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Abstract A combination of program algebra with the theory of meadows is designed
leading to a theory of computation in algebraic structures. It is proven that total func-
tions on cancellation meadows can be computed by straight-line programs using at
most five auxiliary variables. A similar result is obtained for signed meadows.

Keywords Program algebra · Instruction sequences · Execution of programs ·
Straight-line programs · Division-by-zero · Fields · Meadows · Equational
specification · Calculation in meadows

1 Introduction

Program algebra is an approach to the formal description of the semantics of pro-
gramming languages. It is a framework that permits algebraic reasoning about pro-
grams and has been investigated in various settings (see e.g. [4, 13–15, 19]).

The theory of fields is a very active area which is not only of great theoretical
interest but has also found applications both within mathematics—combinatorics and
algorithm analysis—as well as in engineering sciences and, in particular, in coding
theory and sequence design. Unfortunately, since fields are not axiomatized by equa-
tions only, Birkhoff’s Theorem fails, i.e. fields do not constitute a variety: they are
not closed under products, subalgebras, and homomorphic images. In [10], the con-
cept of meadows was introduced, structures very similar to fields—the considerable
difference being that meadows enjoy a total multiplicative inversion and do form a
variety.
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The aim of this paper is to combine these two areas of research in order to cre-
ate a theory of computation in algebraic structures which can be used to investigate
questions of definability and complexity.

Many computations in applied mathematics can be formulated as computations on
fields. In many cases such computations terminate on all inputs yielding total func-
tions. Replacing fields by meadows, which simplify their equational logic, we investi-
gate properties of instruction sequences which compute total functions on meadows.

Cancellation meadows—meadows which in addition satisfy the inverse law
known from the theory of fields—constitute a very general datatype for computation.
One may easily simulate Booleans in a cancellation meadow, and numbers (perhaps
modulo a squarefree number) of rationals with arbitrary precision are also available.
For instance algorithms meant for digital signal processing can be modeled within
a cancellation meadow. Although we will not provide a series of examples here, we
consider the generality of cancellation meadows as a datatype for practical compu-
tation beyond reasonable doubt. Computations over cancellation meadows can be
imagined to take place on a large scale in embedded devices of various kinds. Exe-
cutable programs for such devices need to satisfy constraints which can hardly be for-
mulated in the high level notation from which such programs are obtained by means
of compilation. These considerations justify the analysis of algorithms over cancel-
lation meadows and in particular their representation in terms of low level program
notations. The objective of our paper is to determine a basis for such investigations
by proving the remarkable expressive power of straight-line programs. These kind of
programs have been amply investigated and simplification and equivalence problems
for several classes of straight-line programs over varying instruction sets are known
(see e.g. [16, 17]).

We will prove a standard form result for algorithms that terminate on each can-
cellation meadow. As a general class we consider algorithms that can be represented
by means of instruction sequences with tests and jumps. That class of programs pro-
vides a reasonable abstraction of assembly level programs. All such algorithms can
be transformed into an equivalent straight-line program making use of a bounded set
of program variables for meadow quantities. Thus jumps, tests and loops and addi-
tional program variables do not add to the expressive power of the program notation
in this case.

The paper is organized as follows. In the next section we recall the basics of pro-
gram algebra, thread algebra and meadows. Here the notion of program algebra refers
to the concept introduced in [4] which focuses on instruction sequences. In Sect. 3 we
introduce instruction sequences for functions on the rational numbers. The main the-
orem is proven in Sect. 4. We prove that total functions on cancellation meadows can
be represented by a normal form without tests and jumps which uses at most five aux-
iliary variables. This result is extended to signed cancellation meadows—cancellation
meadows that presuppose an ordering of its domain—in Sect. 5.

2 The Basics of Program Algebra, Thread Algebra and Meadows

In this section we recall program algebra, thread algebra and meadows.
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2.1 Program Algebra

The program algebra PGA was introduced in [4].
Assume A is a set of constants with typical elements a,b,c, . . . . Instruction se-

quences are of the following form (a ∈ A, k ∈ N):

I ::= a | +a | −a | #k | ! | I ; I | Iω.

The first five forms above are called primitive instructions. These are

• basic instructions a which prescribe behaviours that are considered indivisible and
executable in finite time, and which return upon execution a Boolean reply value,

• test instructions obtained from basic instructions by prefixing them with either a
+ (positive test instruction) or a − (negative test instruction) which control sub-
sequent execution via the reply of their execution by continuing execution either
with the next instruction or with the instruction thereafter,

• jump instructions #k which prescribe to jump k instructions ahead—if k = 0, this
jump is (zero steps forward) to the instruction itself, i.e. inaction will result—and
generate no observable behaviour, and

• the termination instruction ! which prescribes successful termination, an event that
is taken to be observable.

Instruction sequences are obtained from primitive instructions using two types of
composition mechanisms, namely

• concatenation: if I and J are instruction sequences, then so is

I ;J
which informally is the instruction sequence that lists J ’s instructions right after
those of I , and

• repetition: if I is an instruction sequence, then

Iω

is the instruction sequence that informally repeats I forever, thus I ; I ; I ; . . . .

Finite instruction sequences are instruction sequences without repetition; straight-
line instruction sequences are finite instruction sequences without tests and jumps.

In PGA, different types of equality are discerned, the most simple of which is
single-pass congruence, identifying sequences that execute identical instructions. For
finite instruction sequences, single-pass congruence boils down to the associativity of
concatenation, and is axiomatized by

(X;Y);Z = X; (Y ;Z).

In the sequel we leave out brackets in repeated concatenations. In the case of infinite
instruction sequences, additional axioms are needed. Define X1 = X and for n > 0,
Xn+1 = X;Xn. According to [4], single-pass congruence for arbitrary instruction
sequences is axiomatized by the axiom schemes PGA1–PGA4 in Table 1.
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Table 1 PGA-axioms for structural congruence (n,m,k ≥ 0)

(X;Y );Z = X; (Y ;Z) (PGA1)

(Xn+1)ω = Xω (PGA2)

Xω;Y = Xω (PGA3)

(X;Y )ω = X; (Y ;X)ω (PGA4)

#n+1;u1; . . . ;un;#0 = #0;u1; . . . ;un;#0 (PGA5)

#n+1;u1; . . . ;un;#m = #n+m+1;u1; . . . ;un;#m (PGA6)

(#k+n+1;u1; . . . ;un)ω = (#k;u1; . . . ;un)ω (PGA7)

X = u1; . . . ;un; (v1; . . . ;vm+1)ω → #n+m+k+2;X = #n+k+1;X (PGA8)

Using the axioms PGA1–PGA4 and thus preserving single-pass congruence, each
instruction sequence can be rewritten into an instruction sequence of the form

• I with I finite, or
• I ;Jω with I and J finite.

Instruction sequences of the two forms above are said to be in first canonical form.
Instruction sequences in first canonical form can be converted into second canoni-

cal form: a first canonical form in which no chained jumps occur, i.e., jumps to jump
instructions cannot happen (apart from #0 which is a jump of length 0 to the instruc-
tion itself), and in which each non-chaining jump into the repeating part is minimized.
The associated congruence =sc is called structural congruence and is axiomatized in
Table 1. Note that axiom PGA8 is an equational axiom, the implication is only used
to enhance readability. Two examples, of which the right-hand sides are in second
canonical form:

#2;a; (#5;b;+c)ω =sc #4;a; (#2;b;+c)ω,

+a;#2; (+b;#2;−c;#2)ω =sc +a;#0; (+b;#0;−c;#0)ω.

For each instruction sequence there exists a structurally equivalent second canonical
form. For more information on PGA we refer to [4, 18].

2.2 Thread Algebra

Thread algebra is the behavioural semantics for PGA and was introduced in e.g. [1, 4]
under the name Polarized Process Algebra.

Finite threads are defined inductively by:

S stop, the termination thread,

D inaction or deadlock, the inactive thread,

T � a� T ′ the postconditional composition of T and T ′ for action a,

where T and T ′ are finite threads and a ∈ A.

The behaviour of the thread T � a� T ′ starts with the action a and continues as T

upon reply true to a, and as T ′ upon reply false. Note that finite threads always
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end in S or D. We use action prefix a ◦ T as an abbreviation for T � a� T and take
◦ to bind strongest.

For every finite thread there exists a finite upper bound to the number of consec-
utive actions it can perform. The approximation operator πn gives the behaviour up
to depth n and is defined by

1. π0(T ) = D,
2. πn+1(S) = S,
3. πn+1(D) = D, and
4. πn+1(T � a� T ′) = πn(T ) � a� πn(T

′)

for finite threads T ,T ′ and n ∈ N. Infinite threads are obtained as projective se-
quences of finite threads of the form (Tn)n∈N, where for every n ∈ N, πn(Tn+1) = Tn.

Upon its execution, a basic or test instruction yields the equally named action in a
postconditional composition. Thread extraction on PGA, notation

|X|

with X an instruction sequence in second canonical form, is defined by the thirteen
equations in Table 2. In particular, note that upon the execution of a positive test
instruction +a, the reply true to a prescribes to continue with the next instruction
and false to skip the next instruction and to continue with the instruction thereafter;
if no such instruction is available, deadlock occurs. For the execution of a negative
test instruction −a, subsequent execution is prescribed by the complementary replies.

For an instruction sequence in second canonical form, these equations either yield
a finite thread, or a so-called regular thread, i.e., a finite state thread in which infinite
paths can occur. Each regular thread can be specified (defined) by a finite number of
recursive equations. As an example, the regular thread T specified by

T = a ◦ T ′,

T ′ = c ◦ T ′ � b� (S � d� T )

Table 2 Equations for thread
extraction, where a ranges over
the basic instructions, and u

over the primitive instructions
(k ∈ N)

|!| = S |!;X| = S

|a| = a ◦ D |a;X| = a ◦ |X|
|+a| = a ◦ D |+a;X| = |X| � a� |#2;X|
|−a| = a ◦ D |−a;X| = |#2;X| � a� |X|
|#k| = D |#0;X| = D

|#1;X| = |X|
|#k+2;u| = D

|#k+2;u;X| = |#k+1;X|
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can be defined by |a; (+b;#2;#3;c;#4;+d; !;a)ω|. A picture of this thread is

This thread can also given be by the projective sequence (πn(T ))n∈N where

π0(T ) = D,

π1(T ) = a ◦ D,

π2(T ) = a ◦ b ◦ D,

π3(T ) = a ◦ (c ◦ D � b� d ◦ D)

and πn+4(T ) = a ◦ (c ◦ πn+1(T
′) � b � (S � d � πn+1(T ))). Observe that thread

extraction of straight-line instruction sequences yields finite and test-free threads.
For basic information on thread algebra we refer to [2, 18]; more advanced matters,

such as an operational semantics for thread algebra, are discussed in [5]. We here only
mention the fact that each regular thread can be specified in PGA, and, conversely,
that each PGA-program defines a regular thread.

2.3 Meadows

A meadow [3, 10] is a commutative ring with unit equipped with a total unary oper-
ation (_)−1 named restricted inverse that satisfies the two equations

(x−1)−1 = x,

x · (x · x−1) = x (RIL).

Here RIL abbreviates Restricted Inverse Law. We write Md for the set of axioms in
Table 3.

In the meadow Q of rational numbers, every element has a restricted inverse. If
x �= 0, the inverse is just the “regular” inverse, and 0−1 = 0. Another example is ring
Z/6Z with elements {0,1,2, . . . ,5} where arithmetic is performed modulo 6. We find
that every element has a restricted inverse as follows:

(0)−1 = 0, (1)−1 = 1,

(2)−1 = 2, (3)−1 = 3,

(4)−1 = 4 (5)−1 = 5.
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Table 3 The set Md of axioms
for meadows (x + y) + z = x + (y + z)

x + y = y + x

x + 0 = x

x + (−x) = 0

(x · y) · z = x · (y · z)
x · y = y · x
1 · x = x

x · (y + z) = x · y + x · z
(x−1)−1 = x

x · (x · x−1) = x

A characterization of finite meadows can be found in [12]. From the axioms in Md
the following identities are derivable:

(0)−1 = 0,

(−x)−1 = −(x−1),

(x · y)−1 = x−1 · y−1,

0 · x = 0,

x · −y = −(x · y),

−(−x) = x.

We write �m = (0,1,+, ·,−,−1) for the signature of meadows and Ter(�m,X)

for the set of open meadow terms with free variables in X. For t, u ∈ Ter(�m,X) we
shall often write 1/t or

1

t

for t−1, tu for t · u, t/u for t · 1/u, t − u for t + (−u), and freely use numerals
n—abbreviating 1 + · · · + 1

︸ ︷︷ ︸

n

—and exponentiation with integer exponents as in tn.

We shall further write

1x for
x

x
and 0x for 1 − 1x,

so, 00 = 11 = 1, 01 = 10 = 0, and for all terms t ,

0t + 1t = 1.

We write �r = (0,1,+, ·,−) for the signature of rings. A polynomial is an ex-
pression over �r , thus without inverse operator. Note that every polynomial can be
represented as a finite sum of monomials, i.e. products of variables with integer co-
efficients. Meadow terms enjoy a particular standard representation which was intro-
duced in [8].
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Definition 2.1 A term t ∈ Ter(�m,X) is a Standard Meadow Form (SMF) if, for
some n ∈ N, t is an SMF of level n. SMFs of level n are defined as follows:

1. SMF of level 0: each expression of the form s/t with s and t ranging over polyno-
mials,

2. SMF of level n + 1: each expression of the form

0t ′ · s + 1t ′ · t
with t ′ ranging over polynomials and s and t over SMFs of level n.

Each meadow term is provably equal to a Standard Meadow Form in the same
variables.

Theorem 2.2 For each t ∈ Ter(�m,X) there exist an SMF tSMF in the same variables
such that Md � t = tSMF.

Proof See [8]. �

It follows that every meadow term is provably equal to a sum of quotients of
polynomials.

Corollary 2.3 For every t ∈ Ter(�m,X) there exist polynomials s0, t0, . . . , sn, tn
such that

Md � t = s0

t0
+ · · · + sn

tn
.

Proof Let tSMF be a SMF of t . We employ induction on its level n. If n = 0
then tSMF = s0/t0 with s0 and t0 polynomials. Assume n = m + 1. Then tSMF =
0t ′′ · s + 1t ′′ · t ′ where t ′′ is a polynomial, and s, t ′ are SMF’s of level m. By the
induction hypothesis s = s0/t0 + · · · + sk/tk and t ′ = u0/v0 + · · · + ul/vl with
s0, t0, . . . , sk, tk, u1, v1, . . . , ul, vl polynomials. Then

tSMF = 0t ′′ · s + 1t ′′ · t ′

=
(

1 − t ′′

t ′′

)

· s + t ′′

t ′′
· t ′

= s −
(

t ′′s0

t ′′t0
+ · · · + t ′′sk

t ′′tk

)

+ t ′′u0

t ′′v0
+ · · · + t ′′ul

t ′′vl

= s + −t ′′s0

t ′′t0
+ · · · + −t ′′sk

t ′′tk
+ t ′′u0

t ′′v0
+ · · · + t ′′ul

t ′′vl

and the last term is again a sum of quotients of polynomials. �

The term cancellation meadow was introduced in [9] for a zero-totalized field—
a field in which 0−1 = 0. Cancellation meadows satisfy in addition the so-called
cancellation axiom

x �= 0 & x · y = x · z −→ y = z.
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An equivalent version of the cancellation axiom is the Inverse Law (IL), i.e., the
conditional axiom

x �= 0 −→ x · x−1 = 1 (IL).

So IL states that there are no proper zero divisors. (Another equivalent formulation
of the cancellation property is x · y = 0 −→ x = 0 or y = 0.) The rationals Q form
a cancellation meadow, Z/6Z does not.

3 Calculation on Cancellation Meadows

Instruction sequences for functions on the rational numbers are designed in such a
way that computations can be performed only with the aid of auxiliary variables to
which initially the input values are copied, and from which the final values are copied
to the output.

Definition 3.1

1. We distinguish two infinite, countable sets of input and auxiliary variables Varin =
{xi | i ∈ N} and Varaux = {ai | i ∈ N}, and a single output variable y. Var denotes
the union of these variables.

2. The instruction set Ins(Q)—instructions on the rational numbers—consists of the
following input, auxiliary and output instructions:

Ins(Q)in = {a.cp(x) | a ∈ Varaux & x ∈ Varin},
Ins(Q)aux = {a.set:0, a.set:1, a.set:ai, a.set:mi | a ∈ Varaux}

∪ {a.set:a(a′), a.set:m(a′), | a, a′ ∈ Varaux}
∪ {a.test:0 | a ∈ Varaux},

Ins(Q)out = {y.cp(a) | a ∈ Varaux}.

Here ai and mi refer to the unary meadow operations of additive and multiplica-
tive inversion, and a and m to binary addition and multiplication. The intended mean-
ing of these instructions is depicted in Table 4: a.cp(x) copies the value of the input

Table 4 The instruction set and
its informal semantics a.cp(x) [a ⇐ x]

a.set:0 [a ⇐ 0]
a.set:1 [a ⇐ 1]
a.set:ai [a ⇐ −a]
a.set:mi [a ⇐ a−1]
a.set:a(a′) [a ⇐ a + a′]
a.set:m(a′) [a ⇐ a · a′]
a.test:0

y.cp(a) [y ⇐ a]
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variable x to the auxiliary variable a, a.set:0 and a.set:1 initialize the auxiliary
variable a to 0 and 1, respectively, a.set:ai and a.set:mi set the value of a to its
additive and multiplicative inverse, respectively, a.set:a(a′) adds to the value of a

the value of the auxiliary variable a′, a.set:m(a′) multiplies the value of a by the
value of the auxiliary variable a′, and y.cp(a) copies the value of the auxiliary vari-
able a to the output variable y. Since assignment instructions always succeed, it is
assumed that the returned truth value is true. An instruction of the form a.test:0
is not an assignment instruction but a zero test and returns a truth value depending on
the value of a.

Examples 3.2

1. Consider the following straight-line instruction sequence I1:

a0.cp(x0);a1.set:1;a1.set:a(a1);a0.set:a(a1);
a1.cp(x0);a0.set:m(a1);a0.set:mi;y.cp(a0); !.

I1 represents the total meadow mapping x �→ ((x + 2)x)−1: first the auxiliary
variable a0 is assigned the value of the input variable x0 and then is raised by two,
after which a0 is multiplied by x0, inverted and copied to the output variable y.

2. The periodic instruction sequence I2

a0.cp(x0);a1.cp(x1);a2.set:1;a3.set:1;a3.set:ai;
(−a1.test:0;#3;y.cp(a2); !;a2.set:m(a0);a1.set:a(a3))

ω

represents the partial mapping (x0, x1) �→ x
x1
0 : first, the two arguments are copied

to the auxiliary variables a0 and a1, and a2 and a3 are assigned the constants 1
and −1, respectively. In the repetition, a2 is multiplied by the first argument, and
the second argument is decreased by one until the zero test succeeds and the value
of a2 is copied to the output. This partial meadow mapping is defined for all pairs
of the form 〈x,n〉.

The apply operator has been introduced in [6, 7] as a means to transform a given
state machine or service offered by an execution environment according to a thread.
Given a meadow, we view its assignments as services which can be transformed by
threads as follows: a thread applied to an assignment yields—in case of termination—
an assignment which assigns to the output variable the result of a computation on the
input offered by the initial assignment.

Definition 3.3 Let M be a meadow

1. If α is an assignment in M (i.e. α ∈ MVar), v ∈ Var, and m ∈ M, we denote by
α[v := m] the assignment α′ with

α′(v′) =
{

m if v′ ≡ v,

α(v′) otherwise.
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2. Let T be a finite thread. We define the apply operator T • : MVar ∪{D} → MVar ∪
{D} as follows.

T • D = D,

S • α = α,

D • α = D,

(ai .cp(xj ) ◦ T ) • α = T • α[ai := α(xj )],
(ai .set:0 ◦ T ) • α = T • α[ai := 0],
(ai .set:1 ◦ T ) • α = T • α[ai := 1],

(ai .set:ai ◦ T ) • α = T • α[ai := −α(ai)],
(ai .set:mi ◦ T ) • α = T • α[ai := α(ai)

−1],
(ai .set:a(aj ) ◦ T ) • α = T • α[ai := α(ai) + α(aj )],
(ai .set:m(aj ) ◦ T ) • α = T • α[ai := α(ai) · α(aj )],

(T � ai.test:0� T ′) • α =
{

T • α if α(ai) = 0,

T ′ • α otherwise,

(y.cp(aj ) ◦ T ) • α = T • α[y := α(aj )].

Threads can terminate in a number of steps depending on the input values. In the
next definition we fix inductively the set RM

T ,n of assignments on which the thread
T terminates in n steps. There is only a single thread that terminates in zero steps,
namely S—and in this case, termination does not depend on the input values. In the
induction step, we distinguish a couple of cases depending on the structure of the
thread. Since assignment instructions always succeed, we may assume that threads
corresponding to instruction sequences on rational numbers are of the form S, D,
ins ◦ T or (T � ai .test:0� T ′) where ins is an assignment instruction.

Definition 3.4 Let M be a meadow, T be a finite thread and n ∈ N. RM
T ,n ⊆ MVar is

defined inductively as follows.

1.

RM
T ,0 =

{

MVar if T = S,

∅ otherwise.

2.

RM
S,n+1 = MVar,

RM
D,n+1 = ∅,

RM
ins◦T ,n+1 = {α ∈ MVar | (ins ◦ T ) • α ∈ RM

T ,n},
RM

T �ai .test:0�T ′,n+1 = {α ∈ RM
T ,n | α(ai) = 0} ∪ {α ∈ RM

T ′,n | α(ai) �= 0}.
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Lemma 3.5 Let M be a meadow and T be a regular thread. Then for all n ∈ N and
α ∈ RM

πn+1(T ),n,

1. πn+1(T ) • α �= D, and
2. ∀k > n πk(T ) • α = πn+1(T ) • α.

Proof By straightforward induction. �

We can therefore define partial mappings corresponding to regular threads as be-
low.

Definition 3.6 Let M be a meadow.

1. α ∈ MVar is called initial if α(v) = 0 for all v ∈ Var − Varin.

2. Let T be a regular thread and k ∈ N. Then [[T ]]kM : Mk+1 p−→ M denotes the
partial mapping defined as follows:

[[T ]]kM(m0, . . . ,mk)

=
{

(πn+1(T ) • αm0,...,mk
)(y) if αm0,...,mk

∈ RM
πn+1(T ),n

,

undefined if for all n ∈ N, αm0,...,mk
�∈ RM

πn+1(T ),n

where αm0,...,mk
∈ MVar is the initial assignment with α(xi) = mi for 0 ≤ i ≤ k

and α(v) = 0 for v ∈ Var − {x0, . . . , xk}.

Notation 3.7 If I is an instruction sequence we shall write [[I ]]kM for the corre-
sponding meadow mapping instead of [[|I |]]kM . Moreover, when dealing with partial
mappings, we let the symbols ↑ and ↓ denote un- and definedness, respectively.

Example 3.8 We consider again the instruction sequences I1 and I2 given in Exam-
ple 3.2.

1. Observe that

|I1| = a0.cp(x0) ◦ a1.set:1 ◦ a1.set:a(a1) ◦ a0.set:a(a1)

◦ a1.cp(x0) ◦ a0.set:m(a1) ◦ a0.set:mi ◦ y.cp(a0) ◦ S.

Thus

|I1| • α = α[a0 := α(x0)][a1 := 1][a1 := 2][a0 := α(x0) + 2]
[a1 := α(x0)][a0 := (α(x0) + 2) · α(x0)]
[a0 := ((α(x0) + 2) · α(x0))

−1][y := ((α(x0) + 2) · α(x0))
−1]

for every meadow M and every assignment α ∈ MVar . Hence [[I1]]0
M(m) =

((m + 2)m)−1.
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2. Thread extraction of I2 yields the regular thread |I2| which satisfies the equations

|I2| = a0.cp(x0) ◦ a1.cp(x1) ◦ a2.set:1 ◦ a3.set:1 ◦ a3.set:ai ◦ T ,

T = (y.cp(a2) ◦ S) � a1.test:0� (a2.set:m(a0) ◦ a1.set:a(a3) ◦ T ).

So |I2| starts with five initializing actions and repeats three consecutive actions
until the zero test succeeds in which case termination occurs after a final copying
action. It follows that αm0,m1 ∈ RM

πk+1(|I2|),l if and only if m1 = n for some n ∈ N

and 3n + 6 ≤ k, l. Hence

[[I2]]1
M(m0,m1) =

{

m
m1
0 if m1 = n for some n ∈ N,

↑ otherwise,

for every meadow M. In case M = Q, I2 yields a non-total mapping; on prime fields
Z/pZ—considered zero-totalized—this mapping is total.

Every meadow mapping that is total on all meadows is clearly total on all can-
cellation meadows. The converse, however, does not hold: consider the instruction
sequence

I = a0.cp(x0);−a0.test:0;#2;#4;a0.set:a(a0);
+ a0.test:0;#0;y.cp(a0); !.

Given any meadow M, we have

[[I ]]0
M(m) =

⎧

⎪
⎨

⎪
⎩

0 if m = 0,

0 if m �= 0 & 2m �= 0,

↑ otherwise.

In the absence of proper zero divisors, m = 0 if 2m = 0. Thus [[I ]]0
M is the constant

zero mapping on every cancellation meadow M. On the zero-totalized field Z/6Z,
however, 3 �= 0 and 2 × 3 = 0, and thus [[I ]]0

Z/6Z
(3) ↑.

4 Characterization of Total Calculation on Cancellation Meadows

In this section we shall prove the main theorem.
Meadows are standard mathematical structures, and as such, they may be de-

scribed using standard logical formalisms. Here, we shall use the following first-order
predicate logic over meadows and regular threads consisting of

1. the constants 0 and 1,
2. countably infinite constants c0, c1, . . . ,
3. the unary function symbols − and −1, representing additive and multiplicative

inversion,
4. the binary function symbols + and ·, written infix and representing addition and

multiplication,
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5. for every regular thread T and k,n ∈ N, a (k + 1)-ary termination predicate
RT,k,n(�x), describing the property T terminates on input x0, x1, . . . , xk after at
most n steps,

6. the usual Boolean connectives and first-order quantifiers with variables ranging
over elements of meadows.

The standard interpretation of the termination predicates is given below.

Definition 4.1 Let M be a meadow. For k,n ∈ N and regular thread T we define
[[RT,k,n]]M ⊆ Mk+1 by

[[RT,k,n]]M = {〈α(x0), . . . , α(xk)〉 | α ∈ RM
πn+1(T ),n}.

Example 4.2 We consider once more the instruction sequences I1 and I2 introduced
in Examples 3.2.

1. It is easy to see that, if I = ins1; . . . ; insn; ! is a straight-line instruction sequence
consisting of n assignment instructions and ending in a single final termination in-
struction, then |I | = ins1 ◦ · · · ◦ insn ◦ S and M |= ∀x0, . . . , xk R|I |,k,n(x0, . . . , xk)

for every meadow M. Hence, in particular, M |= ∀x R|I1|,0,8(x).
2. For I2 we have for all meadows M, M |= ∀x R|I2|,1,3n+6(x,n) for all n ∈ N.

Lemma 4.3 For all k,n ∈ N, regular threads T and meadows M,

1. RM
T ,n ⊆ RM

T ,n+1

2. RM
T ,n = RM

πn+1(T ),n

3. M |= ∀x0, . . . , xk (RT,k,n(x0, . . . , xk) −→ RT,k,n+1(x0, . . . , xk))

4. M |= ∀x0, . . . , xk (RT,k,n(x0, . . . , xk) ←→ Rπn+1(T ),k,n(x0, . . . , xk)).

Proof (1) and (2) are proven by straightforward induction; (3) and (4) follow from (1)
and (2), respectively. �

Recall that, in mathematical logic, the Compactness Theorem states that a set of
first-order sentences has a model if and only if every finite subset has a model. This
theorem is an important tool in model theory, as it provides a useful method for
constructing models of any set of sentences that is finitely consistent. We use Com-
pactness for the following finite representation property of total mappings.

Proposition 4.4 Let T be a regular thread and k ∈ N. If [[T ]]kM is total on all mead-
ows M, then there exists a finite thread T ′ such that [[T ]]kM = [[T ′]]kM for all mead-
ows M.

Proof Consider the set � consisting of all meadow axioms together with the in-
finite set {¬RT,k,n(c0, . . . , ck) | n ∈ N}. If � is finitely satisfiable, it must be si-
multaneously satisfiable, by Compactness, say in some meadow M. This means
that [[T ]]kM is not total, contradicting the assumption. We may therefore assume
that � is not finitely satisfiable. By a standard model-theoretic argument and the
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monotonicity of the termination predicate (Lemma 4.3(3)), it follows that for some
n ∈ N and all meadows M, M |= ∀x0, . . . , xk RT,k,n(x0, . . . , xk). Hence M |=
∀x0, . . . , xk Rπn+1(T ),k,n(x0, . . . , xk) for all M by Lemma 4.3(4). Then [[T ]]kM =
[[πn+1(T )]]kM for all meadows M. �

Proposition 4.5 Let T be a regular thread and k ∈ N. If [[T ]]kM is total on all can-
cellation meadows M, then there exists a finite thread T ′ such that [[T ]]kM = [[T ′]]kM
for all cancellation meadows M.

Proof Repeat the previous proof with � supplemented with the cancellation axiom

∀x, y, z (x �= 0 & x · y = x · z −→ y = z). �

We can therefore restrict ourselves to finite threads. Next we shall show that tests
can be abandoned without the loss of expressive power.

For t ∈ Ter(�m,Var), [[t]]M,α denotes the interpretation of t in the meadow M
under the assignment α, and if σ ∈ Ter(�m,Var)Var , then tσ is the result of substitut-
ing all variables v occurring in t by σ(v). Recall that substitutions and assignments
interact in the following way.

Lemma 4.6 Let M be a meadow, α ∈ MVar an assignment and σ ∈ Ter(�m,Var)Var

a substitution. Define α′ ∈ MVar by α′(v) = [[vσ ]]M,α . Then for all t ∈ Ter(�m,Var),

[[t]]M,α′ = [[tσ ]]M,α.

Proposition 4.7 Let T be a finite thread and k ∈ N. Then there exists a term
tT ∈ Ter(�m, {x0, . . . , xk}) such that for all cancellation meadows M and all
m0, . . . ,mk ∈ M,

[[T ]]kM(m0, . . . ,mk) ↓−→ [[T ]]kM(m0, . . . ,mk) = [[tT ]]M,αm0,...,mk
.

Proof We use induction loading and employ structural induction on T in order to
prove the assertion stating the existence of a term tT ∈ Ter(�m,Var) such that for all
cancellation meadows M and all assignments α ∈ MVar ,

(T • α)(y) = [[tT ]]M,α

if T • α �= D.
If T = S, then

(S • α)(y) = α(y) = [[y]]M,α.

Hence tS ≡ y. If T = D, we also put tD ≡ y. For the induction step, we have to dis-
tinguish nine cases each of which corresponds to one of the nine instructions sorts in
Ins(Q). The assignment instructions are proven straightforwardly using the previous
substitution lemma. We show three cases.
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Suppose T = ai.cp(xj ) ◦ T ′ and T • α �= D. Then

(T • α)(y) = (T ′ • α[ai := α(xj )])(y)

= [[tT ′ ]]M,α[ai :=α(xj )] by the induction hypothesis

= [[tσT ′ ]]M,α by Lemma 4.6

where σ(ai) = xj , and σ(v) = v if v �≡ ai . Hence tT ≡ tσ
T ′ suffices. Likewise, if

T = ai .set:a(aj ) ◦ T ′ and T • α �= D, then

(T • α)(y) = (T ′ • α[ai := α(ai) + α(aj )])(y)

= [[tT ′ ]]M,α[ai :=α(ai )+α(aj )] by the induction hypothesis

= [[tσT ′ ]]M,α by Lemma 4.6

where σ(ai) = ai +aj , and σ(v) = v if v �≡ ai . And if T = y.cp(aj )◦T ′ and T •α �=
D, then

(T • α)(y) = (T ′ • α[y := α(aj )])(y)

= [[tT ′ ]]M,α[y:=α(aj )] by the induction hypothesis

= [[tσT ′ ]]M,α by Lemma 4.6

where σ(y) = aj , and σ(v) = v if v �≡ y.
The case for the zero test exploits the fact that in every cancellation meadow M

we have

[[0ai
· t + 1ai

· t ′]]M,α =
{

[[t]]M,α if α(ai) = 0,

[[t ′]]M,α otherwise.

Hence, if T = T ′ � ai.test:0� T ′′ we can take

tT ≡ 0ai
· tT ′ + 1ai

· tT ′′ .

The original assertion now follows from the observation that we can replace all
occurrences of auxiliary variables, the output variable y and all input variables xn

with k < n in the term tT by 0 if α is initial. �

Definition 4.8 We shall say that the thread T computes t ∈ Ter(�m, {x0, . . . , xk}), if
for all cancellation meadows M and all m0, . . . ,mk ∈ M,

[[T ]]kM(m0, . . . ,mk) = [[t]]M,αm0,...,mk
.

Thus if T is finite, the free variables of tT are among {x0, . . . , xk} and [[T ]]kM
is total, then T computes the term tT . Conversely, every meadow term t with free
variables in Varin can be computed by a finite thread Tt which is in addition test-
free—that is, postconditional composition occurs as action prefix only—and which
uses at most five auxiliary variables. To these ends, we shall define the raise T 1 of a
thread T as the thread T ′ obtained from T by raising the subscript of every auxiliary
variable occurring in T by one.
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Definition 4.9

1. Let i ∈ Ins(Q) be an instruction. Then i1 is defined by

ai.cp(xj )
1 = ai+1.cp(xj ),

ai .set:0
1 = ai+1.set:0,

ai .set:1
1 = ai+1.set:1,

ai .set:ai
1 = ai+1.set:ai,

ai .set:mi
1 = ai+1.set:mi,

ai .set:a(aj )
1 = ai+1.set:a(aj+1),

ai .set:m(aj )
1 = ai+1.set:m(aj+1),

ai .test:0
1 = ai+1.test:0,

y.cp(aj )
1 = y.cp(aj+1).

2. Let T be a finite thread. Then T 1 is defined inductively by S1 = S, D1 = D, and
(T ′ � i � T ′′)1 = T ′1 � i1 � T ′′1 for i ∈ Ins(Q).

A thread and its raise compute the same values.

Lemma 4.10 Let T be a finite thread and k ∈ N. Then for all meadows M and all
m0, . . . ,mk ∈ M

[[T ]]kM(m0, . . . ,mk) ↓−→ [[T ]]kM(m0, . . . ,mk) = [[T 1]]kM(m0, . . . ,mk).

Proof For the sake of the proof, we define for α ∈ MVar the raise α1 ∈ MVar by

α1(v) =
{

α(ai+1) if v ≡ ai,

α(v) if v �∈ Varaux.

We now show that

T • α1 �= D −→ (T • α1)(y) = (T 1 • α)(y)

by structural induction on T . If T = S, then

(T • α1)(y) = (S • α1)(y) = α1(y) = α(y) = (S • α)(y) = (T 1 • α)(y).

For the induction step, we have to distinguish nine cases each of which corresponds
to one of the nine instruction sorts. Each case follows straightforwardly. We show the
case that T = ai .cp(xj ) ◦ T ′:

(T • α1)(y) = ((ai .cp(xj ) ◦ T ′) • α1)(y)

= (T ′ • α1[ai := α1(xj )])(y)
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= (T ′ • (α[ai+1 := α(xj )])1)(y)

= (T ′1 • α[ai+1 := α(xj )])(y) by the induction hypothesis

= (ai+1.cp(xj ) ◦ T ′1 • α)(y)

= (T 1 • α)(y).

The statement now follows from the observation that α1 = α if α is initial. �

In the sequel, we shall say that a thread T (an instruction sequence I ) uses the aux-
iliary variable ai , if the variable ai occurs in at least one of T ’s (I ’s) atomic actions
(basic instructions). Moreover, we shall say that T (I ) uses n auxiliary variables, if
T (I ) uses precisely the auxiliary variables a0, . . . , an−1.

Lemma 4.11

1. If t ∈ Varin ∪ {0,1}, then t can be computed by a finite and test-free thread that
uses one auxiliary variable.

2. If t can be computed by a finite and test-free thread that uses n auxiliary variables,
then so can −t and t−1.

3. Suppose t, t ′ ∈ Ter(�m,Varin) can be computed by finite and test-free threads that
use n and m auxiliary variables, respectively. If n = m, then t + t ′ and t · t ′ can
be computed by finite and test-free threads that use n + 1 auxiliary variables, and
if n �= m, then t + t ′ and t · t ′ can be computed by finite and test-free threads that
use max{n,m} auxiliary variables.

Proof We shall construct appropriate threads of the form

i1 ◦ · · · ◦ ik ◦ y.cp(a0) ◦ S.

1. Observe that a0.cp(xi)◦y.cp(a0)◦S, a0.set:0◦y.cp(a0)◦S, and a0.set:1◦
y.cp(a0) ◦ S compute xi , 0 and 1, respectively.

2. Suppose T = i1 ◦ · · · ◦ ik ◦ y.cp(a0) ◦ S computes t . Then

i1 ◦ · · · ◦ ik ◦ a0.set:ai ◦ y.cp(a0) ◦ S

computes −t and

i1 ◦ · · · ◦ ik ◦ a0.set:mi ◦ y.cp(a0) ◦ S

computes t−1. Both threads use as many auxiliary variables as T and are finite
and test-free.

3. Suppose T = i1 ◦ · · · ◦ ik ◦ y.cp(a0) ◦ S uses n auxiliary variables to compute t ,
and T ′ = j1 ◦ · · · ◦ jl ◦ y.cp(a0) ◦ S uses m auxiliary variables to compute t ′. We
first assume that n ≤ m. Since by the previous lemma T 1 also computes t , we have
that

j1 ◦· · ·◦jl ◦a1.set:0◦· · ·◦an.set:0◦i1
1 ◦· · ·◦i1

k ◦a0.set:a(a1)◦y.cp(a0)◦S
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computes t + t ′. This thread is finite and test-free, and uses n + 1 auxiliary vari-
ables if n = m and otherwise m variables. If m < n then

i1 ◦ · · · ◦ ik ◦ a1.set:0 ◦ · · · ◦ am.set:0 ◦ j1
1 ◦ · · · ◦ j1

l ◦ a0.set:a(a1)

◦y.cp(a0) ◦ S

uses n auxiliary variables and computes t ′ + t and hence t + t ′.
For t · t ′, we replace the action a0.set:a(a1) in the above threads by

a0.set:m(a1).
�

Proposition 4.12 Let t ∈ Ter(�m,Varin) be a meadow term. Then t can be computed
by a finite, test-free thread T that uses five auxiliary variables.

Proof By Corollary 2.3, t can be represented as a sum of quotients of polynomi-
als. Moreover, every polynomial can be written as a sum of monomials, i.e. expres-
sions of the form n · xi1 · · ·xik or −n · xi1 · · ·xik . Since n = 1 + · · · + 1

︸ ︷︷ ︸

n

+0 + 0 it

can be computed by a finite and test-free thread that uses two auxiliary variables by
Lemma 4.11(1) and (3). Thus also n ·xi1 · · ·xik can all be computed by finite and test-
free threads that use two auxiliary variables. And the same holds for −n · xi1 · · ·xik

by Lemma 4.11(2). Thus every monomial can be computed by a finite and test-free
thread that uses two auxiliary variables. It follows that every sum of monomials—and
hence every polynomial—can be computed by a finite and test-free thread that uses
three auxiliary variables by Lemma 4.11(3). Whence every quotient of polynomials
can be computed by a finite and test-free thread that uses four auxiliary variables by
Lemma 4.11(2) and (3). Invoking again Lemma 4.11(3) we obtain that every sum of
quotients of polynomials—and therefore t—can be computed by a finite and test-free
thread that uses five auxiliary variables. �

Summarizing we have proven the following completeness result.

Theorem 4.13 Let I be an instruction sequence and k ∈ N be such that [[I ]]kM is
a total mapping on all cancellation meadows M. Then there exists a straight-line
instruction sequence J which uses at most five auxiliary variables such that [[I ]]kM =
[[J ]]kM for all cancellation meadows M.

Proof Suppose that [[I ]]kM is total on all cancellation meadows M. By Proposi-
tion 4.5, we can pick a finite thread T such that [[I ]]kM = [[T ]]kM for all cancel-
lation meadows M. By Proposition 4.7 we may assume that T computes a term
t ∈ Ter(�m, {x0, . . . , xk}) which in turn is computed by a finite and test-free thread
T ′ that uses five auxiliary variables by the previous proposition. We can now take a
straight-line instruction sequence J with |J | = T ′. �
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Table 5 The set Signs of
axioms for the sign function s(1x) = 1x (1)

s(0x) = 0x (2)

s(−1) = −1 (3)

s(x−1) = s(x) (4)

s(x · y) = s(x) · s(y) (5)

0s(x)−s(y) · (s(x + y) − s(x)) = 0 (6)

5 Calculation on Signed Cancellation Meadows

We obtain signed meadows by extending the signature �m of meadows with the
unary sign function s(_). We write �ms for this extended signature, so �ms =
(0,1,+, ·,−,−1, s). The sign function s presupposes an ordering < of its domain
and is defined as follows:

s(x) =

⎧

⎪
⎨

⎪
⎩

−1 if x < 0,

0 if x = 0,

1 if x > 0.

One can define s in an equational manner by the set Signs of axioms given in
Table 5. First, notice that by Md and axiom (1) (or axiom (2)) we find

s(0) = 0 and s(1) = 1.

Then, observe that in combination with the inverse law IL, axiom (6) is an equational
representation of the conditional equational axiom

s(x) = s(y) −→ s(x + y) = s(x).

The initial algebra of Md ∪ Signs is Q expanded with the sign function. A proof
follows immediately from the techniques used in [10, 11].

Some consequences of the Md ∪ Signs are:

s(x2) = 1x because s(x2) = s(x) · s(x) = s(x) · s(x−1) = s(1x) = 1x , (7)

s(x3) = s(x) because s(x3) = s(x) · s(x) · s(x−1) = s(x · (x · x−1)) = s(x), (8)

1x · s(x) = s(x) because 1x · s(x) = s(x2) · s(x) = s(x3) = s(x), (9)

s(x)−1 = s(x) because s(x)−1 = (s(x)2 · s(x)−1)−1 = (s(x2) · s(x)−1)−1

= (1x · s(x)−1)−1 = 1x · s(x) = s(x). (10)

So, 0 = s(x) − s(x) = s(x) − s(x)3 = s(x)(1 − s(x)2) and hence

s(x) · (1 − s(x)) · (1 + s(x)) = 0. (11)
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The finite basis result for the equational theory of cancellation meadows is for-
mulated in a generic way so that it can be used for any expansion of a meadow that
satisfies the propagation properties defined below.

Definition 5.1 Let � be an extension of �m = (0,1,+, ·,−,−1), the signature of
meadows. Let E ⊇ Md (with Md the set of axioms for meadows given in Table 3).

1. (�,E) has the propagation property for pseudo units if for each pair of �-terms
t, r and context C[ ],

E � 1t · C[r] = 1t · C[1t · r].
2. (�,E) has the propagation property for pseudo zeros if for each pair of �-terms

t, r and context C[ ],
E � 0t · C[r] = 0t · C[0t · r].

Preservation of these propagation properties admits the following nice result:

Theorem 5.2 (Generic Basis Theorem for Cancellation Meadows) If � ⊇ �m, E ⊇
Md and (�,E) has the pseudo unit and the pseudo zero propagation property, then
E is a basis (a complete axiomatization) of Mod�(E ∪ IL).

Proof See [8]. �

Bergstra and Ponse [8] proved that Md and Md ∪ Signs satisfy both propaga-
tion properties and are therefore complete axiomatizations of Mod�(Md ∪ IL) and
Mod�(Md ∪ Signs ∪ IL), respectively. Since

Md ∪ Signs ∪ IL � t = 0t ′ · s + 1t ′ · s′ −→ s(t) = 0t ′ · s(s) + 1t ′ · s(s′)

using IL and the axioms (1), (2) and (5) of Signs, it then follows that

Md ∪ Signs � t = 0t ′ · s + 1t ′ · s′ =⇒ Md ∪ Signs � s(t) = 0t ′ · s(s) + 1t ′ · s(s′). (†)

We can hence adapt the Standard Meadow Form to signed meadow terms as follows.
We write �rs = (0,1,+, ·,−, s) for the signature of signed rings. A signed poly-

nomial is then an expression over �rs , thus without inverse operator.

Definition 5.3 A term t ∈ Ter(�ms,X) is a Standard Signed Meadow Form (SSMF)
if, for some n ∈ N, t is an SSMF of level n. SSMFs of level n are defined as follows:

1. SSMF of level 0: each expression of the form s/t with s and t ranging over signed
polynomials,

2. SSMF of level n + 1: each expression of the form

0t ′ · s + 1t ′ · t
with t ′ ranging over signed polynomials and s and t over SSMFs of level n.
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Theorem 5.4 For each t ∈ Ter(�ms,X) there exist an SSMF tSSMF with the same
variables such that Md ∪ Signs � t = tSSMF .

Proof As in [8] using (†). �

As in Corollary 2.3 it follows that every signed meadow term is provably equal to
a sum of quotients of signed polynomials.

Corollary 5.5 For every t ∈ Ter(�ms,X) there exist signed polynomials s0, t0, . . . ,

sn, tn such that

Md ∪ Signs � t = s0

t0
+ · · · + sn

tn
.

Signed polynomials also enjoy a standard form.

Lemma 5.6 Let t be a signed polynomial and n ∈ N be the number of its subterms of
the form s(t ′). Then there are polynomials t1, t11, . . . , t1n , . . . , ti , ti1, . . . , tin , . . . , t3n,

t3n1 , . . . , t3nn such that

Md ∪ Signs � t =
3n
∑

i=1

n
∏

j=1

0φ(s(tij )) · ti

where φ(s(tij )) ∈ {s(tij ),1 + s(tij ),1 − s(tij )}.

Proof We employ induction on the number n of subterms of the form s(t ′). If n = 0
then t itself is a polynomial and hence t1 ≡ t suffices.

Suppose n = l + 1 and pick an innermost subterm s(t ′) of t . Then t ≡ C[s(t ′)]
for some context C and polynomial t ′. From IL together with (11) it follows that
s(t ′) = 0 or s(t ′) = 1 or s(t ′) = −1. Thus

Md ∪ Signs � t = 0s(t ′) · C[0] + 01−s(t ′) · C[1] + 01+s(t ′) · C[−1]
with C[0],C[1], and C[−1] having l signed subterms. We can now apply the induc-
tion hypothesis. �

A suitable instruction for computations on signed meadows is a.set:s with
Boolean reply true and the obvious semantics a ⇐ s(a). We add this instruction
to Ins(Q), and consider instruction sequences and corresponding threads over the
enriched instruction set in the sequel.

Example 5.7 Notice that, with the sign function available, the function max(x0, x1)

has the following simple definition

max(x0, x1) =
{

(s(x0) + 1) · x0/2 if x1 = 0,

max(x0 − x1,0) + x1 otherwise.
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The function max(x, y) can be computed by the periodic instruction sequence

a0.cp(x0);a1.cp(x1);a2.set:0;a4.cp(x0);a1.test:0;#2;#11;
(a3.set:1;a4.set:s;a4.set:a(a3);a0.set:m(a4);
a3.set:a(a3);a3.set:mi;a0.set:m(a3);a0.set:a(a2);y.cp(a0); !;
a1.set:ai;a0.set:a(a1);a4.set:a(a1);a2.cp(x1))

ω

which also has a finite representation.

The termination predicate and the apply operator can both be extended to regular
threads using the sign instruction in the obvious way by defining

RM
ai .set:s◦T ,n+1 = {α ∈ MVar | α[ai := s(α(ai))] ∈ RM

T ,n}, and

(ai .set:s ◦ T ) • α = T • α[ai := s(α(ai))].
We then have the following completeness result.

Theorem 5.8 Let I be an instruction sequence and k ∈ N be such that [[I ]]kM is a
total mapping on all signed cancellation meadows M. Then there exists a straight-
line instruction sequence J which uses at most eight auxiliary variables such that
[[I ]]kM = [[J ]]kM for all cancellation meadows M.

Proof The Propositions 4.5 and 4.7 extend straightforwardly to signed cancella-
tion meadows. Thus |I | computes a term t ∈ Ter(�ms, {x0, . . . , xk}). It remains
to show that t can be computed by a finite and test-free thread that uses at
most eight auxiliary variables. From Corollary 5.5 it follows that t is provably
equal to a sum of quotients of signed polynomials. Then, following the proof of
Proposition 4.12, it suffices to prove that a signed polynomial can be computed
by a finite and test-free thread using at most six auxiliary variables. To these
ends, we invoke Lemma 5.6. Thus we may assume that there exist polynomials
t1, t11 , . . . , t1n , . . . , ti , ti1, . . . , tin , . . . , t3n, t3n1 , . . . , t3nn such that

t =
3n
∑

i=1

n
∏

j=1

0φ(s(tij )) · ti

where φ(s(tij )) ∈ {s(tij ),1 + s(tij ),1 − s(tij )}.
From Lemma 4.11 it follows that a polynomial t ′ can be computed by a finite and

test-free thread using three auxiliary variables. Say

i1 ◦ · · · ◦ ik ◦ y.cp(a0) ◦ S

computes t ′. Then

i1 ◦ · · · ◦ ik ◦ a0.set:s(a0) ◦ y.cp(a0) ◦ S

computes s(t ′) using the same variables. Thus also φ(s(t ′)) can be computed by a
finite and test-free thread using three auxiliary variables. Hence 0φ(s(tij )) · ti can be
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computed with four auxiliary variables by a finite and test-free thread. Therefore it
takes at most five auxiliary variables to compute 	n

j=10φ(s(tij )) · ti and six to compute
t by a finite thread without any tests. �

6 Conclusions and Future Work

We have described an algebraic execution system that can be used to analyze prop-
erties of instruction sequences. It is especially designed to perform calculation on
the signed rational numbers. We have proven that total instruction sequences can be
computed by straight-line programs with a bound supply of auxiliary variables.

By itself the standard forms that we have derived have no practical merit. But they
indicate that tests, jumps and loops are primarily needed for reasons of complexity
reduction. We have no proofs available that by using tests or jumps or larger numbers
of auxiliary variables the running time of programs that compute total functions over
cancellation meadows can be shortened, but that question clearly merits further at-
tention. Using instruction sequences with tests, forward jumps and backward jumps
to represent a given computable function many forms of optimization can be sought.
Code compactness is optimized by having a relatively low number of instructions, run
time complexity is optimized if programs terminate after relatively few steps. Several
other aspects can be investigated at this level of abstraction: the degree to which a
program profits from pipe-lined execution, and the optimal pipe-line design for its
execution. More generally the degree to which a program admits a multi-threaded
execution can be studied.

A second issue concerns the expandability of the data type. Important computer
algorithms based on discrete Fourier transformations can be expressed within the
signed rational numbers extended with sin and π . For future work, we aim at exam-
ining equivalence and simplification problems for this kind of straight-line instruction
sequences. However, it is yet unclear to us where straightening starts to fail.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.
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