theory of Computing Systems (2021) 65:687–705 695

For i = n, let β denote the empty schedule. By Lemma 2 with C′ = Cn and
r = rn, v(Cn)
= v(Cn+1).

Hence |{v(C1), . . . , v(Cn), v(Cn+1)}| = n + 1.

4 Fixed Signals

Suppose that, whenever the signaller takes a step, the resulting value of the black-
board does not depend on what its value was. In other words, for all k ≥ 1, there
exists a value vk in the blackboard domain such that, immediately after the signaller’s
k’th step in any execution, the blackboard has value vk . For example, this is the case
if the signaller always resets the contents of the blackboard to a fixed value, say 0.
Using Lemma 1, we can show that, under this restriction, the blackboard has domain
size at least 2n.

Theorem 4 In any algorithm for the signal detection problem with fixed signals, the
blackboard has domain size at least 2n.

Proof Suppose the domain size of the blackboard is finite. Then, by Lemma 1, it
is possible to reach a configuration D such that, for any set of readers T , there is a
(M(T) ∪ {s})-only schedule βT such that v(DTsβT) = v(DT).

Suppose there exist two different sets of readers R, R′ ⊆ {r1, . . . , rn} such
that v(DR) = v(DR′). Without loss of generality, R = TxX and R′ = TX′,
where x ∈ R − R′ and T is the longest common prefix of R and R′. Note that
M(T) is disjoint from {x} ∪ X ∪ X′, since R and R′ are sorted. By definition
of D, there is a (M(T) ∪ {s})-only schedule βT such that v(DTsβT) = v(DT).
The signaller s occurs exactly once in each of the schedules Ts and Txs. Since
s has fixed signals, v(DTs) = v(DTxs). The configurations DTs and DTxs are
indistinguishable to M(T), so, by induction on the length of β, the configurations
DTsβ and DTxsβ are indistinguishable to M(T) for every prefix β of βT . In par-
ticular, v(DTxsβT)= v(DTsβT) = v(DT). Since M(T) ∪ {s, x} is disjoint from
X′, configurations DTxsβT and DT are indistinguishable to the set of readers
X′. Thus v(DTxsβT X′) = v(DTX′) = v(DR′) = v(DR) = v(DTxX). Since
x /∈ M(T)∪X∪X′ ∪{s}, it follows that DTxsβT X′ and DTxX are indistinguishable
to x. Note that x must return false if it takes a step in configuration DTxX, because s

has not taken any steps since x last took a step. However, x must return true if it takes
a step in configuration DTxsβT X′, because s has taken a step since x last took a step.
This is impossible, because these two configurations are indistinguishable to x.

Hence, v(DR)
= v(DR′) for all different sets of readers R and R′. It follows that
|{v(DR) : R ⊆ {r1, . . . , rn}}| = 2n.

5 Oblivious Processes

In this section, we consider processes whose actions are oblivious to their states,
either when writing to the blackboard or responding to a read.

Theory of Computing Systems (2021) 65:687–705696

Recall that a process is write oblivious if what it writes to the blackboard in a step
only depends on the value of the blackboard at the beginning of that step. We prove
that the simple algorithm in Section 1.2 with domain size 2n is optimal if both the
signaller and the readers are write oblivious.

Theorem 5 In any algorithm for the signal detection problem with write oblivious
processes, the blackboard has domain size at least 2n.

Proof Suppose the domain size of the blackboard is finite. For any (possibly empty)
set of readersR and any positive integer i, consider the schedule (sR)i which consists
of sR repeated i times. Because the domain size of the blackboard is finite, there exist
0 < i < j such that v(C0(sR)i) = v(C0(sR)j), where C0 is the initial configuration.

Let R′
= R be a different set of readers and let 0 < i′ < j ′ be such that
v(C0(sR′)i′) = v(C0(sR′)j ′

). Without loss of generality, suppose there is a reader
rk ∈ R′ − R.

To obtain a contradiction, assume that v(C0(sR)i) = v(C0(sR′)i′). Since proces-
ses are write oblivious, it follows that v(C0(sR′)i′(sR)j−i) = v(C0(sR)i(sR)j−i) =
v(C0(sR)j) = v(C0(sR)i) = v(C0(sR′)i′). Since rk takes no steps in (sR)j−i , con-
figurations C0(sR′)i′(sR)j−i and C0(sR′)i′ are indistinguishable to rk . The signaller
has taken a step after rk’s last step in the execution determined by (sR′)i′(sR)j−i

starting from C0, so rk must return true if it takes a step in configuration
C0(sR′)i′(sR)j−i . However, the signaller has not taken a step after rk’s last step in the
execution determined by (sR′)i′ starting from C0, so rk must return false if it takes a
step in configuration C0(sR′)i′ . This is impossible, so v(C0(sR)i)
= v(C0(sR′)i′).

Since this holds for any two different sets of readers R and R′, it follows that the
blackboard domain has size at least 2n.

We now consider response oblivious readers, whose responses only depend on the
contents of the blackboard, but not their current state. However, processes can modify
the blackboard based on both the blackboard contents and their current state. Even for
the 2-read-bounded signal detection problem, at least 2n different blackboard values
are necessary when readers are response oblivious.

Theorem 6 In any algorithm for 2-read-bounded signal detection with response
oblivious processes, the blackboard has domain size at least 2n.

Proof Consider a set of readers R and let Q = {r1, . . . , rn} − R. Note that, in the
execution from the initial configuration C0 determined by scheduleQsR, each reader
takes exactly one step.

Let R′
= R be a different set of readers and let Q′ = {r1, . . . , rn} − R′. Without
loss of generality, suppose there is a reader rk ∈ R′ − R. In the execution from
C0 determined by schedule Q′sR′, reader rk takes a step after the signaller’s last
step, so rk must return false if it takes a step in configuration C0Q′sR′. However, in
the execution from C0 determined by schedule QsR, reader rk does not take a step
after the signaller’s last step, so rk must return true if it takes a step in configuration
C0QsR. By response obliviousness, this implies that v(C0QsR)
= v(C0Q′sR′).

Theory of Computing Systems (2021) 65:687–705 697

Since this holds for any two different sets of readers R and R′, the blackboard
domain has size at least 2n.

6 The General Setting

LetM = {M(R) : R ⊆ {r1, . . . , rn}}. Recall that |M| = n + 1. For any schedule α,
let M(α) denote M(R), where R is the set of readers that take steps in α.

Lemma 3 If the blackboard can only store a finite number of different values, then,
from any configuration, it is possible to reach a configuration D such that, for any
schedules α and β, there exists an (M(α) ∪ M(β) ∪ {s})-only schedule γ such that
v(Dαγ) = v(Dβ).

Proof Let C0 be an arbitrary configuration. Suppose that, for each configuration C

reachable from C0, there are two schedules, α and β, such that, for each (M(α) ∪
M(β) ∪ {s})-only schedule γ , v(Cαγ)
= v(Cβ).

We inductively define an infinite sequence of configurations Cj , for j ≥ 0,
such that Cj+1 is reachable from Cj . Given Cj , which is reachable from C0, there
exist two schedules, αj+1 and βj+1, such that v(Cjαj+1γ)
= v(Cj βj+1) for all
(M(αj+1) ∪ M(βj+1) ∪ {s})-only schedules γ . Let Cj+1 = Cjαj+1.

For j ≥ 1, let Mj = M(αj) ∪ M(βj) ∈ M. Since M is finite, there exists
at least one set that is equal to Mj for an infinite number of j ’s. Let M ′ denote
the largest such set and let J = {j ≥ 1 : Mj = M ′} be the set of indices of
the occurrences of M ′. Let k∗ = min{k ≥ 1 : Mj ⊆ M ′ for all j ≥ k} be the
first index after which no set larger than M ′ occurs. Note that, if k∗ ≤ k < �,
then γ = αk+1 · · · α�−1β� is an (M ′ ∪ {s})-only schedule. Hence, if k, � ∈ J , then
v(Ck−1βk)
= v(Ck−1αkγ) = v(C�−1β�). Thus {v(Ck−1βk) : k ≥ k∗ and k ∈ J } is
an infinite set of values that can appear on the blackboard.

For 0 ≤ i < j ≤ n, let δ(i, j) denote the schedule r1sr2s . . . risri+1ri+2 . . . rj .
For example, δ(0, 3) = r1r2r3 and δ(2, 5) = r1sr2sr3r4r5. Note that δ(i, j) contains
i occurrences of s.

Lemma 4 Let D be a reachable configuration such that, for any schedules α and β,
there exists an (M(α) ∪ M(β) ∪ {s})-only schedule γ such that v(Dαγ) = v(Dβ). If
0 ≤ i < j ≤ n, 0 ≤ i′ < j ′ ≤ n, and either i
= i′ or j
= j ′, then v(Dδ(i, j))
=
v(Dδ(i′, j ′)).

Proof First consider the case when i
= i′. Without loss of generality, suppose that
i < i′. The state of reader ri+1 is the same in configurations Dδ(i, j) and Dδ(i′, j ′).
In configuration Dδ(i, j), if ri+1 takes a step, it must return false, because s has not
taken any steps since ri+1 last took a step. In configuration Dδ(i′, j ′), if ri+1 takes
a step, it must return true, because s has taken i′ − i steps since ri+1 last took a
step. If v(Dδ(i, j)) = v(Dδ(i′, j ′)), then configurations Dδ(i, j) and Dδ(i′, j ′) are
indistinguishable to ri+1, which is impossible. Thus v(Dδ(i, j))
= v(Dδ(i′, j ′)).

Theory of Computing Systems (2021) 65:687–705698

Now consider the case when i = i′ and j
= j ′. Without loss of general-
ity, suppose that j < j ′, so δ(i′, j ′) = δ(i, j)rj+1 · · · rj ′ . Let α = δ(i, j)s and
β = δ(i, j). By assumption, there exists an {r1, . . . , rj , s}-only schedule γ such that
v(Dδ(i, j)sγ) = v(Dδ(i, j)). To obtain a contradiction, suppose that v(Dδ(i′, j ′)) =
v(Dδ(i, j)). Configurations Dδ(i′, j ′) and Dδ(i, j) are indistinguishable to
r1, . . . , rj , and s, since the signaller and these readers take no steps in rj+1 · · · rj ′ .
Then v(Dδ(i′, j ′)sγ) = v(Dδ(i, j)sγ) = v(Dδ(i, j)) = v(Dδ(i′, j ′)). Since rj+1
does not appear in sγ , configurations Dδ(i′, j ′)sγ and Dδ(i′, j ′) are indistingui-
shable to rj+1. Note that rj+1 must return false if it takes a step in configuration
Dδ(i′, j ′), because s has not taken any steps since rj+1 last took a step. However,
rj+1 must return true if it takes a step in configuration Dδ(i′, j ′)sγ , because s has
taken a step since rj+1 last took a step. This is impossible, because Dδ(i′, j ′)sγ and
Dδ(i′, j ′) are indistinguishable to rj+1.

Using this lemma, we obtain Theorem 1.

Theorem 1 In any algorithm for the signal detection problem, the blackboard has
domain size at least n(n + 1)/2.

Proof Consider any algorithm for signal detection in which the blackboard stores a
finite number of different values. By Lemma 3, there is a reachable configuration
D such that, for any schedules α and β, there exists an (M(α) ∪ M(β) ∪ {s})-only
schedule γ such that v(Dαγ) = v(Dβ). By Lemma 4, for all different choices of
0 ≤ i < j ≤ n, the value of the blackboard in configuration Dδ(i, j) is different.
There are n(n + 1)/2 ∈ �(n2) such choices.

7 Two Readers

In this section, we examine the special case when there are exactly two readers. The
simple signal detection algorithm presented in Section 1.2 with one bit for each reader
has a blackboard domain of size 22 = 4. First, we prove that this is optimal.

To prove our conjecture that 2n blackboard values are necessary for n readers,
one approach would be to show the existence of a configuration from which P -only
executions lead to different blackboard configurations for different subsets P of the
readers. When n = 2, we show that such a configuration does not always exist. In
particular, in Section 7.2, we present an algorithm for two readers, r1 and r2, with the
property that, from every reachable configuration C, any reader-only execution leads
to at most three different blackboard values. Thus, in order to show that four different
blackboard values can be reached from some reachable configuration C, the signaller
must also take steps, as is the case in our lower bound in Section 7.1. We conjecture
that there are similar counterexample algorithms for n > 2.

7.1 A Tight Lower Bound

We begin with a straightforward observation about when two configurations have the
same blackboard value.

Theory of Computing Systems (2021) 65:687–705 699

Observation 7 For any configurationC and any schedule α such that v(C) = v(Cα),
if β is a schedule consisting of processes that don’t take steps in α, then v(Cβ) =
v(Cαβ).

The proof follows from the fact that configurationsC andCα are indistinguishable
to the processes that take steps in β.

In some situations, it is also easy to prove that two configurations have different
blackboard values.

Lemma 5 If C is a reachable configuration, ρ is a schedule that contains reader r

but not the signaller s, σ is a schedule that contains s but not r , and γ is a schedule
that contains neither s nor r , then v(Cρσ)
= v(Cργ).

Proof If reader r takes a step in configuration Cρσ , it must return true, because r’s
previous step occurred during ρ and s took a step during σ . However, if r takes a step
in configuration Cργ , it must return false, because s takes no steps during ργ .

Since r takes no steps in σ or γ , the state of r in configurations Cρσ and Cργ

must be the same. Now suppose that v(Cρσ) = v(Cργ). Then configurations Cρσ

and Cργ are indistinguishable to r , so it must return the same value if it takes a step
in Cρσ and Cργ . This is a contradiction.

Corollary 1 If C is a reachable configuration, ρ is a schedule that contains reader r

but not the signaller s, and σ is a schedule that contains s but not r , then v(Cρσ)
=
v(Cρ).

These results will be used repeatedly to obtain a tight lower bound when there are
two readers.

Theorem 8 Any algorithm for signal detection among n = 2 readers requires
blackboard domain size at least 4.

Proof Consider any algorithm, letC0 be its initial configuration, and letD = C0r1r2.
Since the blackboard domain size is finite, there are two integers k, � ≥ 1, such
that v(Dsk) = v(Dsk+�). We first show that v(Dskr1)
= v(Dsk)
= v(Dskr2). To
obtain a contradiction, suppose that v(Dsk) = v(Dskri) for some i ∈ {1, 2}. Then
v(Dsk+�) = v(Dskris

�) by Observation 7 with C = Dsk , α = ri and β = s�. Hence
v(Dskri) = v(Dsk) = v(Dsk+�) = v(Dskris

�). But v(Dskris
�)
= v(Dskri) by

Corollary 1 with C = Dsk , r = ri , ρ = ri , and σ = s�. This is a contradiction.
Therefore v(Dsk)
= v(Dskr1), v(Dskr2).

Applying Corollary 1 with C = C0, r = r2, ρ = r1r2, and σ = skr1 gives
v(Dskr1) = v(C0r1r2s

kr1)
= v(C0r1r2) = v(D). Similarly, v(Dskr2)
= v(D).
Applying Corollary 1 with C = C0, r = r1, ρ = r1r2, and σ = sk , gives v(Dsk) =
v(C0r1r2s

k)
= v(C0r1r2) = v(D). If v(Dskr1)
= v(Dskr2), then v(D), v(Dsk),
v(Dskr1), and v(Dskr2) are all distinct, so suppose that v(Dskr1) = v(Dskr2).

Applying Corollary 1 with C = C0, r = r2, ρ = r1r2, and σ = skr1s gives
v(Dskr1s) = v(C0r1r2s

kr1s)
= v(C0r1r2) = v(D). Applying Corollary 1 with C =

Theory of Computing Systems (2021) 65:687–705700

Dsk , r = r1, ρ = r1, and σ = s gives v(Dskr1s)
= v(Dskr1). If v(Dskr1s)
=
v(Dsk), then v(D), v(Dsk), v(Dskr1), and v(Dskr1s) are all distinct, so suppose that
v(Dskr1s) = v(Dsk).

By Observation 7 with C = Dsk , α = r1s and β = r2, it follows that
v(Dskr1sr2) = v(Dskr2), so v(Dskr1sr2) = v(Dskr1). Applying Corollary 1 with
C = Dsk , r = r1, ρ = r1, and σ = sr2 gives v(Dskr1sr2)
= v(Dskr1). This is a
contradiction. Therefore, either v(Dskr1)
= v(Dskr2) or v(Dskr1s)
= v(Dsk) and,
hence, the domain size is at least 4.

7.2 An Algorithm for Two Readers Based on a Bounded Sequential Timestamp
System

A bounded sequential timestamp system for a set of processes consists of a finite
set of labels, L, and a dominance relation ≺ between every two different labels,
i.e. if �1 and �2 are two different labels then exactly one of �1 ≺ �2 and �2 ≺ �1 is
true. At every configuration, each process has a different label. There is one atomic
operation, getTimestamp(), which may change the label of the process that called it
and which ensures that its label dominates the labels of all other processes. A solution
to the signal detection problem can be obtained from a bounded sequential timestamp
system by using the blackboard to store the timestamps of the signaller and each
reader. When either a reader or the signaller takes a step, it performs getTimestamp()
and updates its timestamp stored on the blackboard, if it has changed. A reader returns
true if and only if its timestamp was smaller (with respect to ≺) than the timestamp
of the signaller before it was updated. The domain size of the blackboard is |L|n+1

in this algorithm, where n is the number of readers. Note that this algorithm provides
a lot more information than is required by the signal detection problem. Specifically,
each reader can also determine which of the other readers have taken steps since it
last took a step.

Israeli and Li [5] gave a construction of a bounded sequential timestamp system
for n + 1 processes with a label set of size 3n and proved that, for any ε > 0, there
exists a bounded sequential timestamp system for n+1 processes whose label set has
size (2+ ε)n+1, for n sufficiently large. They also proved a lower bound of 2n+1 − 1
for the size of the label set of any bounded sequential timestamp system for n + 1
processes.

The algorithm below is based on the bounded timestamp system of Israeli and Li
for three processes with 32 = 9 labels, but it stores only two labels on the blackboard:
the signaller’s label and the larger (with respect to ≺) of the two readers’ labels. This
results in a blackboard with domain size 81, which is much larger than the number
of labels used in the optimal algorithm. However, this algorithm has the property
that, starting from any reachable configuration, at most three different blackboard
configurations can be reached by executions in which only readers take steps.

Let B = {0, 1, 2}. The set of labels is B2 = B × B. We define the dominance
relation ≺ as follows: For (a1, a0), (b1, b0) ∈ B2, (a1, a0) ≺ (b1, b0) if and only if

1. b1 ≡ a1 + 1 (mod 3) or
2. b1 = a1 and b0 ≡ a0 + 1 (mod 3).

Theory of Computing Systems (2021) 65:687–705 701

Note that, for any two distinct labels a, b ∈ B2, either a ≺ b or b ≺ a. Israeli and
Li view the set of all labels with the same first component as being the labels of a
separate copy of a bounded sequential timestamp for 2 processes (which uses labels
in B).

The algorithmmaintains the following label invariants: In each reachable configu-
ration, each process p ∈ {s, r0, r1} has a different label �(p) = (�1(p), �0(p)) ∈ B2.
In addition, each reader has a label from a different copy (i.e. �1(r0)
= �1(r1)) and
the signaller has a label from one of these copies (i.e. �1(s) ∈ {�1(r0), �1(r1)}). In the
initial configuration,

�(r0) = (0, 0), �(r1) = (1, 0), and �(s) = (1, 1),

so the label invariants are satisfied.
In each reachable configuration, the readers have different labels, so one of the

reader’s labels dominates the other reader’s label. We call the reader with this label
the dominating reader.

The blackboard stores the pair (�(s), �(rd)) ,

where d ∈ {0, 1} and �(r1−d) ≺ �(rd). (B)

In other words, the signaller’s label as well as the dominating reader’s label are stored
on the blackboard. Thus, initially, the blackboard contains ((1,1),(1,0)).

When a process takes a step, it applies the rules described below, which might
change its label. We prove that the label invariants remain satisfied. If its label is
changed, the process updates the blackboard so that (B) remains true. We will show
that, in addition,

immediately after each step by s, its label �(s) dominates both �(r0) and �(r1) and

immediately after each step by a reader ri, its label �(ri) dominates �(s). (S)

Therefore, a reader can easily provide the proper response when it takes a step: If a
reader’s label dominates �(s) at the beginning of its step, then the reader returns false.
Otherwise it returns true.

Consider any configuration that satisfies (B) and the label invariants. Let d ∈
{0, 1} be such that �(r1−d) ≺ �(rd). Since �1(r1−d)
= �1(rd), it follows that �1(rd) ≡
�1(r1−d) + 1 (mod 3).

The Signaller’s Step. When the signaller s takes a step, it compares its label with
�(rd), which is stored on the blackboard. If �(rd) ≺ �(s), then s retains its old
label and does not update the blackboard, so (B) and the label invariants remain
satisfied. In this case, �1(s)
= �1(r1−d), so, by the label invariants, �1(s) = �1(rd)

and, hence, �(r1−d) ≺ �(s). Thus, (S) is true.
Now consider the case when �(s) ≺ �(rd). The new label of s is

�′(s) = (�1(rd), (�0(rd) + 1) mod 3).

By definition, �(rd) ≺ �′(s). Since �′
1(s) = �1(rd) ≡ �1(r1−d) + 1 (mod 3), we

have �(r1−d) ≺ �′(s). Thus (S) is satisfied and the labels of all three processes are
different. By definition, �′

1(s) = �1(rd) ∈ {�1(r0), �1(r1)}. Since the labels of r0
and r1 do not change, �1(r0)
= �1(r1). Hence, the label invariants remain satisfied.

Theory of Computing Systems (2021) 65:687–705702

After determining its new label �′(s), the signaller updates the first component of
the pair stored on the blackboard with �′(s), so (B) remains satisfied.

The Reader’s Step. When reader ri , i ∈ {0, 1}, takes a step, it compares its label
with �(s), which is stored on the blackboard. If �(s) ≺ �(ri), then ri does not
change its label and (S) is true. In this case, none of the label invariants are
affected, the reader does not change the blackboard, and (B) remains satisfied.

So suppose that �(ri) ≺ �(s). Then ri’s new label is

�′(ri) =
{

(�1(s), (�0(s) + 1) mod 3) if �1(ri) = �1(s)

((�1(s) + 1) mod 3, 0) otherwise.

In both cases, �(s) ≺ �′(ri), so (S) is satisfied and �′(ri)
= �(s). If �1(ri) = �1(s),
then, by construction, �′

1(ri) = �1(s) = �1(ri). By the label invariants, �1(ri)
=
�1(r1−i), so �′

1(ri)
= �1(r1−i). If �1(ri)
= �1(s), then, since �1(s) ∈ {�1(r0), �1(r1)},
we have �1(s) = �1(r1−i). By construction, �′

1(ri)
= �1(s), so �′
1(ri)
= �1(r1−i). In

both cases, �′(ri)
= �(r1−i). Since �(r1−i)
= �(s), the labels of all three processes
are different. Hence, the label invariants remain satisfied.

If �1(ri) = �1(s) and d = 1−i (i.e., the second label on the blackboard is not equal
to �(ri)), then ri does not change the blackboard. In this case, by (B), �(ri) ≺ �(r1−i)

and, by the label invariants, �1(ri)
= �1(r1−i). Therefore, it follows that �1(r1−i) ≡
(�1(ri) + 1) (mod 3). By construction, �′

1(ri) = �1(s), so �1(r1−i) ≡ (�′
1(ri) + 1)

(mod 3) and, hence, �′(ri) ≺ �(r1−i). Thus (B) remains satisfied.
If �1(ri) = �1(s) and d = i, then ri changes the second component of the black-

board to �′(ri) = (�1(s), (�0(s) + 1) mod 3). Since �(r1−i) ≺ �(ri) and, by the label
invariants, �1(r1−i)
= �1(ri), it follows that �′

1(ri) ≡ �1(r1−i) + 1 (mod 3). Hence
�(r1−i) ≺ �′(ri) and (B) remains satisfied.

The last case is when �1(ri)
= �1(s). Then ri changes the second component of
the blackboard to �′(ri) = ((�1(s) + 1) mod 3, 0). By the label invariants, �1(s) =
�1(r1−i), so �′

1(ri) = (�1(r1−i) + 1) mod 3. Hence �(r1−i) ≺ �′(ri) and (B) remains
satisfied.

Lemma 6 For any reachable configuration C,∣∣{v(Cα) : α ∈ {r0, r1}∗
}∣∣ ≤ 3.

Proof Without loss of generality, we may assume that either C is the initial con-
figuration or the last step in the execution leading to C was taken by the signaller.
Let �∗(p) = (

�∗
1(p), �∗

0(p)
)
denote the label of process p ∈ {s, r0, r1} in config-

uration C. By (S) and the definition of the initial configuration, the label of the
signaller, �∗(s), dominates the labels, �∗(r0) and �∗(r1), of the readers. By the label
invariants, there is an index d ∈ {0, 1} such that �∗

1(s) = �∗
1(rd)
= �∗

1(r1−d).
Since �∗(r1−d) is dominated by �∗(s), it is also dominated by �∗(rd). Thus, by (B),
v(C) = (�∗(s), �∗(rd)).

The signaller takes no steps in α, so its label remains unchanged. If rd takes at least
one step in α, its label changes to �′(rd) = (

�∗
1(s), (�

∗
0(s) + 1) mod 3

)
and, if r1−d

takes at least one step in α, its label changes to �′(r1−d) = (
(�∗

1(s) + 1) mod 3, 0
)
.

Theory of Computing Systems (2021) 65:687–705 703

By (S), after a reader has taken a step, its new label dominates �∗(s), so its label does
not change when it takes additional steps in α.

When a reader takes a step, either it does not change the blackboard, or it
replaces the second component of the blackboard with its new label. Thus, for all
α ∈ {r0, r1}∗,

v(Cα) = (�∗(s), �), where � ∈ {
�∗(rd), �′(rd), �′(r1−d)

}
.

Hence, |{v(Cα) : α ∈ {r0, r1}∗}| ≤ 3.

8 Discussion

This paper introduces the signal detection problem, gives some simple algorithms for
solving it, proves that domain size at least n(n + 1)/2 is necessary, and proves that
domain size 2n is necessary and sufficient for three restricted versions of the problem:
when the processes are write oblivious, when the readers are response oblivious, or
when the signaller writes a fixed sequence of values to the blackboard. We conjecture
that domain size must be at least 2n for the unrestricted version of the problem. It
would also be interesting to prove this bound for two other restricted versions of
the problem: when only the signaller is write oblivious or only the readers are write
oblivious.

We also consider another restricted version of the problem, where each reader
takes no more than b ≥ 2 steps. We give an algorithm with domain size (b − 1)n + 1
and prove this is optimal when b = 2. It remains open whether it is optimal when
b > 2. If the signaller takes no more that B steps, then one of our simple algorithms
uses a domain of size B + 1. It is unclear whether it is possible to have an algorithm
for this restricted version that has a smaller domain.

Acknowledgements Support is gratefully acknowledged from the Natural Science and Engineering
Research Council of Canada (NSERC) under Discovery Grant RGPIN-2015-05080, Discovery Grant
RGPIN-2019-04852, the Canada Research Chairs program, and a Postgraduate Scholarship, and from a
University of Toronto Faculty of Arts and Science Postdoctoral Fellowship.

A preliminary version of this paper appeared in [3].

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons
licence, and indicate if changes were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommonshorg/licenses/by/4.
0/.

References

1. Afek, Y., Attiya, H., Dolev, D., Gafni, E., Merritt, M., Shavit, N.: Atomic snapshots of shared memory.
J. ACM 40(4), 873–890 (1993)

Theory of Computing Systems (2021) 65:687–705704

http://creativecommonshorg/licenses/by/4.0/
http://creativecommonshorg/licenses/by/4.0/

2. Aghazadeh, Z., Woelfel, P.: On the time and space complexity of ABA prevention and detection.
In: Proceedings of the 34th SIGACT-SIGOPS Symposium on Principles of Distributed Computing
(PODC), pp. 193–202 (2015)

3. Ellen, F., Gelashvili, R., Woelfel, P., Zhu, L.: Space lower bounds for the signal detection problem.
In: Proceedings of the 36th International Symposium on Theoretical Aspects of Computer Science,
(STACS), pp. 26:1–26:13 (2019)

4. IBM system/370 extended architecture, principles of operation. Tech. rep. (1983). Publication No.
SA22-7085

5. Israeli, A., Li, M.: Bounded time-stamps. Distrib. Comput. 6(4), 205–209 (1993)
6. Jayanti, P., Petrovic, S.: Efficient and practical constructions of LL/SC variables. In: Proceedings of

the 2nd SIGACT-SIGOPS Symposium on Principles of Distributed Computing (PODC), pp. 285–294
(2003)

7. Michael, M.: ABA Prevention Using Single-Word Instructions. Tech. rep., IBM T. J. Watson Research
Center (2004)

8. Michael, M.: Practical lock-free and wait-free LL/SC/VL implementations using 64-bit CAS. In:
Proceedings of the 18th International Symposium on Distributed Computing (DISC), pp. 144–158
(2004)

9. Moir, M.: Practical implementations of non-blocking synchronization primitives. In: Proceedings of
the 16th SIGACT-SIGOPS Symposium on Principles of Distributed Computing (PODC), pp. 219–228
(1997)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Affiliations

Faith Ellen1 ·Rati Gelashvili1 ·PhilippWoelfel2 · Leqi Zhu1

Faith Ellen
faith@cs.toronto.edu

Rati Gelashvili
gelash@cs.toronto.edu

Leqi Zhu
lezhu@cs.toronto.edu

1 Department of Computer Science, University of Toronto, Toronto, ON, Canada
2 Department of Computer Science, University of Calgary, Calgary, AB, Canada

Theory of Computing Systems (2021) 65:687–705 705

http://orcid.org/0000-0002-7847-4631
mailto: faith@cs.toronto.edu
mailto: gelash@cs.toronto.edu
mailto: lezhu@cs.toronto.edu

	Space Lower Bounds for the Signal Detection Problem
	Abstract
	Introduction
	The Signal Detection Problem
	Simple Signal Detection Algorithms
	ABA Detection
	Results

	Preliminaries
	Read-Bounded Signal Detection
	Fixed Signals
	Oblivious Processes
	The General Setting
	Two Readers
	A Tight Lower Bound
	An Algorithm for Two Readers Based on a Bounded Sequential Timestamp System

	Discussion
	References
	Affiliations

