
Theory Comput Syst (2011) 48: 247–268
DOI 10.1007/s00224-009-9240-4

Notes on Sum-Tests and Independence Tests

Bruno Bauwens · Sebastiaan A. Terwijn

Published online: 27 October 2009
© The Author(s) 2009. This article is published with open access at Springerlink.com

Abstract We study statistical sum-tests and independence tests, in particular for
computably enumerable semimeasures on a discrete domain. Among other things, we
prove that for universal semimeasures every �0

1-sum-test is bounded, but unbounded
�0

1-sum-tests exist, and we study to what extent the latter can be universal. For uni-
versal semimeasures, in the unary case of sum-test we leave open whether universal
�0

1-sum-tests exist, whereas in the binary case of independence tests we prove that
they do not exist.

Keywords Sum-tests · Independence tests · Kolmogorov complexity

1 Introduction

At the intersection of statistics and computability theory one is interested in the most
significant statistical tests satisfying certain computational restrictions. In this paper
we investigate “identity testing” and tests for independence of two strings. In the
traditional statistical framework one uses concrete and simple formula-based statis-
tical tests for elementary probability distributions such as the Kolmogorov-Smirnov
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test and the correlation test for Gaussian distributions. In the course of time more
and more powerful tests relative to increasingly sophisticated distributions have been
constructed [12, 14]. It makes sense to ask for which computational restrictions most
significant tests exist.

Suppose that one wants to test a coin for fairness. A fair coin generates sequences
of coin flips according to a uniform distribution. We want to test whether a generated
sequence is consistent with this distribution and does not carry more structure. This
is known as “identity testing” or “randomness testing”. For example, we can test
whether the mean of the coin flip sequence is distributed according to a Bernoulli
distribution. If the coin passes this particular test, there is still the possibility that it
is tricked, but we can then go on and devise other tests. It is natural to ask whether
this process of improving tests has a limit. This corresponds to the question whether
there exist universal elements in a set of tests of a given complexity.

Independence testing is the process of determining whether two sources can be
considered as two distinctly operating systems, or that they are part of an interacting
system in which information is shared or exchanged. Such independence tests show
up in many engineering applications such as source separating, dimension reduction,
and noise elimination [7, 8]. In advanced practical tests [6, 13] we see an evolution
of tests for more complex interactions relative to more sophisticated sources.

Identity testing has been studied for ergodic sources using universal codes in
Ryabko et al. [14]. These universal codes are optimal for compressing ergodic sources
and are still sufficiently computable for use in practice. The information distance and
information metric introduced in [1, 11] express how similar two objects are. Com-
plementary to independence tests, similar objects have low distance or metric value.
The information metric is neither computably enumerable (c.e.) nor co-c.e. However,
its computable approximations have turned out to be very useful [2, 3].

Sum-tests have been investigated as tests for randomness for finite binary strings
relative to computable distributions, cf. Li and Vitányi [10]. It is shown in [10] that
there are c.e. sum-tests subsuming all computable sum-tests (cf. Sect. 4 below). By
considering sum-tests relative the product of two universal distributions the definition
of sum-tests naturally leads to independence tests. This was first noted by Levin [9],
and a more general notion was mentioned in Gács [5]. In [9] it is argued that algo-
rithmic mutual information appears naturally as an independence test relative to two
universal distributions.

We now give the formal definitions of sum-tests and independence tests. Some
measure-theoretic terminology is explained along with our notation at the end of the
section.

Let P be a given semimeasure on the set ω of natural numbers. We call a unary
function d : ω → Z with

∑

x∈ω

P (x)2d(x) ≤ 1 (1)

a sum-test for P or simply a P -sum-test.1

1In [10] a sum-test is a function d : ω → ω rather than a function into the integers. The stricter definition
is only interesting for the study of proper semimeasures P , that is with

∑
x P (x) < 1. By suggestion of
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One can think of a sum-test as a test for randomness for the case of a semimeasure
on a discrete domain. Namely, if d is a P -sum-test, then for every n it easily follows
from (1) that the set {x : d(x) ≥ n} has weight ≤ 2−n under the semimeasure P .
Therefore strings x for which d(x) is large are not random with respect to P .

Note that it is not really essential that sum-tests are integer functions: If we would
allow them to have rational values, then since 2d(x) ≤ 2�d(x)�+1 ≤ 2d(x)+1 we see
that by rounding off d upwards we would only change the sum (1) by a factor 2, not
changing anything essential for the theory.

Definition 1.1 Given two semimeasures P and Q, a binary function d : ω × ω → Z

with
∑

x,y∈ω

P (x)Q(y)2d(x,y) ≤ 1 (2)

is called an independence test for P and Q.

Independence tests of this form were first studied in the PhD-research of the first
author. Just as sum-tests are tests for randomness, independence tests can be thought
of testing possible algorithmic dependencies between pairs of strings that are random
relative to P and Q. Note that analogously to the unary case we have that if d is an
independence test for P and Q then for every n it follows from (2) that the set {(x, y) :
d(x, y) ≥ n} has weight ≤ 2−n under the product semimeasure P · Q. Therefore
pairs (x, y) that are random relative to P and Q for which d(x, y) is large are not
independent with respect to P and Q.

Below we investigate to what extent there are universal (i.e. additively dominat-
ing all others) sum-tests and independence tests for a given �0

1 -semimeasure P . Our
results are as follows. Let m denote Levin’s universal �0

1 -semimeasure (cf. Theo-
rem 3.2). First, there are no unbounded �0

1 -sum-tests for m (Corollary 4.2), but there
are unbounded and monotone �0

1-sum-tests for any given �0
1 -semimeasure (Propo-

sition 5.1). We prove that in the following cases there is no universal �0
1-sum-test for

P ∈ �0
1 :

• P computable (Proposition 6.1)
• P(x) = 0 infinitely often (Proposition 6.2)
• P does not have a strictly positive computable lower bound, i.e. a computable Q

such that P(x) ≥ Q(x) > 0 a.e. x (Corollary 6.3)

Note that no universal �0
1 -semimeasure satisfies any of these. The most important

question we leave open is whether for P = m there is no universal �0
1-sum-test

(Question 6.4). In Sect. 7 we answer this question in the binary case of indepen-
dence tests: We prove that there is no universal �0

1-independence test in case both
measures are m (Theorem 7.3).

the referee we use the more liberal definition. For the questions studied in this paper the difference is
immaterial, and the presentation of Sect. 7 becomes much smoother with this definition.
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We end this section with some notation and terminology. As we already said, ω

is the set of natural numbers. This set is effectively bijective with the set of all finite
binary strings.

A function f is �0
1 , or computably enumerable, if it is computably approximable

from below, that is, if there exists a computable function f̂ (x, s) that is monotonic
nondecreasing in s such that lims f̂ (x, s) = f (x). Similarly, f is �0

1 if it is com-
putably approximable from above, i.e. the approximation f̂ is monotonic nonincreas-
ing in s.

A function P : ω → R is a probability measure if
∑

x P (x) = 1. Since every �0
1 -

measure is computable (Proposition 3.1), in computability theory it is often natural
to consider semimeasures. A function P : ω → R is a semimeasure if

∑
x P (x) ≤ 1.

A function f dominates a function g if f (x) ≥ g(x) for almost every x, and f

additively dominates g there is a constant c such that f (x) + c ≥ g(x) for every x.
As in [10], we call a function f universal2 or additively optimal for a class C if
f ∈ C and f additively dominates all other functions in C . A function is called an
order if it is monotone and unbounded.3 Given two functions d and d ′, the phrase
“d ′ − d is unbounded” abbreviates the statement that for all i there is x such that
d ′(x) − d(x) ≥ i.

2 Some General Notes on �0
1 - and �0

1-Functions

As a preparation for sections to follow, we list some basic folk facts about �0
1 - and

�0
1-functions.

(i) There is no universal �0
1 -function. Namely if f ∈ �0

1 then also the function
λx.f (x) + x is �0

1 .
(ii) The reason we cannot build a universal (additively optimal) �0

1 -function is that
the �0

1 -functions are not uniformly enumerable; in an effective enumeration of
the computable approximations (which does exist) we cannot effectively sep-
arate those that remain finite from the ones that grow unbounded. That there
is a universal Martin-Löf test (Martin-Löf) and that there is a universal �0

1 -
semimeasure (Levin, Theorem 3.2) holds because these �0

1 -objects satisfy an
extra boundedness condition that we can check along the way to see if it is vi-
olated, and if so render the object harmless by discarding it after finitely many
steps.

(iii) The �0
1-functions are also not uniformly enumerable, but for a different reason:

Every �0
1-function is computably bounded (namely by any of its computable

approximations). If there were a universal �0
1-function, its computable bound

would in particular dominate all computable functions, which is impossible.

2Note that the term universal is used here to refer to growth rates, and should not be confused with the
other common usage of the term, referring to the ability to enumerate all other functions in the class.
3This translation of Schnorr’s term “Ordnungsfunktion” [15] has meanwhile become standard in random-
ness theory.



Theory Comput Syst (2011) 48: 247–268 251

(iv) Not every �0
1 -function is computably bounded: Take an effective enumeration

of all partial computable functions ϕe and define

f (x) =
∑{

ϕi(i) : i ≤ x ∧ ϕi(i)↓
}
.

This f is a �0
1 -order dominating any computable function.

(v) Given any order f we can define a slow growing inverse h of f by

h(x) = μn. f (n) ≥ x.

If f ∈ �0
1 then h ∈ �0

1, so if we take for f the fast growing function from the
previous item then we obtain an �0

1-order dominated by any computable order.
(vi) Conversely, given a fast growing �0

1 -order f we can define a slow growing
�0

1-order h by

f (x) = μn. h(n) ≥ x.

Hence, since there are no no universally fast growing �0
1 -orders, we see that

there are no universally slow growing �0
1-orders.

(vii) Any �0
1 -order dominates a computable order: Given a �0

1 -order one easily con-
structs a slower growing computable order. This is also true for nonmonotonic
functions: For any unbounded �0

1 -function f one can find an unbounded com-
putable g such that the function f − g is positive and unbounded.

In conclusion: �0
1 -orders can grow faster but not slower than any computable one,

whereas �0
1-orders can grow slower but not faster than any computable one.

3 General Notes on Measures and Semimeasures

For the record we state the following

Proposition 3.1

1. Every �0
1 -measure is computable,

2. There is a �0
1-measure that is not computable.

Proof 1. This well-known and easy to see: If P ∈ �0
1 with computable approximation

Ps and
∑

x P (x) = 1 then to approximate P(x) to within ε, find a stage s such that
1 − ∑

x Ps(x) < ε. Then P(x) − Ps(x) < ε.
2. Let X be any noncomputable �0

1-set, with computable approximation Xs . De-
fine a measure P as follows: At stage s assign the s values 2−1, . . . ,2−s to the first
s elements of Xs ⊆ Xs−1, in such a way that the elements of Xs that were already
assigned a value at a previous stage retain this, and the values that were assigned to
elements in Xs−1 − Xs are given a new host element. For any element x /∈ X we
define P(x) = 0. Then P ∈ �0

1, and P is not computable because otherwise, since
x ∈ X ⇔ P(x) > 0, X would also be computable. Note that in general P(x) > 0 is
not decidable for computable P , but in this case it is: x is assigned an initial value
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2−i with i ≤ x. Computing P(x) to within precision 2−i−1 decides whether it is 2−i

or 0. �

A semimeasure P (multiplicatively) dominates a semimeasure Q if there is a ratio-
nal constant q > 0 such that P(x) > qQ(x). A semimeasure P is (multiplicatively)
universal for a class of semimeasures C if P ∈ C and P dominates every Q ∈ C . As
quoted above, Levin showed that there is a universal �0

1 -semimeasure. Not surpris-
ingly, there is no �0

1 one.

Theorem 3.2 (Levin) There exists a universal �0
1 -semimeasure m.

Proof We sketch the proof for later reference. Let Pi be an effective enumeration of
all �0

1 -semimeasures. Note that such an enumeration can be obtained because we can
see in finitely many steps whether the condition

∑
x Pi(x) ≤ 1 is violated. Define

m(x) =
∑

i

2−iPi(x).

Clearly m(x) is finite, m ∈ �0
1 , and m is multiplicatively universal. �

The following easy facts are also well-known in the folklore of the field:

Proposition 3.3

(i) There is no universal computable semimeasure.
(ii) There is no universal �0

1-semimeasure.

Proof Both item (i) and (ii) follow from the following. Let P be a �0
1-semimeasure.

We construct a computable semimeasure Q such that

∀q ∈ Q
>0∃x P (x) < qQ(x). (3)

Given q we simply search for an x where P(x) is small and set a large value for Q(x).
Note that x can be found effectively since P ∈ �0

1. More precisely, given q = 2−i find
a fresh x such that P(x) < 2−2i . Set Q(x) = 2−i , and to make Q total set Q(y) = 0
for all y < x that were not yet defined. The Q thus constructed is computable, clearly
satisfies (3), and

∑
x Q(x) = ∑

i 2−i = 1. �

Corollary 3.4 Let m be the universal �0
1 -semimeasure and let P be a �0

1-
semimeasure. Then the function m(x)/P (x) is unbounded. In particular, m(x) >

P(x) infinitely often.

Proof Suppose for a contradiction that c ∈ ω is a constant such that m(x)/P (x) ≤ c

for every x. By Proposition 3.3, let Q be a computable measure such that (3) holds.
Then a fortiori

∀q ∈ Q
>0∃x m(x) < q · c · Q(x),

contradicting that m is multiplicatively universal. �
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Call a semimeasure P monotone if x ≤ y implies P(x) ≥ P(y). We note that there
does not exist a monotone universal �0

1 -semimeasure. This is not difficult to prove
directly, but it also follows from the Coding Theorem (10) below. Namely, if m is
universal then − logm(x) = K(x) up to a fixed additive constant, hence if m were
monotone then K would also be monotone, which is of course not the case. There
is a �0

1 -semimeasure that is multiplicatively universal among the monotonic ones,
namely m′(x) = miny≤x m(y), which is within a multiplicative constant equal to

1

xm(logx)
.

4 �0
1 -Sum-Tests

In Li and Vitányi [10, Theorem 4.3.5] it is proven that for every strictly positive
computable measure P the �0

1 -function

log
(
m(x)/P (x)

)

is a �0
1 -universal sum-test for P . In particular, since by Corollary 3.4 the function

m(x)/P (x) is unbounded, there is an unbounded P -sum-test. We prove here that for
P = m this is no longer true.

Proposition 4.1 For any unbounded �0
1 -function d : ω → Z there is a computable

measure P such that
∑

x∈ω

P (x)2d(x) = ∞. (4)

Proof Suppose that d : ω → Z is �0
1 and unbounded. We construct a computable

measure P such that
∑

x∈ω

P (x) = 1 (5)

and (4) holds. The construction is in ω stages. At stage s, search for a fresh (i.e.
hitherto not used in the construction) element x such that d(x) ≥ s. Such x can be
found effectively since d is unbounded and �0

1 . For this x define P(x) = 2−s . To
make sure that P is total, define P(y) = 0 for all y < x for which P(y) was not yet
defined at a previous stage. End of construction.

Clearly the P thus constructed satisfies (4) and (5), since at stage s of the con-
struction we contribute an amount of 2−s to

∑
x P (x) and an amount of at least 1 to∑

x P (x)2d(x). �

Corollary 4.2 Every �0
1 -sum-test for the universal �0

1 -semimeasure m is bounded.

Proof Suppose that d is unbounded. Let P be as in Proposition 4.1. Since m is
universal, there is q > 0 with m(x) ≥ qP (x) for all x. Then

∑
x m(x)2d(x) ≥∑

x qP (x)2d(x) = ∞, hence d is not a sum-test for m. �
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We remark that for every computable semimeasure P there is a computable order
d that is a sum-test for P , as is easily seen. (One can use for example the proof of
Proposition 6.1 below, taking d constant.)

For later purposes we note the following variant of Proposition 4.1:

Proposition 4.3 If d and d ′ are computable functions such that the function d ′ −
max(0, d) is unbounded, then there is a computable semimeasure P such that

∑

x∈ω

P (x)2d ′(x) = ∞ (6)

and
∑

x∈ω

P (x)2d(x) ≤ 1. (7)

That is, d is a sum-test for P and d ′ is not.

Proof The proof is similar to that of Proposition 4.1, except that at stage s we now
search for a fresh number x such that

d ′(x) − max(0, d(x)) ≥ s.

For this x define P(x) = 2−max(0,d(x))−s . Again, to make P total, define P(y) = 0
for all y < x for which P(y) was not yet defined at a previous stage. Note that P is
indeed a semimeasure.

Now P satisfies (6) and (7), since at stage s of the construction we con-
tribute an amount of 2−max(0,d(x))−s2d(x) ≤ 2−s to

∑
x P (x)2d(x) and an amount of

P(x)2d ′(x) ≥ 2−max(0,d(x))−s2max(0,d(x))+s = 1 to
∑

x P (x)2d ′(x). �

Finally, we claim that there is a semimeasure P ∈ �0
1 without �0

1 -universal sum-
test. This is trivial to see if we allow P(x) = 0 for infinitely many x, but it also holds
for strictly positive P :

Proposition 4.4 There exists a strictly positive �0
1 -semimeasure P such that there is

no �0
1 -universal sum-test for P .

Proof Since the constant zero function is a sum-test for any semimeasure, a universal
sum-test is bounded from below by some constant k ∈ Z. So in proving that such a
universal sum-test does not exist we may restrict ourselves to such functions.

Let di be an effective enumeration of all �0
1 -functions from ω to Z ∪ {∞} that are

bounded from below by some (possibly negative) constant. (The latter assumption is
needed to have an effectively enumerable class of functions; for the rest of the proof it
is not needed.) Let di,s denote the approximation of di . We construct a semimeasure
P ∈ �0

1 and functions d ′
i ∈ �0

1 so that for every i it holds that d ′
i − di is unbounded

and
∑

x

P (x)2di (x) ≤ 1 =⇒
∑

x

P (x)2d ′
i (x) ≤ 1. (8)



Theory Comput Syst (2011) 48: 247–268 255

Let 〈x, y〉 be a bijective pairing function from ω2 to ω. We assign an infinite com-
putable domain Ri to the strategy for di as follows. Define

Ri = {〈x, i〉 : x ∈ ω
}

and

d ′
i,s(x) =

{
di,s(x) + x if x ∈ Ri

0 otherwise.

We construct P by defining its approximation Ps as follows. Let P0(x) = 2−2x−1, so
that P is strictly positive. At stage s of the construction, for every i ≤ s, if s is the
first stage such that

∑

x<s

Ps(x)2d ′
i,s (x)

> 1 (9)

then define

Ps+1(x) = Ps(x)2d ′
i,s (x)−di,s (x) = Ps(x)2x

for every x ∈ Ri . Note that since this can happen only once, we have that Ps(x) equals
either P0(x) or P0(x)2x . This ends the construction.

We check that requirements (8) are satisfied for every i. Suppose that∑
x P (x)2d ′

i (x) > 1. Then (9) holds for some s, hence

∑

x∈ω

P (x)2di (x) ≥
∑

x /∈Ri

Ps(x)2di,s (x) +
∑

x∈Ri

Ps+1(x)2di,s (x)

≥
∑

x /∈Ri

Ps(x) +
∑

x∈Ri

Ps(x)2d ′
i,s (x)−di,s (x)2di,s (x)

≥
∑

x /∈Ri

Ps(x) +
∑

x∈Ri

Ps(x)2d ′
i,s (x)

=
∑

x∈ω

Ps(x)2d ′
i,s (x)

> 1

hence (8) is satisfied. Clearly P ∈ �0
1 , so it only remains to show that P is a semi-

measure. Since the domains Ri partition ω we have
∑

x∈ω

P (x) =
∑

i

∑

x∈Ri

P (x)

≤
∑

i

∑

x∈Ri

P0(x)2x

=
∑

i

∑

x∈Ri

2−x−1

=
∑

x∈ω

2−x−1 = 1.
�
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5 Unbounded �0
1-Sum-Tests

We saw in Sect. 4 that there are �0
1 -semimeasures with no nontrivial sum-tests: all

�0
1 -sum-tests for m are bounded. We now prove that for �0

1 there are nontrivial,
unbounded, examples.

Proposition 5.1 For every �0
1 -semimeasure P there is a �0

1-order d that is a sum-
test for P .

Proof The idea is to monitor the tails of the sum
∑

x P (x), and estimate at every stage
the first element xi such that

∑
y≥xi

P (y) ≤ 2−i . The xi may grow, but eventually

come to a finite limit. If we know them we can add suitable large factors 2d(x) that
satisfy

∑
x P (x)2d(x) ≤ 1. If xi turned out to be wrong, we simply decrease d(x), but

we have to do this only finitely often. Formally the construction proceeds as follows.
Start with xi,0 = i. At stage s, when

∑

y≥xi,s

Ps(y) ≤ 2−i

let xi,s+1 = xi,s , otherwise set xj,s+1 = xj,s + 1 for all j ≥ i. For all x ∈ [xi,s, xi+1,s)

define

ds(x) = �log i�.
End of construction.

First note that lims xi,s = xi exists for every i since
∑

x P (x) converges. Since
xi,s is nondecreasing, ds(x) can only decrease, and since the limit exists it can do so
only finitely many times.4 Hence d ∈ �0

1, and it is unbounded since d(xi) = �log i�.
Finally,

∑

x∈ω

P (x)2d(x) ≤
∑

i∈ω

∑

x∈[xi ,xi+1)

P (x)2log i

≤
∑

i∈ω

i
∑

x≥xi

P (x)

≤
∑

i∈ω

2−i i = 2.

Therefore, d(x) − 1 defines a sumtest for P . �

We can improve Proposition 5.1 as follows:

4Note that since d0(x) = logx, ds(x) can change at most logx times, but the number of times xi,s changes
is not computably bounded. Hence the limit function d can in general be very slow growing, that is, be
dominated by any computable order.
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Proposition 5.2 For every �0
1 -semimeasure P and every computable sum-test d for

P , there is a �0
1-sum-test d ′ for P such that d ′ − d is unbounded. If d is an order

then d ′ can be chosen to be an order as well.

Proof The proof is similar to that of Proposition 5.1. The only difference is that we
now monitor the tails of the sum

∑
x P (x)2d(x), and estimate at every stage the first

element xi such that
∑

y≥xi
P (y)2d(y) ≤ 2−i . If this holds at stage s, we let

d ′
s(x) = ds(x) + �log i�

for all x ∈ [xi,s , xi+1,s). That lims xi,s exists follows because d is computable, so the
values Ps(x)2d(x) can only go up. If d is an order then d ′ is also an order. �

We now turn to the rate of growth of sum tests. If d is any (not necessarily �0
1)

m-sum-test then d does not grow very fast:

Proposition 5.3 If d is any m-sum-test then d is dominated by all �0
1-functions f

with
∑

x∈ω

2−f (x) < ∞.

This also holds on any computable subset R ⊆ ω: d(x) ≤ f (x) for almost every x ∈ R

whenever
∑

x∈R 2−f (x) < ∞.

Proof We prove only the first part, since the second is just an easy modification.
Given f as above, suppose that f does not dominate d , so that d(x) > f (x) infinitely
often. We produce a semimeasure P ∈ �0

1 such that d is not a sum-test for P . (Hence
by universality of m the same holds with m in place of P .) Simply put P(x) = 2−f (x)

for every x. Then
∑

x P (x) < ∞, so a suitable tail of P is a semimeasure. Without
loss of generality we may assume that P itself is a semimeasure. Since f ∈ �0

1 we
have P ∈ �0

1 . Finally,
∑

x∈ω

P (x)2d(x) ≥
∑

d(x)≥f (x)

P (x)2d(x) ≥
∑

d(x)≥f (x)

2−f (x)2f (x) = ∞,

hence d is not a P -sum-test. �

Corollary 5.4 If d is a �0
1-sum-test for m then

∑
x 2−d(x) = ∞.

Proof If we would have
∑

x 2−d(x) < ∞ then also
∑

x 2−(d(x)−1) < ∞, hence by
Proposition 5.3 the �0

1-function d(x) − 1 would dominate d , contradiction. �

Next we turn to the question when a sum-test can be replaced by an order domi-
nating it.

Proposition 5.5 There exist a computable measure P and a computable P -sum-test
d such that every (not necessarily effective) order d ′ dominating d is not a P -sum-
test.



258 Theory Comput Syst (2011) 48: 247–268

Proof To construct P and d , simply let d(x) be large when P(x) is small and vice
versa: For every x define

P(2x) = 0, d(2x) = x,

P (2x + 1) = 2−x−1, d(2x + 1) = 0.

Clearly P is a measure and d is a P -sum-test. If d ′ is an order dominating d then
d ′(2x + 1) ≥ d ′(2x) ≥ d(2x) = x, hence

∑
x P (x)2d ′(x) ≥ ∑

x 2−x−12x = ∞. �

Proposition 5.5 also holds if we require that P be strictly positive, with the same
proof idea. At this point we ask what happens when P = m and d ∈ �0

1:

Question 5.6 Suppose that d is a �0
1-sum-test for m. Is there always a �0

1-order d ′
dominating d that is a sum-test for m?

6 Universal �0
1-Sum-Tests

We have seen that for the universal �0
1 -semimeasure m there are only trivial �0

1 -sum-
tests, namely the bounded ones, and that there are nontrivial �0

1-sum-tests for m. In
this section we investigate if �0

1 -semimeasures can have a universal �0
1-sum-test.

We do not obtain a complete answer to this question, but only prove that no universal
�0

1-sum-test exists in specific cases. In particular we leave open the case of universal
�0

1 -semimeasures.

Proposition 6.1 Suppose that P is a computable semimeasure. Then there is no uni-
versal �0

1-sum-test for P .

Proof The idea is similar to that of Proposition 3.3. Given d ∈ �0
1 such that∑

x P (x)2d(x) ≤ 1, construct d ′ ∈ �0
1 such that for all i there is x such that d ′(x) ≥

d(x) + i. Given i, effectively search for x such that P(x)2d(x) < 2−2i (which is pos-
sible since such x exist and d ∈ �0

1), so that P(x)2d(x)+i < 2−i . For this x define
d ′(x) = d(x) + i, and set d ′(y) = d(y) for all y < x for which d ′(y) was not yet
defined. Then

∑

x∈ω

P (x)2d ′(x) ≤
∑

d ′(x)=d(x)

P (x)2d(x) +
∑

i∈ω

2−i < ∞,

hence d ′ − c, for some c large enough, is a �0
1-sum-test for P not dominated by d . �

Note that the proof of Proposition 6.1 in fact works for every �0
1-semimeasure P .

Proposition 6.2 If a �0
1 -semimeasure P has a coinfinite support, i.e. if P(x) = 0 for

infinitely many x, then there is no universal �0
1-sum-test for P .
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Proof Given a �0
1-sum-test d and a computable order f , define the function

d ′
t (x) =

{
dt (x) + f (x) if Pt (x) = 0

dt (x) otherwise.

Remark that d ′ = limd ′
t is again a �0

1-sum-test for P . If P has a coinfinite support
then d ′(x) − d(x) is unbounded, hence d is not �0

1-universal. �

Corollary 6.3 If P ∈ �0
1 does not have a strictly positive computable lower bound

(i.e. a computable Q such that P(x) ≥ Q(x) > 0 a.e. x) then there is no universal
�0

1-sum-test for P .

Proof This follows from Proposition 6.2, since if P ∈ �0
1 is a.e. strictly positive then

it has such a computable lower bound. �

Question 6.4 Let P be any �0
1 -semimeasure. Then there is no universal �0

1-sum-test
for P . In particular there is no universal �0

1-sum-test for m.5

In the remaining part of this section we make some further remarks about universal
sum-tests. We first prove that there are �0

1 -semimeasures P for which the class of
computable sum-tests has a universal element. In fact, every computable function is
such a universal sum-test:

Proposition 6.5 Given any computable function d : ω → ω, the �0
1 -semimeasure

P(x) = m(x)2−d(x)

satisfies:

• d is (additively) universal for the class

{
d ′ computable : d ′ is P -sum-test

}
,

• P is (multiplicatively) universal for the class

{
P ′ ∈ �0

1 : d is P ′-sum-test
}
.

Proof For the first item, suppose that d ′ is a sum-test for P that is not additively
dominated by d , i.e. d ′ − d is unbounded. Then P ′(x) = m(x)2d ′(x)−d(x) is a �0

1 -
semimeasure that is not multiplicatively dominated by m, contradicting Theorem 3.2.
For the second item, suppose that P ′ is a �0

1 -semimeasure for which d is a sum-test.
Then Q(x) = P ′(x)2d(x) is a �0

1 -semimeasure, hence by Theorem 3.2, P(x)2d(x) =

5Note added in proof: There is now a draft by the first author containing a concept proof solving the second
part of this question for m in the affirmative.
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m(x) multiplicatively dominates Q(x), and hence P(x) multiplicatively dominates
P ′(x). �

Note that the proof of Proposition 6.5 does not work for �0
1-functions: For d

constant we obtain the universal semimeasure m, but by Proposition 5.1 there are
�0

1-functions d ′ dominating every constant that are still sum-tests for m, hence d is
not universal. In fact, Proposition 5.2 shows that Proposition 6.5 fails for �0

1: There
are d ∈ �0

1 that are not �0
1-universal for any P ∈ �0

1 , namely any computable d . In
Proposition 6.6 we show that, given a computable d , there is even a uniform witness
d ′ showing that d is not �0

1-universal.
Say that a given semimeasure P splits two functions d and d ′ if d is a P -sum-test

and
∑

x P (x)2d ′(x) = ∞ (in that order). Proposition 4.3 says that every pair of com-
putable d and d ′ with d ′ − d unbounded can be split by a computable semimeasure.

Proposition 6.6 For any computable d : ω → ω, there is d ′ ∈ �0
1 such that d ′ − d is

unbounded and such that no �0
1 -semimeasure splits d and d ′.

Proof Let P(x) = m(x)2−d(x) be as in Proposition 6.5. Let d ′(x) = d(x) + b(x)

where b is the unbounded sum-test for m as constructed in Proposition 5.1. Suppose
that Q is a �0

1 -semimeasure and that d is a sum-test for Q. Then P dominates Q by
Proposition 6.5. If q > 0 is such that qQ(x) < P (x) then

∑

x

Q(x)2d ′(x) ≤ 1

q

∑

x

P (x)2d ′(x)

= 1

q

∑

x

m(x)2−d(x)2d(x)+b(x)

≤ 1

q
< ∞.

Hence Q does not split d and d ′. �

7 Independence Tests

Recall the definition of independence test from Sect. 1. The results about sum-tests
from previous sections also hold, mutatis mutandis, for the binary case of indepen-
dence tests, with the same proofs except for Proposition 6.5. In particular, in the
case of P = Q = m, Corollary 4.2 now states that there are no unbounded com-
putable and �0

1 -independence tests. There exist unbounded �0
1 tests and we will

show that there is no �0
1-universal test (Theorem 7.3). Note that this answers the

binary analogue of Question 6.4. As a corollary to the proof it follows that for
all enumerable semimeasures P,Q, a �0

1-independence test for (P,Q) exist, with
d(x, y) ≥ l(x) − O(log l(x)) for infinitely many binary strings x, y with length
l(x) = l(y), and for each �0

1-independence test d for (m,m), there is a test d ′ such
that d ′(x, y)− d(x, y) exceeds l(x)−O(log l(x)) infinitely often. Since P = Q = m
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throughout this section, “independence test” will abbreviate “independence test for
m and m”.

We start with an informal argument why there is no �0
1-universal independence

test. Consider the set

D = {
(x, y) : l(x) = l(y) ∧ x, y random and dependent

}
.

D is a natural example of a d.c.e. set, that is, a set that is the difference of two c.e.
sets, in this case the set of pairs (x, y) with x and y dependent minus the set of pairs
where one of x and y is not random. Now suppose that d is a �0

1 independence
test. As pointed out in Sect. 1, it follows directly from (2) that the set of pairs x, y

where d(x, y) is large, is small in measure. Thus d provides us with an effective
method for detecting dependencies in such pairs. Now suppose that for all (x, y) ∈ D,
d(x, y) would be large. Then we would have that x and y are dependent if and only if
d(x, y) is large. Since the latter is a �0

1-event, we obtain that D ∈ �0
1, a contradiction.

This means that there are (x, y) ∈ D such that d(x, y) is small, that is, x and y

are dependent but d does not see this. Since D is a set of small measure, we could
construct a new d ′ with d ′ higher on such pairs (thus showing that d is not universal).
To recognize such pairs, we have to recognize more dependencies than d does by
allowing for more computation time. Some pairs (x, y) may fall through at a later
time when it turns out that one of x and y is not random, but if we allow for enough
computation time we will also find pairs in D that were not recognized by d , and
hence we can show that d is not universal. The proof below is more informative,
since it shows that the functions di of the specific form defined there form a strict
hierarchy of independence tests, and that every independence test is dominated by
some di .

In this section we use Kolmogorov complexity. For general background we refer
to Li and Vitányi [10] and the forthcoming Downey and Hirschfeldt [4]. We fix our
notation for this section. Let 〈x, y〉 denote a computable bijective mapping from ω ×
ω to ω. Let � be an optimal universal prefix-free Turing machine. �s(p|z)↓ = x if
and only if �(p|z) outputs x in less than s steps using an auxiliary tape for string
z. The prefix-free complexity functions are Ks(x|z) = min{l(p) : �s(p|z)↓ = x},
K(x|z) = lims Ks(x|z), K(x) = K(x|∅), and K(x,y) = K(〈x, y〉). The complexity
of a partial computable function f is defined by

K(f ) = min{l(p) : ∀x ∈ domf [�(p|x)↓ = f (x)]}.
The algorithmic complexity of a one-argument �0

1 -function or �0
1-function d(x) is

given by the lowest complexity K(dt (x)) of a two-argument function dt (x) that is the
computable approximation of d(x) as t → ∞. f (x) ≤+ g(x) or f (x) ≤ g(x)+O(1)

means that there exists a constant c such that for all x as indicated or allowed in
the context of the proof, we have: f (x) ≤ g(x) + c. f (x) =+ g(x) means f (x) ≤+
g(x) and g(x) ≤+ f (x). Similarly for the O(log) notation. Theorem 3.2 stated the
existence of a universal �0

1 -semimeasure. The Coding Theorem [10] states that the
function

m(x) = 2−K(x) (10)
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is a multiplicatively universal �0
1 -semimeasure. Let l(x) be the length of the number

x, seen as a finite binary string, and let from now on n be short for l(x).

Definition 7.1

• R = {(x, y) : l(x) = l(y) ∧ K(x),K(y) ≥ n − logn}.
• A function f R-dominates g (notation f

R

� g) if

∃c∀∞(x, y) ∈ R
[
f (x, y) + c logn ≥ g(x, y)

]
.

• Define for each i the total functions:

T i(n) = max{�(p|n) : l(p) ≤ i, λm.�(p|m) is total},
Ki(x, y) = KT i(l(〈x,y〉))(x, y),

Ki(x) = Ki(x,∅),

di(x, y) = K(x) + K(y) − Ki(x, y).

Note that domination implies R-domination and that R-domination defines a semi-
order on the binary functions. The function T i(n) is ∅′′-computable, but for fixed i it
is computable. Hence for fixed i also Ki(x, y) is computable.

There is a prefix-free code such that every n ∈ ω is encoded with length 2 logn.
Let z be the binary expansion of n. Remark that l(z) = �logn�. The code word

z00z10z20 . . . z�logn�1

for n has length 2 logn. Remark that the set of these code words is prefix-free. The
time needed to decode this sequence is bounded by a computable function of n. Com-
bining a prefix-free code for n with a prefix-free code for x given n results in a
prefix-free code for x. Therefore, without loss of generality it can be assumed about
the universal machine � implicit in K that:

∃c∀i ≥ c∀x[Ki+c(x) − 2 logn − c ≤ Ki(x|n) ≤ Ki(x)]. (11)

Lemma 7.2 For all i, di is a �0
1-independence test.

Proof Since K is a �0
1-function, di is �0

1. Clearly di(x, y) is increasing in i and
limi K

i(x, y) = K(x,y), therefore:

di(x, y) ≤ K(x) + K(y) − K(x,y),

and
∑

x,y

m(x)m(y)2di (x,y) ≤
∑

x,y

2−K(x,y) ≤ 1. �

Theorem 7.3 There is no universal �0
1-independence test.
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Proof Because domination implies R-domination, the absence of a universal element
in the set of �0

1 independence tests follows from the absence of a universal element
with respect to R-domination: if there were a �0

1-independence test dominating all
other �0

1-independence tests, it would also R-dominate any �0
1-independence test.

We show in two steps that this is impossible

• Lemma 7.5 For all �0
1-independence tests d , there is an i such that di

R

� d .

• Lemma 7.9 For all i, there is a j such that di � R� dj .

Suppose d were R-universal, then by Lemma 7.5 and by transitivity of R-domination,
there should also be an R-universal element among the set of di, i ∈ ω. However this
is not possible by Lemma 7.9. �

In the proof of Lemma 7.5 and 7.6 the following lemma is used.

Lemma 7.4 For all n, let P(x, y|n) > 0 be a positive computable semimeasure over
all binary strings x,y, with l(x) = l(y) = n. If for some i, there is a binary string p

satisfying:

�T i(n)(p|x, y,n)↓ = �− logP(x, y|n)�,
then

Ki+O(1)(x, y|n) ≤+ l(p) − logP(x, y|n).

Proof For any computable semimeasure P , Shannon-Fano coding [10] provides a
prefix-free code for all (x, y) of length n with maximal encoding length
− logP(x, y|n) + O(1). To decode the Shannon-Fano code of (x, y), a fixed al-
gorithm needs to be executed that requires an amount of computation steps bounded
by f (n,T i(n)) ≤ T i+O(1)(n) for some computable function f . The encoding of
(x, y) contains two parts: the encoding of P with length l(p), and the corresponding
Shannon-Fano code. �

Lemma 7.5 For all �0
1-independence tests d , there is an i such that d

R

� di .

Proof By universality of m there exists a constant c such that

− logm(x) ≤ n + 2 logn + c. (12)

For any n, the values ds(u, v) can be evaluated for increasing s and all (u, v) with
l(u) = l(v) = n until a time s = τ(n) is found such that

∑

l(u)=l(v)=n

2ds(u,v)−2n−4 logn−2c ≤ 1.

Such s always exists because of (2), (10) and (12). Hence the “code length” function

cl(u, v) = −ds(u, v) + 2n + 4 logn + 2c
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defines a semimeasure P(u, v|n) = 2−cl(u,v). The function τ(n) that evaluates s for
each n is computable, and by the above construction it has complexity K(τ) ≤
K(d) + O(1), so that τ(n) ≤ T K(d)+O(1)(n). Therefore, a program p exists that
computes �− logP(u, v|n)� from n,u, v within time T K(d)+O(1)(n), and l(p) ≤+
K(d). Let c be the constant from inequality (11). Lemma 7.4 shows that for some
i = K(d) + c + O(1), we have:

Ki−c(x, y|n) ≤+ K(d) + 2n + 4 logn − ds(x, y).

Inequality (11) shows:

Ki(x, y) ≤ 2n − ds(x, y) + O(logn).

Hence for (x, y) ∈ R,

di(x, y) = K(x) + K(y) − Ki(x, y)

≥ 2(n − logn) − Ki(x, y)

≥ ds(x, y) − O(logn)

≥ d(x, y) − O(logn). �

Notation From now on all constants implicit in the O() notation do not depend on i,
whereas constants implicit in the ≤+ notation may be dependent on i. For the proof
of Lemma 7.9 we need Lemmas 7.6, 7.7 and 7.8.

Lemma 7.6 For almost all i and all x, y with l(x) = l(y) = n, we have:

Ki+O(1)(x|n) + Ki+O(1)(y|x)

≤+ Ki(x, y|n)

≤+ Ki−O(1)(x|n) + Ki−O(1)(y|x).

Proof The second inequality follows from combining minimal programs from the de-
finition of Ki−O(1)(x|n) and Ki−O(1)(y|x) into one program producing 〈x, y〉 from
n in time T i(n). It remains to prove the first inequality. For all i large enough, we do
this by defining a semimeasure P(x, y|n) over all pairs of strings of length n:

P(x, y|n) = 2−Ki(x,y|n). (13)

The computable marginal and conditional semimeasures of P are:

P(x|n) =
∑

u:l(u)=n

P (x,u|n),

P (y|x) = P(x, y|n)/P (x|n). (14)

Both measures are computable and can be evaluated in time T i+O(1)(n). Remark that
the Kolmogorov complexity of these measures is bounded by K(T i) + O(1) ≤+ 0,
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since constants that only depend on i are absorbed in the ≤+ notation. From
Lemma 7.4 it follows that:

Ki+O(1)(x|n) ≤+ − logP(x|n),
(15)

Ki+O(1)(y|x) ≤+ − logP(y|x).

The first inequality of the lemma follows from combining (13), (14) and (15). �

Lemma 7.7 For almost all i and n, there exist strings x and a such that:

• l(a) = l(x) = n

• Ki+O(1)(a|n) ≤+ 0
• K(x|n) ≥+ n

• Ki(a|x) ≥+ n.

Proof Let c be a large enough constant. Let a be the lexicographic first string of
length n that cannot be produced from n by a program of length less than n in time
less than T i+c(n). There is always such a string a. Obviously this string can be pro-
duced by running all possible programs for T i+c(n) steps, and searching for the lex-
icographic first string of length n that not has been output. This program needs a
computation time bounded by T i+2c(n), for c large enough. To produce a from n in
time T i+2c(n), it suffices to have a description of T i+c and execute a constant amount
of instructions. By this, the second condition is satisfied, since K(T i+c) is absorbed
in the ≤+ notation.

There is at least one binary string of length n with K(x|a) ≥ n. Pick one such
string to be x. Note that K(x|n) ≥+ K(x|a) ≥ n, and by this the third condition is
satisfied. By definition of a and x we find:

2n ≤+ Ki+c(a|n) + Ki+c(x|a).

Let c1 and c2 correspond to the O(1) constants in Ki+O(1) and Ki−O(1) from
Lemma 7.6. Apply Lemma 7.6 for i → i + c1, and assume c ≥ c1 + c2:

2n ≤+ Ki(x|n) + Ki(a|x).

Now it holds that K(x|n) ≤+ n [10], hence for i large enough we have Ki(x|n) ≤+ n,
and

2n ≤+ n + Ki(a|x).

By this, the last condition is satisfied. �

Lemma 7.8 For any function f and any set N , if

∃c∃∞n ∈ N [n − c logn < f (n)],
then

∀c∃∞n ∈ N [c logn < f (n)].



266 Theory Comput Syst (2011) 48: 247–268

Proof Let c be a constant, and ni , i ∈ ω be an infinite increasing sequence witnessing
the first expression. For any c′, take j large enough such that nj > (c + c′) lognj .
Then the infinite sequence ni , i ≥ j , satisfies the second inequality. �

Lemma 7.9 For all i, there is a j , such that di � R� dj .

Proof We prove that there exists a constant c such that for all i ≥ c, di−c � R� di+c. By
the converse of the definition of R-domination it needs to be shown that:

∀c′∃∞(x, y) ∈ R
[
di−c(x, y) + c′ logn < di+c(x, y)

]
.

By Lemma 7.8, it suffices to prove that

∃c′∃∞(x, y) ∈ R
[
di−c(x, y) + n − c′ logn < di+c(x, y)

]
. (16)

For any n large enough, pick x and a as in Lemma 7.7, and let y = XOR(x, a), where
XOR is the bitwise exclusive-or operator. We now derive inequalities (17), (19), and
(20).

• Note that XOR(y, a) = XOR(XOR(x, a), a) = x. This provides a program for x

given a and y. It follows that K(x) ≤+ K(y) + K(a|y) and hence:

K(y) ≥+ K(x) − K(a|y)

≥+ K(x) − Ki+O(1)(a|n)

≥+ K(x)

≥+ n. (17)

It follows that (x, y) ∈ R for n large enough.
• Since XOR(y, x) = a, it follows that any program computing y from x, also com-

putes a from x. The extra time for this computation is bounded by some com-
putable function. Therefore, for some c′ large enough:

Ki−c′
(y|x) ≥+ Ki(a|x) ≥+ n. (18)

Furthermore we have Ki(x) ≥+ n. Hence, for c − c′ large enough, Lemma 7.6 can
be applied with i → i − c. Inequalities (11) and (18) imply:

Ki−c(x, y) ≥+ Ki−c′
(x|n) + Ki−c′

(y|x) − O(logn)

≥+ K(x|n) + n − O(logn)

≥+ 2n − O(logn). (19)

• Since XOR(x, a) = y, it follows for c′ large enough, that

Ki+2c′
(y|x) ≤+ Ki+c′

(a|x) ≤+ 0.
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The last inequality follows from the second condition of Lemma 7.7. Remark that
for i large enough, Ki+2c′

(x) ≤+ n + 2 logn. Assuming c − 2c′ large enough, a
bound for Ki+c(x, y) can be derived using Lemma 7.6 with i → i + c:

Ki+c(x, y) ≤+ Ki+2c′
(x) + Ki+2c′

(y|x)

≤+ n + O(logn). (20)

Combining inequalities (17), (19), (20), and K(x) ≥+ n, we obtain

di−c(x, y) ≤+ K(x) + K(y) − Ki−c(x, y)

≤+ O(logn),

di+c(x, y) ≥+ K(x) + K(y) − Ki+c(x, y)

≥+ n − O(logn).

Hence the constructed pair (x, y) ∈ R satisfies

di−c(x, y) + n − O(logn) ≤+ di+c(x, y). (21)

Such a pair can be constructed for every large enough i and n. This proves state-
ment (16). �

Corollary 7.10 Algorithmic mutual information

I (x;y) = K(x) + K(y) − K(x,y)

is an independence test that R-dominates all �0
1-independence tests.

Proof Because K(x,y) = infi{Ki(x, y)} it follows that:

I (x;y) = sup
i

{di(x, y)}.

By Lemma 7.5 it R-dominates all �0
1-independence tests. �

Corollary 7.11 There exists a constant c, such that for all �0
1 -semimeasures P,Q,

there exist a �0
1-independence test d for P,Q such that d(x, y) ≥ n − c logn for

infinitely many (x, y) with l(x) = l(y) = n.

Proof For some i large enough, there are infinitely many x, y with l(x) = l(y) and

di(x, y) ≥ n − c logn − ci,

where ci is the constant implicit in the ≤+ notation of (21). By universality of m,
we have that P(x) ≤ 2cP m(x) and Q(x) ≤ 2cQm(x), for some constants cP , cQ. Re-
mark that d(x) = di(x) − cP − cQ satisfies inequality (2), and is therefore a �0

1-
independence test for P,Q. For logn > ci + cP + cQ and infinitely many x, y with
l(x) = l(y) we have:

d(x, y) ≥ n − (c + 1) logn. �
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From the proof it also follows that

Corollary 7.12 There is a constant c, such that for all �0
1-independence tests d ,

there is a �0
1-independence test d ′ with

d ′(x, y) − d(x, y) ≥ n − c logn,

for infinitely many x, y with l(x) = l(y) = n.

Proof Note that for i = K(d) + O(1) we have

di(x, y) − d(x, y) ≥ n − c logn − ci .

Hence for all n with logn ≥ ci we have

di(x, y) − d(x, y) ≥ n − (c + 1) logn. �
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