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Abstract We study the design of cost-sharing protocols for two fundamental
resource allocation problems, the Set Cover and the Steiner Tree Problem, under
environments of incomplete information (Bayesian model). Our objective is to
design protocols where the worst-case Bayesian Nash equilibria have low cost,
i.e. the Bayesian Price of Anarchy (PoA) is minimized. Although budget balance
is a very natural requirement, it puts considerable restrictions on the design space,
resulting in high PoA. We propose an alternative, relaxed requirement called bud-
get balance in the equilibrium (BBiE). We show an interesting connection between
algorithms for Oblivious Stochastic optimization problems and cost-sharing design
with low PoA. We exploit this connection for both problems and we enforce
approximate solutions of the stochastic problem, as Bayesian Nash equilibria, with
the same guarantees on the PoA. More interestingly, we show how to obtain the
same bounds on the PoA, by using anonymous posted prices which are desirable
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because they are easy to implement and, as we show, induce dominant strategies for
the players.

Keywords Price of anarchy · Bayesian games · Network design · Cost-sharing
games

1 Introduction

A cost-sharing game is an abstract setting that describes interactions of selfish players
in environments where the cost of the produced solution needs to be shared among the
participants. A cost-sharing protocol prescribes how the incurred cost is split among
the users. This defines a game that is played by the participants, who try to select out-
comes that incur low personal costs. Chen, Roughgarden and Valiant [23] initiated the
design aspect, seeking for protocols that induce approximately efficient equilibria,
with low Price of Anarchy (PoA) [55]. Similarly, we study the design of cost-sharing
protocols, for two well-studied and very general resource allocation problems with
numerous applications, the Set Cover and the Steiner tree (multicast) problem.

Set Cover Game In the (weighted) set cover problem, there is a universe of n ele-
ments, U = {1, . . . , n}, and a family of subsets of U , F = {F1, . . . , Fm}, with
weights/costs cF1 , . . . , cFm . A subset of elements, X ⊆ U , needs to be covered by the
F ′

i s so that the total cost is minimized. We are interested in a game theoretic version,
where there are |X| players and |U | possible types; each player’s type associates her
with a specific element of U and X corresponds to the set of players’ types. Multi-
ple players may have the same type. A player’s action is to chose a subset from F
that covers her element, and pay some cost-share for using it. A cost-sharing method
prescribes how the subsets’ costs are split among players.

Multicast Game In a multicast game, there is a rooted (connected) undirected graph
G = (V , E, t), where each edge e carries a nonnegative weight ce and t is a des-
ignated root. There are k players and |V | = n possible types; each player’s type
associates him with a specific vertex of V which needs to establish connectivity
with t . The players’ strategies are all the paths that connect their terminal with t . A
cost-sharing method defines the cost-shares of the players.

Cost-Sharing under Uncertainty There are two different possible sources of uncer-
tainty that may need to be considered in the above scenarios. Firstly, the designer
needs to specify the cost-sharing protocol, having only partial information about the
players’ types. Moreover, the players themselves, when they select their actions, may
have incomplete knowledge about the types of the other players. We approach the
former by using a stochastic model similar to [29], and the latter, as a Bayesian
game, introduced by [48], which is an elegant way of modelling selfishness in partial-
information settings. In a Bayesian game, players do not know the private types of
the other players, but only have beliefs, expressed by probability distributions over
the possible realizations of the types.
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The order of events is as follows; first, the designer specifies the cost-sharing
methods, using the product probability distribution over the players’ types, then the
players interact in the induced Bayesian game, and end up in a Bayesian Nash Equi-
librium. We are interested in the design of protocols, where all equilibria have low
cost i.e., the (Bayesian) PoA of the induced game is low.

Budget Balance in the Equilibrium (BBiE) One of the axioms that [23] required in
their design space, that every cost-sharing protocol should satisfy, is budget balance
i.e., that the players’ cost-shares cover exactly the cost of any solution. Although bud-
get balance is a very natural requirement, it puts considerable restrictions on the design
space. However, since we expect that the players will end up in a Nash equilibrium, it
is not clear why one should be interested to impose budget balance in non-equilibrium
states; the players are going to deviate from such states anyway. We propose an alter-
native, relaxed requirement that we call budget balance in the equilibrium (BBiE).
A BBiE cost-sharing protocol satisfies budget balance in all equilibria; for any
non-equilibrium profile we do not impose this requirement. This natural relaxation
enlarges the design space but maintains the desired property of balancing the cost in
the equilibrium. More importantly, this amplification of the design space, allows us to
design protocols that dramatically outperform the best possible PoA bounds obtained
by budget-balanced protocols. Indeed, by restricting to budget-balanced protocols, a
lower bound of �(n) exists, for the complete information set cover game [23]; we
extend this lower bound for the Bayesian setting. We further show a lower bound of
�(

√
n), for the multicast Bayesian game. We demonstrate that, by designing BBiE

protocols, we can enforce better solutions, that dramatically improve the PoA. For
the set cover game, we improve the PoA to O(n/ log n) (or O(log n) if m=poly(n)).
Regarding the multicast game, we improve the PoA to O(1).

Posted Prices It is a very common practice, especially in large markets and double
auctions, for sellers to use posted prices. More closely to cost-sharing games is the
model proposed by Kelly [51] regarding bandwidth allocation. Kelly’s mechanism
processes players’ willingness to pay and posts a price for the whole bandwidth. Then
each player pays a price proportional to the bandwidth she uses. This can be seen as
pricing an infinitesimal quantity of bandwidth and the players, acting as price-takers,
choose some number of quantities to buy. It turns out that it is in the best interest of
the players to buy the whole bandwidth.

The use of posted prices, to serve as cost-sharing mechanism, is highly desirable,
but not always possible to achieve; a price is posted for each resource and then the
players behave as price takers, picking up the cheapest possible resources that satisfy
their requirements. Such a mechanism is desirable because it is extremely easy to
implement and also induces dominant strategies. We stress that our main results can
be implemented by anonymous posted prices.

1.1 Results and Discussion

We study the design of cost-sharing protocols for two fundamental resource allo-
cation problems, the Set Cover and the Steiner tree problem. We are interested
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in environments of incomplete information where both the designer and the play-
ers have partial information, described by prior probability distributions over types.
Our objective is to design cost-sharing protocols that are BBiE and the worst-case
equilibria have low cost, i.e. the Bayesian PoA is minimized.

We show an interesting connection between algorithms for Oblivious Stocha-stic
optimization problems and cost-sharing design with low PoA. We exploit this for
both problems and we are able to enforce approximate solutions of the stochas-
tic problem, as Bayesian Nash equilibria, with the same guarantees on the PoA.
Although this connection is quite simple, it results in significant improvement on the
PoA comparing to budget-balanced protocols. More precisely, we map each player
to a single specific strategy and charge very high costs for any alternative strategy. In
this way, their mapped strategy becomes a (strongly) dominant strategy. For the set
cover game, we enforce the oblivious solution given by [45]. They apriori map each
player i to some subset Fi ∈ F ; then, if i is sampled, Fi should be in the induced
solution. For the multicast game, the algorithm of [42], for the online Steiner tree
problem, provides an oblivious solution.

Budget-Balanced Protocols (Section 3). First, we provide lower bounds for the PoA
of budget-balanced protocols. It is not hard to see that there exists a set cover game
that reduces to the lower bound of Chen, Roughgarden and Valiant [23] for the mul-
ticast directed network games, resulting in PoA= �(n) in the complete information
case; (see Appendix for the reduction). For the stochastic or Bayesian setting, where
players are i.i.d., we show that the same lower bound holds. Regarding the multicast
game, the PoA is O(1) for the complete information case [23] and the stochastic case
[29, 42]. However, we show that for the Bayesian setting there is a lower bound of
�(

√
n) (see Table 1 for a summary).

BBiE Protocols (Section 4). For the Bayesian (and stochastic) set cover game there
exists an ex-post1 BBiE protocol (determined in polynomial time) with PoA of

O(log n), if m = poly(n), and O
(

logm
log logm−log log n

)
, if m � n. An ex-post BBiE

protocol also exists for the Bayesian multicast game resulting in constant PoA (see
Table 2 for a summary).

Posted Prices (Section 5). For the Bayesian (and stochastic) settings, ex-post BBiE
cannot be obtained by anonymous prices. We first discuss limitations of other con-
cepts, such as BBiE with “high” probability or bounded possible excess and deficit.
Then, we examine prices that result in ex-ante BBiE. We present anonymous prices
with the same upper bounds as the BBiE protocols, for the unweighted set cover and
for the multicast games, respectively. We stress that oblivious solutions may not be
sufficient to guarantee low PoA for anonymous posted prices, in contrast to the BBiE
protocols. This is because it is not clear anymore how to enforce players to choose

1In ex-post budget balance we require budget balance in every realization of the game. If the expected
excess and deficit are zero, the budget balance is called ex-ante.
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Table 1 PoA of
budget-balanced protocols Budget-balanced protocols

Set cover Multicast

Complete information �(n) [23] O(1) [23]

Bayesian �(n) �(
√

n)

desirable strategies, since anonymous prices are available to anyone. The reason that
they exist here is due to the specific properties of the oblivious solution.

Regarding the weighted set cover game, we are only able to provide semi-
anonymous prices with the same bounds; by semi-anonymous we mean that the
prices for each player do not depend on her identity, but only on her type. We leave
the case of anonymous prices as an open question. We remark that in all cases,
posted prices induce dominant strategies for the players. Finally, for the poly-time
determinable prices, we give tight lower bounds.

Prior-Independent Mechanisms (Section 6). Clearly, the above BBiE protocols
and posted prices depend on the prior distribution. Prior-independent mechanisms
are also of high interest and in Section 6 we discuss their limitations.

Complete Information Setting (Section 7). We further study the complete informa-
tion setting (see Tables 1 and 2). By using either BBiE protocols or anonymous posted
prices, we enforce the strategy profile of the optimum solution. Note that, while try-
ing to bound the PoA, computational issues are not of primary concern. However, if
we stick to protocols that can be determined in polynomial time, we can upper bound
the PoA of set cover and multicast games by O(log k) and 1.39, respectively, where
k is the number of players. Moreover, we argue that there are no anonymous prices,
computed in polynomial time, for the set cover game, with PoA= o(log k).

1.2 Related Work

There is a vast amount of research in cost-sharing games and so, we only men-
tion some of the most related. Moulin and Shenker [57] studied cost-sharing games
under mechanism design context; they characterized the budget-balanced and group
strategyproof mechanisms and identify the one with minimum welfare loss. In simi-
lar context, other papers considered (group)strategy proof and efficient mechanisms

Table 2 PoA of BBiE protocols
BBiE protocols/posted prices

Set cover Multicast

Complete information 1 1

Bayesian O(n/ log n) O(1)
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and relaxed the budget-balanced constraint; Devanur, Mihail and Vazirani [34]
and Immorlica, Mahdian and Mirrokni [50] studied the set cover game under this
context showing positive and negative bounds on the fraction of the cost that is
covered.

Regarding network design games, there is a long line of works mainly focusing on
fair cost allocation (Shapley cost-sharing mechanism), originated by [5]. Anshelevich
et al. [5] showed a tight �(log k) bound on the PoS for directed networks, while for
undirected networks several variants have been studied [11, 12, 22, 24, 35] but the
exact value of PoS still remains an open problem. For multicast games, Li [56] proved
an upper bound of O(log k/ log log k), while for broadcast games, Fiat et al. [39]
proved an O(log log k) upper bound which was improved to constant due to Bilò,
Flammini and Moscardelli [13]. The PoA of some special equilibria has been also
studied in [17, 21].

Chen, Roughgarden and Valiant [23] were the first to study the design aspects
for this game, identifying the best protocol with respect to the PoA and PoS in var-
ious cases, followed by [62] for parallel links, [40, 43, 54] for weighted congestion
games, [29, 47, 59] for network games, [41] for routing games and [52] for resource
allocation. The Bayesian Price of anarchy was first studied in auctions by [26]; see
also [58] for routing games, and [61] for the PoS of Shapley protocol in cost-sharing
games.

Close in spirit to our work is the notion of Coordination Mechanisms [25] which
provide a way to improve the PoA in cases of incomplete information. Similar to
our context, the designer has to decide in advance game-specific policies, without
knowing the exact input. Such mechanisms have been used for scheduling problems
under the objective of minimising the makespan [2, 7, 16, 49, 53] or minimising the
sum of players’ costs [1, 9, 33], as well as for simple routing games [10, 28].

Posted prices have been used for pricing in large markets. Kelso and Crawford
[4] and Gul and Stacchetti [46] proved the existence of prices, for gross substitute
valuations, that clear the market efficiently. Pricing bundles for combinatorial Wal-
rasian equilibria was introduced by Feldman, Gravin and Lucier [37], who showed
that half of the social welfare can be achieved. In a follow-up work [38], they consid-
ered Bayesian combinatorial auctions and they could guarantee half of the optimum
welfare, by using anonymous posted prices. Dynamic pricing schemes has been used
by Cohen, Eden, Fiat and Jez [31] in several online settings to induce the same per-
formance as the best online algorithm, and by Cohen-Addad, Eden, Feldman and
Fiat [32] in matching markets in order to achieve the optimal social welfare, for any
tie breaking rule. For maximizing the revenue with posted price mechanisms see [3,
6, 8, 14, 18–20].

We further discuss some related work to the underlying problems that we con-
sider here, the set cover and the minimum Steiner tree problems. Both problems
are very well studied and known to be in NP-complete. The best known approx-
imations are O(log(k)) [30] (by using a simple greedy algorithm) and 1.39 [15];
in fact, for the set cover problem, Feige [36] showed that no improvement by a
constant factor is likely. Research has been done regarding the stochastic model,
Grandoni et al. [45] showed a roughly O(log nm) tight bound for the set cover prob-
lem and Garg et al. [42] gave bounds on the approximation of the stochastic online
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Steiner tree problem. A slightly different distribution is the independent activations.
Shmoys and Talwar [60] demonstrated randomized and deterministic algorithms
with constant approximations for the universal TSP problem, and Christodoulou
and Sgouritsa [29] studied the multicast game presenting an ordered protocol with
constant PoA.

2 Model

Cost-Sharing Protocol In the cost-sharing games, we consider that there are k play-
ers who are interested in a set of resources, R = {r1, . . . , rm}. Each resource r carries
a cost cr . Whenever a subset of players uses a resource r , they are charged some
cost-share, defined by a cost-sharing (resource-specific) method ξ . A cost-sharing
protocol � decides a cost-sharing method for each resource. In accordance with pre-
vious works, [23, 29, 62], the following are some natural properties that � needs to
satisfy:

– Stability: The induced game has always a pure (Bayes) Nash equilibrium.
– Separability: The cost shares of each resource r are completely determined by

the set of players that choose it.
– BBiE: In any pure (Bayes) Nash equilibrium profile, the cost shares of the players

choosing r should cover exactly the cost of r .

For the rest of the paper, by k we denote the number of players and by n the
number of different types of the players, i.e. in the set cover game, |U | = n, and in
the multicast game, |V | = n.

Information Models We study several information models, from the point of view
of the designer and of other players, regarding the knowledge of players’ type. A
player’s type is some resource: in the set cover game, it is some element from U that
needs to be covered, and in the multicast game, it is some vertex of G, on which the
player’s terminal lies, and requires connectivity with the root t . The parameters of the
game is known to both the protocol designer and the participants. To be more specific,
the tuple (U,F, c) in the set cover game and the underlying (weighted) graph in the
multicast game are commonly known.

The information models that we consider are the following:

– Complete Information: The types of the players are common knowledge, i.e. they
are known to all players and to the designer.

– Stochastic/A priori: The players’ types are drawn from some product distribution
D defined over the type set (U for set cover and V for multicast). The actual
types are unknown to the designer, who is only aware of D. However, the players
decide their strategies by knowing other players’ types.

– Bayesian: The players’ types are drawn from some product distribution D

defined over the type sets. Both the designer and the players know only D. The
players now decide their strategies by knowing only D and not the actual types.
A natural assumption is that every player knows her own type.

Theory Comput Syst (2019) 63:4–2510



We assume that the players’ types are distributed i.i.d. (D = πk) and the type
of each player is drawn independently from some probability distribution π : R →
[0, 1], with ∑

r∈R π(r) = 1; R is either U in the set cover game or V in the multicast
game. For simplicity we write πr instead of π(r).

Price of Anarchy (PoA) Let opt(t) be the optimum solution given the players’
types t, and NE(t) and BNE be the set of pure Nash equilibria and pure Bayesian
Nash equilibria, respectively. We denote the cost of any solution/strategy profile s as
c(s). Then, the Price of Anarchy (PoA) for the complete information, stochastic and
Bayesian settings is defined, respectively, as:

PoA = max
t

s∈NE(t)

c(s)
c(opt (t))

; PoA = max
D

Et∼D[maxs∈NE(t) c(s)]
Et∼D[c(opt (t))] ;

PoA = max
D,s∈BNE

Et∼D[c(s(t))]
Et∼D[c(opt (t))] .

3 Lower Bounds for Budget-Balanced Protocols

In this section, we show the lower bounds of budget-balanced protocols, for the
Bayesian setting.

Theorem 1 The Bayesian or stochastic PoA of any budget-balanced protocol, for
the unweighted set cover game, is �(n).

Proof Consider n players and n elements/types U = (1, . . . , n) and the family of
sets F = {F1 = {1}, F2 = {2}, . . . Fn = {n}, Fall = U} with unit costs. Suppose that
π is the uniform distribution over U . Then the probability that element i is drawn as
the type of at least one player is

qi = 1 −
(
1 − 1

n

)n

≥ 1 − 1

e
.

By using any budget-balanced protocol, it is a (Bayes) Nash equilibrium if each
player of type i chose set Fi . Her cost-share does not exceed 1, while by deviating to
Fall her cost-share becomes 1. The expected cost of that equilibrium is nqi = �(n),
whereas the optimum solution (all players choose the set Fall) has cost 1.

Theorem 2 The Bayesian PoA of any budget-balanced protocol, for the multicast
game, is �(

√
n).

Proof Consider the graph of Fig. 1. We set p = 1 −
(
1 − 1√

n

) 1
n
, such that the

probability that vertex vi is drawn as the type of at least one player is qi = 1 −
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Fig. 1 Lower bound on the PoA of any budget-balanced protocol

(1 − p)n = 1√
n
. We claim that, for any budget-balanced protocol, it is a Bayes-Nash

equilibrium if any player with type vi uses the direct edges (vi, t).
Indeed, if player i uses any other path (vi, v, vj , t) her cost-share will be at least

2√
n

+ (1 − qj ) = 1 + 1√
n
, which is greater than her current cost-share of at most 1.

The expected social cost and optimum are respectively

E[SC] =
∑

i

qi = √
n; E[Opt] ≤

∑
i

qi · 1√
n

+ 1 = n
1

n
+ 1 = 2.

So, the Bayes PoA is at least 1
2

√
n.

4 BBiE Protocols

In this section we drop the requirement of budget balance and instead we consider a
more general class of cost-sharing protocols C, where the requirement is to preserve
the budget balance in the equilibrium. For the rest of the paper, by h we denote a very
high value with respect to the parameters of the game. h should be larger than the
total cost-share of any player by using any budget-balanced protocol. It is sufficient
that h > maxj cFj

for the set cover game and h >
∑

e∈E ce for the multicast game.
To show our results we will use known oblivious algorithms of the corresponding
optimization problems and we will enforce their solution by applying appropriate
cost-sharing protocols (or posted prices in Section 5); e.g. choices, not consistent
with this solution, are highly expensive.

In an optimization problem, an oblivious algorithm assigns an action for each input
component, based on the prior distribution, and independently of the realization of all
other input components. Take as an example the multicast game, where the actions
of an input (source) corresponds to the paths connecting the source to the root. An
oblivious solution, maps each vertex to some path that connects it to the root, and is
used in any realization of the input that contains this source. We associate the types
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of the players to the input components of the problem, and then we would like to
enforce the players to follow the action decided by the oblivious algorithm for their
type.

Theorem 3 Let G be any cost-sharing game and � the underlying optimization
resource allocation problem. Given any oblivious algorithm of� with approximation
ratio ρ, there exists a cost-sharing protocol � ∈ C for G with PoA= O(ρ).

Proof Suppose that Ri is the set of the resources allocated by the oblivious algorithm
to the input component that serves as the type of some player i. Even though it is not
quite correct, we will say that Ri are the resources allocated to player i. Let Sr be the
set of players to whom resource r is allocated.

Then � assigns the following cost-share to any player i for choosing any resource
r , when the set of players choosing r is S,

ξr (i, S) =
⎧⎨
⎩

cr/|S| if i ∈ Sr

h if i /∈ Sr

0 otherwise

Note that � assigns equal shares restricted to Sr and a high value h for other
players. In fact, instead of equal shares we could use any budget-balanced proto-
col restricted to Sr , for instance any generalized weighted Shapley protocol (for
definition see [44]).

Note that any player i using a resource r /∈ Ri should pay h. By the definition of h,
this is strictly more than

∑
r ′∈Ri

cr ′ , which is the maximum she may pay if she devi-
ates to Ri . Therefore, the only Nash equilibria are for each player i to choose some
subset of Ri . This results to a PoA which is at most the same with the approximation
ratio of the optimization problem, so PoA=O(ρ). Moreover, by the construction of
�, BBiE holds.

The following corollaries hold for both the Bayesian and the stochastic setting.

Set Cover Game Grandoni et al. [45] studied the stochastic problem, and they
showed two mapping algorithms for the oblivious set cover problem (one for the
unweighted problem which is length-oblivious and one for the weighted problem
which is length-aware), which are almost O(logmn)-competitive.

For completeness, we give the two algorithms of [45] in Algorithms 1 and 2. These
algorithm are applied in the case of uniform distribution and then a reduction applies
to generalize the results.

Algorithm 1 Algorithm 1 of [45]: Mapping for unweighted set cover.

Input: .

while do
let set in maximizing ;

for each , map to ;

.

end

Theory Comput Syst (2019) 63:4–25 13



Algorithm 2 Algorithm 2 of [45]: Mapping for weighted set cover.

Input: .

while do

let set in minimizing ;

if
64 ;

then

let set in minimizing ;

end

for each , map to ;

and all sets covering at least one element remaining in .

end

Theorem 3 implies the following corollary by using the results of [45].

Corollary 1 In the unweighted and weighted set cover game, there exist length-
oblivious protocol �1 ∈ C and length-aware protocol �2 ∈ C, respectively, both
computed in polynomial time, and with PoA of O(log n), if m = poly(n), and

O
(

logm
log logm−log log n

)
, if m � n.

Multicast Game Garg et al. [42] showed a constant approximation on the online
Steiner tree problem. The idea is the following: sample a set S from the distribution
πk over the vertices and construct a minimum Steiner tree (or a constant approxima-
tion). Then connect each other vertex with its nearest vertex from S via shortest path.
That way we end up with a spanning tree T (standard derandomization techniques
can apply [29, 60, 63]). T defines a single path from each vertex to the root and this
is an oblivious strategy for each players’ type. By using Theorem 3 and any constant
approximation of the minimum Steiner tree (the best known is by [15]), the following
corollary holds.

Corollary 2 In the multicast game, there exists � ∈ C with PoA = O(1).

5 Posted Prices

In this section, we show how to set anonymous or semi-anonymous prices for the
resources. Ex-post BBiE cannot be obtained by using anonymous posted prices, as
the following example illustrates. Instead, we require ex-ante BBiE. Furthermore,
the same example serves to demonstrate that other natural variations of budget bal-
ance cannot be very promising: a) BBiE with “high” probability, b) bounded possible
excess and deficit. Example 1 indicates that any anonymous posted prices may result
in BBiE with probability at most O(1/

√
k) and that no posted prices can guarantee

good bounds on possible excess and deficit, i.e. for any posted prices, there are cases
where the total shares for some resource are either at least

√
k or at most 1/

√
k of the

resource’s cost.
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Example 1 Consider k i.i.d. players whose type is the uniform distribution over two
elements e1, e2 in set cover or two vertices v1, v2 in multicast. In the set cover game,
there are only two subset of unit cost, F = {{e1}, {e2}}. In the multicast game there
are only two edges, (v1, t) and (v2, t), of unit cost. The question that arises in both
cases is how to set a price on a resource r of unit cost, when each player may use
it with probability 1/2. Let q be the price for resource r . If 1/q is not an integer in
{1, . . . , k}, then budget balance appears with zero probability. So, suppose that 1/q =
k′ ∈ {1, . . . , k}, then budget balance appears only when k′ players use resource r

and this happens with probability, Pr[# players = k′] = (
k
k

)′ ( 1
2

)k′ (
1 − 1

2

)k−k′
≤

(
k

�k/2�
)
1/2k < 1/

√
k. Furthermore, for any price q for resource r , if q ≥ 1/

√
k then,

in the case that all players use r , the total shares sum up to at least k ·1/√k = √
k. On

the other hand, if q < 1/
√

k then, in the case that only one player uses r , her share
is at most 1/

√
k. This means that we cannot guarantee good bounds on any possible

excess and deficit.

For the rest of the section we define kA to be the expected number of players
having type in A and k1A to be the expected number of players having type in A, given
there exists at least one such player:

kA = Et[|i : ti ∈ A|] = k
∑
i∈A

πi;

k1A = Et[|i : ti ∈ A| given |i : ti ∈ A| ≥ 1] = k
∑

i∈Aπi

1 − (
1 − ∑

i∈Aπi

)k
. (1)

Set Cover Game To determine anonymous prices for the unweighted set cover
game, we first state Lemma 1 to be used in stability arguments.

Lemma 1 For any a > b > 0 and integer k ≥ 2, a
1−(1−a)k

> b
1−(1−b)k

.

Proof We prove the lemma by mathematical induction on k. For k = 2,

a

1 − (1 − a)2
= a

2a − a2
= 1

2 − a
>

1

2 − b
= b

1 − (1 − b)2
.

Suppose that the statement holds for k −1, i.e. a

1−(1−a)k−1 > b

1−(1−b)k−1 . We show

the equivalent inequality 1−(1−a)k

a
<

1−(1−b)k

b
,

1 − (1 − a)k

a
= 1 − (1 − a)k−1(1 − a)

a
= 1 − (1 − a)k−1 + a(1 − a)k−1

a

= 1 − (1 − a)k−1

a
+ (1 − a)k−1 <

1 − (1 − b)k−1

b
+ (1 − b)k−1 = 1 − (1 − b)k

b
.
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Theorem 4 In the unweighted set cover game, there exist length-oblivious and
anonymous prices (computed in polynomial time) with PoA O(log n), if m =
poly(n), and O

(
logm

log logm−log log n

)
, if m � n.

Proof In order to set the prices, we run the greedy algorithm of [30] and at each step
we set the price for the selected set. Algorithm 3 describes this procedure.

Algorithm 3 Bayesian posted prices.

Input: .

while do
let set in maximizing ;

set the price for to 1
1 ; Let .

end

Set the price of all other sets to .

We first argue that there exists a unique Bayes-Nash equilibrium, where each
player i chooses the set picked earlier by Algorithm 3 and covers her. For that it is
sufficient to show that for any two sets A and B, such that

∑
i∈A πi >

∑
i∈B πi ,

k1A > k1B ; so, if some player is covered by both A and B, the price set for A should
be less than the price set for B and the player prefers A that is picked by Algorithm 3
before B.

By using (1), we need to show that k
∑

i∈A πi

1−(1−∑
i∈A πi)

k >
k

∑
i∈B πi

1−(1−∑
i∈B πi)

k , which is

true for k ≥ 2, due to Lemma 1 by setting a = ∑
i∈A πi and b = ∑

i∈B πi . Note that
for k = 1, there exists only one player in the game and this is a trivial case to solve.

Next notice that, given that a set F is chosen by some player, the expected number
of players paying for it is k1F , resulting in ex-ante BBiE. As for the PoA, Grandoni
et al. [45] analyzed the performance of Algorithm 3, for the stochastic problem.
They didn’t consider any prices, instead they mapped each player to the first set con-
sidered by the algorithm and they used the mapping in order to form a set cover.
Their cover though coincides with the equilibrium solution and therefore their results
immediately provide bounds on the PoA.

Theorem 5 In the weighted set cover game, there exist length-aware and semi-
anonymous prices (computed in polynomial time) with PoA O(log n), if m =
poly(n), and O

(
log nm

log logm−log log n

)
, if m � n.

Proof By using the mapping of Algorithm 2 (Algorithm 2 of [45]), let S(F ) be the
set of elements mapped to set F . For each set F ∈ F , set the price to be cF

k1
S(F )

, for any

player whose type is in S(F ), and let the price be h for any other player. Such way,
in the Bayes-Nash equilibrium, each player chooses the set, to which she is mapped
by Algorithm 2. Grandoni et al. [45] showed that the expected cost of that mapping

Theory Comput Syst (2019) 63:4–2516



is O(log n), if m = poly(n), and O
(

logm
log logm−log log n

)
, if m � n, away from the

expected cost of the optimum solution. Those also serve as upper bounds on the PoA
of the induced game. Finally note that those prices satisfy ex-ante BBiE, for the same
reasons as the unweighted case.

We complement our results by providing tight lower bounds for poly-time
determinable prices.

Proposition 1 For m = poly(n), there may not exist anonymous posted prices
for the unweighted set cover, or semi-anonymous posted prices for the weighted
set cover, computed in poly-time, with PoA= o(log n), unless NP ⊆ DT IME

(nO(log log n)).

Proof For any set cover problem � = (U,F, c), we consider the game G with
|U | players where each one is associated with a different element. Consider the
stochastic or Bayesian game, where k � n, and k is sufficiently large such
that the probability that each element is the type of some player converges to 1.
Then, we apply the prices on the stochastic G. It is easy to see that we can com-
pute a Nash equilibrium in polynomial time, O(nm); players choose, among the
sets that covers them, some with minimum price. All the chosen sets define a
set cover for U . If there exist posted prices computed in polynomial time with
PoA= o(log nm) = o(log n), this would imply a polynomial time algorithm for
the set-cover problem with approximation ratio o(log n). However, by [36], no
polynomial time algorithm for the set cover problem can approximate the opti-
mal solution by o(log k), unless NP ⊆ DT IME(nO(log log n)), which results in a
contradiction.

Proposition 2 For m � n, there may not exist anonymous prices for unweigh-
ted set cover, or semi-anonymous prices for weighted set cover, with PoA=
o

(
logm

log logm−log log n

)
.

Proof On the contrary, suppose that such prices exist. Then, they would determine
a mapping from the elements to the sets, meaning each element is covered by a
specific set. The expected cost of the sets that cover the sampled elements would

be o
(

logm
log logm−log log n

)
away from the expected cost of the optimum solution. This

contradicts the lower bound given by [45] (Theorem 4.2).

Multicast Game We construct a spanning tree T in the same way as in Section 4
and we use it to set the posted prices (computed in polynomial time).

Theorem 6 In the multicast game, there exist anonymous posted prices with PoA=
O(1).

Proof For each edge e ∈ E(T ), let V (e) be the set of vertices that are disconnected
from the root t in T \ {e}. We set the price for each e ∈ E(T ) as ce/k1V (e). For
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each e /∈ E(T ), the price is set to h. In the equilibrium each player chooses the path
that connects her terminal with t via T . The constant PoA follows by [42] and the
approximation of [15]. The expected total prices for e ∈ E(T ) is k1V (e)ce/k1V (e) = ce,
if e is used, and 0 otherwise, resulting in ex-ante BBiE.

6 Prior-Independent Mechanisms

The design of prior-independent mechanisms is a more difficult task, as the objective
now is to identify a single mechanism that always has good performance, under any
distributional assumption. In this section, we show limitations of prior-independent
mechanisms even for the restricted class of i.i.d. prior distributions.

BBiE Protocols Satisfying BBiE with prior-independent protocols highly restricts
the class of cost-sharing protocols and seems hard for natural classes of distribution,
e.g. i.i.d., to find ex-post BBiE protocols with low PoA. Regarding the weighted set
cover game with i.i.d. distributions, we can construct a lower bound of �(

√
n) for all

prior-independent mechanisms, which are ex-post BBiE.

Theorem 7 In the weighted set cover game, any prior-independent, ex-post BBiE
protocol � ∈ C has PoA= �(

√
n).

Proof Consider n players, n + 1 elements/types U = {0, 1, . . . , n} and the family
of sets F = {F0, F1, . . . Fn, Fall}, with Fj = {j}, cFj

= 1 for all j , and Fall =
{1, . . . , n}, cFall

= √
n. Note that 0 is covered only by F0, serving as a dummy

set.
Given a BBiE, prior-independent protocol �, suppose that there exists some Fj ,

j 
= 0, where � is not budget-balanced, i.e. there exists a set of players S, such that
if only S chooses Fj , the sum of their cost-shares are different from 1. Consider the
prior distribution D1 = πn with π(0) = π(j) = 1/2 and π(j ′) = 0 for any j ′ /∈
{0, j}. With positive probability, 1/2n, all player of S have type j and all other players
have type 0. If all players of S choose Fj in any pure Bayes-Nash equilibrium, ex-
post BBiE is violated. So, there exists at least one player from S such that, whenever
her type is j , she chooses Fall (and this happens with probability 1/2) which results
in PoA= �(

√
n).

Suppose now that � is budget-balanced for any Fj , where j 
= 0. Let I be the set
of players such that whenever i ∈ I is the only player choosing Fall ,� doesn’t charge√

n to i. Consider the prior distribution D2 = πn with π(0) = 1/2 and π(j) = 1/2n
for all other j . With positive probability, 1/(2nn), player i’s type is some j 
= 0
and all other players’ type is 0. If for any type j 
= 0 player i chooses Fall in any
Bayes-Nash equilibrium, ex-post BBiE is violated. Therefore, for any player i ∈ I ,
whenever her type is j , she chooses Fj .

We claim that the strategy profile, where any player i with type ti chooses Fti is
a Bayes-Nash equilibrium. For any player i ∈ I there is no other valid strategy. For
each player i /∈ I , whenever ti 
= 0, player i always pays at most 1 (due to budget
balance in Fti ), whereas if she deviates to Fall she pays

√
n.
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Each element j 
= 0 is a type of at least one player with probability 1 −(
1 − 1

2n

)n ≥ 1− 2
e
, giving an expected cost of�(n) in the equilibrium. The expected

optimum is at most 1 + √
n by using only F0 and Fall and so PoA= �(

√
n).

Posted Prices Setting prior-independent posted prices cannot guarantee any BBiE,
even ex-ante. Consider the set cover game (similar example exists for the multicast
game) with n players, n elements and two subsets of unit costs, one containing ele-
ment 1 and the other containing the rest. Suppose now that we post a price q for the
first subset. If q ≤ 1/

√
n, for the uniform prior distribution, the expected number

of players with type 1, given that there exists at least one, is n·1/n
1−(1−1/n)n

≤ e
e−1 . The

expected cost shares for the first set are O(1/
√

n), meaning that its cost is undercov-
ered by a factor of�(

√
n). If q > 1/

√
n, consider the priorD = πn, where π(1) = 1

and π(j) = 0 for all j 
= 1. All players choose the first set and their total shares are
n · 1/√n = √

n which exceeds the set’s cost by a factor of
√

n. So, there is no way
to avoid an over/under-charge of a resource by a factor better than �(

√
n).

7 Complete Information

In the complete information setting, the input now is known and therefore for any
feasible solution we can consider oblivious strategies. If F ′ ⊆ F is any feasible
solution with cost c(F ′) and F∗ ⊆ F is the optimum solution with cost c(F∗), then
by Theorem 3 we can enforce the solution F ′ and get a PoA of c(F ′)/c(F∗). In the
following we consider F ′ as either the optimum solution or an approximation. Note
that, while trying to bound the PoA, computational issues are not of primary concern.

Set Cover Game By considering F ′, as either the optimum solution or its O(log k)-
approximation of the greedy algorithm, where k is the number of players to be
covered, and by using Theorem 3 we get the following corollary.

Corollary 3 For the (weighted) set cover game there exists a protocol � ∈ C, that
can be defined in exponential time, with PoA = 1 and a protocol � ∈ C, that can be
defined in polynomial time, with PoA = O(log k).

Next we show that there exist posted prices that can be computed in polynomial
time with PoA = O(log k). We show that, under the restriction of setting the prices
in polynomial time, this bound is tight. Then we drop the constrain of defining the
prices in polynomial time, and we define posted prices with PoA = 1.

Theorem 8 There exist posted prices satisfying BBiE, that can be set in polynomial
time, for the (weighted) set cover game, with PoA = O(log k).

Proof Let ke be the number of players with type e ∈ U and X ⊆ U be the set of
elements that needs to be covered, i.e. ke = 0 if and only if e /∈ X. Clearly

∑
e∈X ke

equals k, the total number of players. To set the prices we run Algorithm 4.
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Algorithm 4 Complete information posted prices.

Input: .

while do

let set in minimizing ;

set the price for to ;

.

end

Set the price of all other sets to .

There exists a unique Nash equilibrium, where each player i chooses the set picked
earlier by Algorithm 4 and covers her, let it be F i . This is because any other set F

that covers i and picked after F i should have at least the same value c(F )∑
e∈F∩X ke

with

c(F i )∑
e∈Fi∩X

ke
at the time that F i was picked. After processing F i , F ∩ X is diminished

by at least 1, and so the price of F should be strictly higher that the price of F i .
In order to show the bound on the PoA, we consider a reduction from the set

cover game G = (U, X,F, c, t), where t are players’ types, to a set cover problem
� = (U ′,F ′, c′), such that the PoA equals the approximation ratio of �. U ′ is
derived by X, after replacing each of its elements, e, by ke copies e1, . . . , eke . For
each set F ∈ F , we construct a set F ′ ∈ F ′ of the same cost (cF = c′

F ′), first by
erasing all elements belonging to U \ X, and then by replacing each of its remaining
elements, e, by ke copies e1, . . . , eke . We assume that each player i ∈ {1, . . . , ke} of
type e is associated with element ei of the constructed set cover problem.

It is easy to see that the greedy algorithm on � chooses the sets in the same order
with Algorithm 4. Therefore, the approximation ratio for � equals the PoA of G.
Notice that |U ′| = k and since the approximation ratio of the greedy is O(log k),
the bound on the PoA follows. Note further that the sum of the prices for each such
set used in the Nash equilibrium equals the cost of the set, that results in BBiE as
desired.

Proposition 3 There may not exist posted prices, that are computed in poly-
nomial time, for the set cover game, with PoA = o(log k), unless NP ⊆
DT IME(nO(log log n)).

Proof On the contrary, suppose there exist posted prices computed in polynomial
time with PoA= o(log k). This would impply a polynomial time algorithm for the set
cover problem with approximation ratio of o(log k), but this is a contradiction due to
[36].

Theorem 9 There exist posted prices satisfying BBiE, computed in exponential time,
for the (weighted) set-cover game, with PoA = 1.

Proof As in the proof of Theorem 8, let ke be the number of players with type e ∈ U

and X ⊆ U be the set of elements/players that need to be covered. Moreover, let
F∗ ⊆ F be the optimum solution, found in exponential time. To set the prices we run
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Algorithm 4 but for input (X,F∗). We set the prices for the rest of the sets F \ F∗
equal to h.

By using similar arguments as in the proof of Theorem 8, in the (unique) Nash
equilibrium, each player chooses the set picked earlier by Algorithm 4 and covers
her. The prices for each set used in the Nash equilibrium equal the cost of the set
resulting in BBiE. The difference here is that the Nash equilibrium uses only the sets
of F∗, resulting in PoA = 1.

Multicast Game Similarly with the set cover game, we can easily get the following
corollary by using Theorem 3, for the multicast game. For the second part, we use
the 1.39-approximation algorithm of [15].

Corollary 4 For the multicast game there exists a cost-sharing protocol � ∈ C, that
can be defined in exponential time, with PoA = 1 and a cost-sharing protocol � ∈ C,
that can be defined in polynomial time, with PoA ≤ 1.39.

We next use posted prices and show that the PoA is constant for the case of mul-
ticast game. By using the 1.39-approximation algorithm of [15], the PoA is constant
even if we require the prices to be computed in polynomial time.

Theorem 10 For the multicast game, there exist posted prices, computed in polyno-
mial time, with PoA ≤ 1.39 and posted prices, computed in exponential time, with
PoA = 1.

Proof Let S ⊆ V be the set of players’ terminal and T be the solution that approx-
imates the minimum Steiner tree on the requested vertices S ∪ {t} derived by the
1.39-approximation algorithm of [15]. If we drop the requirement of computing the
prices in polynomial time, T is the minimum Steiner tree. For each edge e ∈ E(T ),
let ke be the number of players that are disconnected from t in T \ {e}. We set the
price for e ∈ E(T ) as ce/ke. For each e /∈ E(T ), we set the price to be h. In the Nash
equilibrium each player will choose the unique path that connects her source with t

in T , since any other path has high cost of at least h. Obviously, the players cover
exactly the cost of each used edge and the cost of the Nash equilibrium equals the
cost of T .
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Appendix: A Set Cover Reduction

The following multicast (directed) network cost-sharing game models the set cover
game. Consider a directed bipartite graph with U and F as the two sets of vertices.
For each pair of vertices i ∈ U and Fj ∈ F , we add a directed edge (i, Fj ) if and
only if i ∈ Fj ; the cost of such an edge is set to 0. Each vertex i of U is associated
with the terminal ti of some player. We further add an extra vertex t as the common
destination and we add a directed edge (Fj , t) for every Fj ∈ F , with cost cFj

.
All strategies are two length paths and for each player/element i ∈ U the space

of their strategies are all the paths where their middle vertex is a set that i belongs
to. The cost-sharing protocol for each (Fj , t) edge determines exactly the cost-shares
for the players that choose Fj . From the lower bound of Chen et al. [23] (Proposition
4.12), the following corollary can be trivially derived.

Corollary 5 The PoA of the (unweighted) set cover cost-sharing game for the
complete information setting is �(n).
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