Skip to main content

Advertisement

Log in

DXA-Based Measurements in Diabetes: Can They Predict Fracture Risk?

  • Review
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

In the absence of a fragility fracture, osteoporosis is usually diagnosed from bone mineral density (BMD) measured by dual-energy X-ray absorptiometry (DXA). Osteoporosis is an increasingly prevalent disease, as is diabetes [in particular type 2 diabetes (T2D)], in part due to aging populations worldwide. It has been suggested that an increased risk of fracture may be another complication ensuing from longstanding diabetes. The purpose of this review is to concentrate on skeletal parameters and techniques readily available from DXA scanning, and their utility in routine clinical practice for predicting fracture risk. In addition to BMD, other applications and measures from DXA include trabecular bone score (TBS), skeletal geometry and DXA-based finite-element analysis, vertebral fracture assessment, and body composition. In type 1 diabetes (T1D), BMD and FRAXR (when secondary osteoporosis is included without BMD) only partially account for the excess risk of fracture in T1D. Consistent data exist to show that BMD and FRAXR can be used to stratify fracture risk in T2D, but do not account for the increased risk of fracture. However, several adjustments to the FRAX score can be made as proxies for T2D to inform the use of FRAX by primary care practitioners. Examples include using the rheumatoid arthritis input (as a proxy for T2D), lumbar spine TBS (to adjust FRAX probability) or an altered hip T-score (lowered by 0.5 units). These adjustments can improve fracture risk prediction in T2D and help to avoid systematically underestimating the risk of osteoporosis-related fractures in those with diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Reprinted with permission [95]

Similar content being viewed by others

References

  1. Kanis JA, McCloskey EV, Johansson H, Oden A, Melton LJ 3rd, Khaltaev N (2008) A reference standard for the description of osteoporosis. Bone 42(3):467–475

    Article  CAS  PubMed  Google Scholar 

  2. Johnell O, Kanis JA, Oden A et al (2005) Predictive value of BMD for hip and other fractures. J Bone Miner Res 20(7):1185–1194

    Article  PubMed  Google Scholar 

  3. Marshall D, Johnell O, Wedel H (1996) Meta-analysis of how well measures of bone mineral density predict occurrence of osteoporotic fractures. BMJ (Clin Res Ed.) 312(7041):1254–1259

    Article  CAS  Google Scholar 

  4. Cole ZA, Dennison EM, Cooper C (2008) Osteoporosis epidemiology update. Curr Rheumatol Rep 10(2):92–96

    Article  PubMed  Google Scholar 

  5. Menke A, Casagrande S, Geiss L, Cowie CC (2015) Prevalence of and trends in diabetes among adults in the United States, 1988–2012. JAMA 314(10):1021–1029

    Article  CAS  PubMed  Google Scholar 

  6. Janghorbani M, Van Dam RM, Willett WC, Hu FB (2007) Systematic review of type 1 and type 2 diabetes mellitus and risk of fracture. Am J Epidemiol 166(5):495–505

    Article  PubMed  Google Scholar 

  7. Vestergaard P (2007) Discrepancies in bone mineral density and fracture risk in patients with type 1 and type 2 diabetes–a meta-analysis. Osteoporos Int 18(4):427–444

    Article  CAS  PubMed  Google Scholar 

  8. Ma L, Oei L, Jiang L et al (2012) Association between bone mineral density and type 2 diabetes mellitus: a meta-analysis of observational studies. Eur J Epidemiol 27(5):319–332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kume S, Kato S, Yamagishi S et al (2005) Advanced glycation end-products attenuate human mesenchymal stem cells and prevent cognate differentiation into adipose tissue, cartilage, and bone. J Bone Miner Res 20(9):1647–1658

    Article  CAS  PubMed  Google Scholar 

  10. Sanguineti R, Storace D, Monacelli F, Federici A, Odetti P (2008) Pentosidine effects on human osteoblasts in vitro. Ann N Y Acad Sci 1126:166–172

    Article  CAS  PubMed  Google Scholar 

  11. Burghardt AJ, Issever AS, Schwartz AV et al (2010) High-resolution peripheral quantitative computed tomographic imaging of cortical and trabecular bone microarchitecture in patients with type 2 diabetes mellitus. J Clin Endocrinol Metab 95(11):5045–5055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Pritchard JM, Giangregorio LM, Atkinson SA et al (2012) Association of larger holes in the trabecular bone at the distal radius in postmenopausal women with type 2 diabetes mellitus compared to controls. Arthritis Care Res 64(1):83–91

    Article  Google Scholar 

  13. Petit MA, Paudel ML, Taylor BC et al (2010) Bone mass and strength in older men with type 2 diabetes: the Osteoporotic Fractures in Men Study. J Bone Miner Res 25(2):285–291

    Article  PubMed  Google Scholar 

  14. Bolotin HH, Sievanen H, Grashuis JL (2003) Patient-specific DXA bone mineral density inaccuracies: quantitative effects of nonuniform extraosseous fat distributions. J Bone Miner Res 18(6):1020–1027

    Article  CAS  PubMed  Google Scholar 

  15. Hangartner TN, Johnston CC (1990) Influence of fat on bone measurements with dual-energy absorptiometry. Bone Miner 9(1):71–81

    Article  CAS  PubMed  Google Scholar 

  16. Yu EW, Thomas BJ, Brown JK, Finkelstein JS (2012) Simulated increases in body fat and errors in bone mineral density measurements by DXA and QCT. J Bone Miner Res 27(1):119–124

    Article  PubMed  Google Scholar 

  17. Yu EW, Bouxsein ML, Roy AE et al (2014) Bone loss after bariatric surgery: discordant results between DXA and QCT bone density. J Bone Miner Res 29(3):542–550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Dawson-Hughes B, Dallal GE (1990) Effect of radiographic abnormalities on rate of bone loss from the spine. Calcif Tissue Int 46(4):280–281

    Article  CAS  PubMed  Google Scholar 

  19. Greenspan SL, Maitland LA, Myers ER, Krasnow MB, Kido TH (1994) Femoral bone loss progresses with age: a longitudinal study in women over age 65. J Bone Miner Res 9(12):1959–1965

    Article  CAS  PubMed  Google Scholar 

  20. Johansson H, Kanis JA, Oden A et al (2014) A meta-analysis of the association of fracture risk and body mass index in women. J Bone Miner Res 29(1):223–233

    Article  PubMed  Google Scholar 

  21. Kayath MJ, Tavares EF, Dib SA, Vieira JG (1998) Prospective bone mineral density evaluation in patients with insulin-dependent diabetes mellitus. J Diabetes Complicat 12(3):133–139

    Article  CAS  PubMed  Google Scholar 

  22. Krakauer JC, McKenna MJ, Buderer NF, Rao DS, Whitehouse FW, Parfitt AM (1995) Bone loss and bone turnover in diabetes. Diabetes 44(7):775–782

    Article  CAS  PubMed  Google Scholar 

  23. Miazgowski T, Czekalski S (1998) A 2-year follow-up study on bone mineral density and markers of bone turnover in patients with long-standing insulin-dependent diabetes mellitus. Osteoporos Int 8(5):399–403

    Article  CAS  PubMed  Google Scholar 

  24. Miazgowski T, Pynka S, Noworyta-Zietara M, Krzyzanowska-Swiniarska B, Pikul R (2007) Bone mineral density and hip structural analysis in type 1 diabetic men. Eur J Endocrinol/Eur Fed Endocr Soc 156(1):123–127

    Article  CAS  Google Scholar 

  25. Hamilton EJ, Rakic V, Davis WA et al (2012) A five-year prospective study of bone mineral density in men and women with diabetes: the Fremantle Diabetes Study. Acta Diabetol 49(2):153–158

    Article  CAS  PubMed  Google Scholar 

  26. Maser RE, Kolm P, Modlesky CM, Beck TJ, Lenhard MJ (2012) Hip strength in adults with type 1 diabetes is associated with age at onset of diabetes. J Clin Densitom 15(1):78–85

    Article  PubMed  Google Scholar 

  27. Joshi A, Varthakavi P, Chadha M, Bhagwat N (2013) A study of bone mineral density and its determinants in type 1 diabetes mellitus. J osteoporos 2013:397814

    Article  PubMed  PubMed Central  Google Scholar 

  28. Mastrandrea LD, Wactawski-Wende J, Donahue RP, Hovey KM, Clark A, Quattrin T (2008) Young women with type 1 diabetes have lower bone mineral density that persists over time. Diabetes Care 31(9):1729–1735

    Article  PubMed  PubMed Central  Google Scholar 

  29. Liu EY, Wactawski-Wende J, Donahue RP, Dmochowski J, Hovey KM, Quattrin T (2003) Does low bone mineral density start in post-teenage years in women with type 1 diabetes? Diabetes Care 26(8):2365–2369

    Article  PubMed  Google Scholar 

  30. Strotmeyer ES, Cauley JA, Orchard TJ, Steenkiste AR, Dorman JS (2006) Middle-aged premenopausal women with type 1 diabetes have lower bone mineral density and calcaneal quantitative ultrasound than nondiabetic women. Diabetes Care 29(2):306–311

    Article  PubMed  Google Scholar 

  31. Zhukouskaya VV, Eller-Vainicher C, Vadzianava VV et al (2013) Prevalence of morphometric vertebral fractures in patients with type 1 diabetes. Diabetes Care 36(6):1635–1640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Leidig-Bruckner G, Grobholz S, Bruckner T, Scheidt-Nave C, Nawroth P, Schneider JG (2014) Prevalence and determinants of osteoporosis in patients with type 1 and type 2 diabetes mellitus. BMC Endocr Disord 14:33

    Article  PubMed  PubMed Central  Google Scholar 

  33. de Liefde II, van der Klift M, de Laet CE, van Daele PL, Hofman A, Pols HA (2005) Bone mineral density and fracture risk in type-2 diabetes mellitus: the Rotterdam Study. Osteoporos Int 16(12):1713–1720

    Article  PubMed  Google Scholar 

  34. Schwartz AV, Vittinghoff E, Bauer DC et al (2011) Association of BMD and FRAX score with risk of fracture in older adults with type 2 diabetes. JAMA 305(21):2184–2192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Napoli N, Strotmeyer ES, Ensrud KE et al (2014) Fracture risk in diabetic elderly men: the MrOS study. Diabetologia 57(10):2057–2065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bonds DE, Larson JC, Schwartz AV et al (2006) Risk of fracture in women with type 2 diabetes: the Women’s Health Initiative Observational Study. J Clin Endocrinol Metabol 91(9):3404–3410

    Article  CAS  Google Scholar 

  37. Leslie WD, Morin SN, Lix LM, Majumdar SR (2014) Does diabetes modify the effect of FRAX risk factors for predicting major osteoporotic and hip fracture? Osteoporos Int 25(12):2817–2824

    Article  CAS  PubMed  Google Scholar 

  38. Broy SB, Cauley JA, Lewiecki ME, Schousboe JT, Shepherd JA, Leslie WD (2015) Fracture risk prediction by non-BMD DXA measures: the 2015 iscd official positions part 1: hip geometry. J Clin Densitom 18(3):287–308

    Article  PubMed  Google Scholar 

  39. Pisharody S, Phillips R, Langton CM (2008) Sensitivity of proximal femoral stiffness and areal bone mineral density to changes in bone geometry and density. Proc Inst Mech Eng [H] 222(3):367–375

    Article  CAS  Google Scholar 

  40. Naylor KE, McCloskey EV, Eastell R, Yang L (2013) Use of DXA-based finite element analysis of the proximal femur in a longitudinal study of hip fracture. J Bone Miner Res 28(5):1014–1021

    Article  PubMed  Google Scholar 

  41. Vaananen SP, Grassi L, Flivik G, Jurvelin JS, Isaksson H (2015) Generation of 3D shape, density, cortical thickness and finite element mesh of proximal femur from a DXA image. Med Image Anal 24(1):125–134

    Article  PubMed  Google Scholar 

  42. Ferdous Z, Luo Y (2015) Study of hip fracture risk by DXA-based patient-specific finite element model. Bio-Med Mater Eng 25(2):213–220

    Google Scholar 

  43. Leslie WD, Lix LM, Morin SN et al (2015) Hip axis length is a FRAX- and bone density-independent risk factor for hip fracture in women. J Clin Endocrinol Metab 100(5):2063–2070

    Article  CAS  PubMed  Google Scholar 

  44. Leslie WD, Lix LM, Morin SN et al (2016) Adjusting hip fracture probability in men and women using hip axis length: the Manitoba bone density database. J Clin Densitom 19(3):326–331

    Article  PubMed  Google Scholar 

  45. Akeroyd JM, Suarez EA, Bartali B et al (2014) Differences in skeletal and non-skeletal factors in a diverse sample of men with and without type 2 diabetes mellitus. J Diabetes Complicat 28(5):679–683

    Article  PubMed  Google Scholar 

  46. Yang L, Palermo L, Black DM, Eastell R (2014) Prediction of incident hip fracture with the estimated femoral strength by finite element analysis of DXA Scans in the study of osteoporotic fractures. J Bone Miner Res 29(12):2594–2600

    Article  PubMed  PubMed Central  Google Scholar 

  47. Yang L, Peel N, Clowes JA, McCloskey EV, Eastell R (2009) Use of DXA-based structural engineering models of the proximal femur to discriminate hip fracture. J Bone Miner Res 24(1):33–42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Garg R, Chen Z, Beck T et al (2012) Hip geometry in diabetic women: implications for fracture risk. Metab Clin Exp 61(12):1756–1762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Moseley KF, Dobrosielski DA, Stewart KJ, Sellmeyer DE, Jan De Beur SM (2011) Lean mass predicts hip geometry in men and women with non-insulin-requiring type 2 diabetes mellitus. J Clin Densitom 14(3):332–339

    Article  PubMed  PubMed Central  Google Scholar 

  50. Hamilton CJ, Jamal SA, Beck TJ et al (2013) Evidence for impaired skeletal load adaptation among Canadian women with type 2 diabetes mellitus: insight into the BMD and bone fragility paradox. Metab Clin Exp 62(10):1401–1405

    Article  CAS  PubMed  Google Scholar 

  51. Ishii S, Cauley JA, Crandall CJ et al (2012) Diabetes and femoral neck strength: findings from the hip strength across the menopausal transition study. J Clin Endocrinol Metab 97(1):190–197

    Article  CAS  PubMed  Google Scholar 

  52. Hadjidakis DJ, Raptis AE, Sfakianakis M, Mylonakis A, Raptis SA (2006) Bone mineral density of both genders in Type 1 diabetes according to bone composition. J Diabetes Complicat 20(5):302–307

    Article  PubMed  Google Scholar 

  53. McCloskey EV, Oden A, Harvey NC et al (2015) Adjusting fracture probability by trabecular bone score. Calcif Tissue Int 96(6):500–509

    Article  CAS  PubMed  Google Scholar 

  54. Silva BC, Broy SB, Boutroy S, Schousboe JT, Shepherd JA, Leslie WD (2015) Fracture risk prediction by non-BMD DXA measures: the 2015 ISCD official positions part 2: trabecular bone score. J Clin Densitom 18(3):309–330

    Article  PubMed  Google Scholar 

  55. Leslie WDBN (2016) Spine bone texture and the trabecular bone score (TBS). In: Preedy VBPaVR (ed) Biomarkers in disease methods, discoveries and applications. Springer, New York

    Google Scholar 

  56. Hans D, Goertzen AL, Krieg MA, Leslie WD (2011) Bone microarchitecture assessed by TBS predicts osteoporotic fractures independent of bone density: the Manitoba study. J Bone Miner Res 26(11):2762–2769

    Article  PubMed  Google Scholar 

  57. Leslie WD, Aubry-Rozier B, Lamy O, Hans D (2013) TBS (trabecular bone score) and diabetes-related fracture risk. J Clin Endocrinol Metab 98(2):602–609

    Article  CAS  PubMed  Google Scholar 

  58. McCloskey EV, Oden A, Harvey NC et al (2016) A meta-analysis of trabecular bone score in fracture risk prediction and its relationship to FRAX. J Bone Miner Res 31(5):940–948

    Article  PubMed  Google Scholar 

  59. Neumann T, Lodes S, Kastner B et al (2016) Trabecular bone score in type 1 diabetes-a cross-sectional study. Osteoporos Int 27(1):127–133

    Article  CAS  PubMed  Google Scholar 

  60. Dhaliwal R, Cibula D, Ghosh C, Weinstock RS, Moses AM (2014) Bone quality assessment in type 2 diabetes mellitus. Osteoporos Int 25(7):1969–1973

    Article  CAS  PubMed  Google Scholar 

  61. Kim JH, Choi HJ, Ku EJ et al (2015) Trabecular bone score as an indicator for skeletal deterioration in diabetes. J Clin Endocrinol Metab 100(2):475–482

    Article  CAS  PubMed  Google Scholar 

  62. Ferrar L, Jiang G, Adams J, Eastell R (2005) Identification of vertebral fractures: an update. Osteoporos Int 16(7):717–728

    Article  CAS  PubMed  Google Scholar 

  63. Strotmeyer ES, Cauley JA, Schwartz AV et al (2005) Nontraumatic fracture risk with diabetes mellitus and impaired fasting glucose in older white and black adults: the health, aging, and body composition study. Arch Intern Med 165(14):1612–1617

    Article  PubMed  Google Scholar 

  64. Crans GG, Genant HK, Krege JH (2005) Prognostic utility of a semiquantitative spinal deformity index. Bone 37(2):175–179

    Article  PubMed  Google Scholar 

  65. Rosen HN, Vokes TJ, Malabanan AO et al (2013) The official positions of the international society for clinical densitometry: vertebral fracture assessment. J Clin Densitom 16(4):482–488

    Article  PubMed  Google Scholar 

  66. Chou SH, Vokes TJ, Ma SL, Costello M, Rosen HR, Schousboe JT (2014) Simplified criteria for selecting patients for vertebral fracture assessment. J Clin Densitom 17(3):386–391

    Article  PubMed  PubMed Central  Google Scholar 

  67. Lewiecki EM, Laster AJ (2006) Clinical review: clinical applications of vertebral fracture assessment by dual-energy x-ray absorptiometry. J Clin Endocrinol Metab 91(11):4215–4222

    Article  CAS  PubMed  Google Scholar 

  68. Leslie WD, Lix LM, Prior HJ, Derksen S, Metge C, O’Neil J (2007) Biphasic fracture risk in diabetes: a population-based study. Bone 40(6):1595–1601

    Article  PubMed  Google Scholar 

  69. Gelber RP, Gaziano JM, Orav EJ, Manson JE, Buring JE, Kurth T (2008) Measures of obesity and cardiovascular risk among men and women. J Am Coll Cardiol 52(8):605–615

    Article  PubMed  PubMed Central  Google Scholar 

  70. Storti KL, Brach JS, FitzGerald SJ, Bunker CH, Kriska AM (2006) Relationships among body composition measures in community-dwelling older women. Obesity (Silver Spring, Md.) 14(2):244–251

    Article  Google Scholar 

  71. Albanese CV, Diessel E, Genant HK (2003) Clinical applications of body composition measurements using DXA. J Clin Densitom 6(2):75–85

    Article  PubMed  Google Scholar 

  72. Schacter GI, Leslie WD (2015) Spine-hip thickness difference measured by dual-energy X-ray absorptiometry is associated with diabetes mellitus in women and men. J Clin Densitom 18(4):512–518

    Article  PubMed  Google Scholar 

  73. Ho-Pham LT, Nguyen UD, Nguyen TV (2014) Association between lean mass, fat mass, and bone mineral density: a meta-analysis. J Clin Endocrinol Metab 99(1):30–38

    Article  CAS  PubMed  Google Scholar 

  74. Leslie WD, Orwoll ES, Nielson CM et al (2014) Estimated lean mass and fat mass differentially affect femoral bone density and strength index but are not FRAX independent risk factors for fracture. J Bone Miner Res 29(11):2511–2519

    Article  PubMed  Google Scholar 

  75. Cauley JA (2015) An overview of sarcopenic obesity. J Clin Densitom 18(4):499–505

    Article  PubMed  Google Scholar 

  76. Malkov S, Cawthon PM, Peters KW et al (2015) Hip fractures risk in older men and women associated with DXA-derived measures of thigh subcutaneous fat thickness, cross-sectional muscle area, and muscle density. J Bone Miner Res 30(8):1414–1421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Cawthon PM (2015) Assessment of lean mass and physical performance in sarcopenia. J Clin Densitom 18(4):467–471

    Article  PubMed  Google Scholar 

  78. Chalhoub D, Cawthon PM, Ensrud KE et al (2015) Risk of nonspine fractures in older adults with sarcopenia, low bone mass, or both. J Am Geriatr Soc 63(9):1733–1740

    Article  PubMed  PubMed Central  Google Scholar 

  79. Abd El Dayem SM, El-Shehaby AM, Abd El Gafar A, Fawzy A, Salama H (2011) Bone density, body composition, and markers of bone remodeling in type 1 diabetic patients. Scand J Clin Lab Investig 71(5):387–393

    Article  CAS  Google Scholar 

  80. Direk K, Cecelja M, Astle W et al (2013) The relationship between DXA-based and anthropometric measures of visceral fat and morbidity in women. BMC Cardiovasc Disord 13:25

    Article  PubMed  PubMed Central  Google Scholar 

  81. Porter SA, Massaro JM, Hoffmann U, Vasan RS, O’Donnel CJ, Fox CS (2009) Abdominal subcutaneous adipose tissue: a protective fat depot? Diabetes Care 32(6):1068–1075

    Article  PubMed  PubMed Central  Google Scholar 

  82. Leslie WD, Ludwig SM, Morin S (2010) Abdominal fat from spine dual-energy X-ray absorptiometry and risk for subsequent diabetes. J Clin Endocrinol Metab 95(7):3272–3276

    Article  CAS  PubMed  Google Scholar 

  83. Moseley KF, Dobrosielski DA, Stewart KJ, De Beur SM, Sellmeyer DE (2011) Lean mass and fat mass predict bone mineral density in middle-aged individuals with noninsulin-requiring type 2 diabetes mellitus. Clin Endocrinol 74(5):565–571

    Article  CAS  Google Scholar 

  84. von Eyben FE, Mouritsen E, Holm J et al (2003) Intra-abdominal obesity and metabolic risk factors: a study of young adults. Int J obes Related Metab Disord 27(8):941–949

    Article  Google Scholar 

  85. Jensen MD (2008) Role of body fat distribution and the metabolic complications of obesity. J Clin Endocrinol Metab 93(11 Suppl 1):S57–S63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Rothney MP, Catapano AL, Xia J et al (2013) Abdominal visceral fat measurement using dual-energy X-ray: association with cardiometabolic risk factors. Obesity (Silver Spring, Md.) 21(9):1798–1802

    Google Scholar 

  87. Kanis JA (2008) Assessment of osteoporosis at the primary health-care level. Technical Report. WHO Collaborating Centre for Metabolic Bone Disease, University of Sheffield, UK

  88. Kanis JA, Oden A, Johansson H, Borgstrom F, Strom O, McCloskey E (2009) FRAX and its applications to clinical practice. Bone 44(5):734–743

    Article  PubMed  Google Scholar 

  89. Nguyen ND, Frost SA, Center JR, Eisman JA, Nguyen TV (2007) Development of a nomogram for individualizing hip fracture risk in men and women. Osteoporos Int 18(8):1109–1117

    Article  CAS  PubMed  Google Scholar 

  90. Langsetmo L, Nguyen TV, Nguyen ND et al (2011) Independent external validation of nomograms for predicting risk of low-trauma fracture and hip fracture. CMAJ Can Med Assoc J 183(2):E107–E114

    Article  Google Scholar 

  91. Hippisley-Cox J, Coupland C (2009) Predicting risk of osteoporotic fracture in men and women in England and Wales: prospective derivation and validation of QFractureScores. BMJ (Clin Res Ed.) 339:b4229

    Article  Google Scholar 

  92. Hough FS, Pierroz DD, Cooper C, Ferrari SL (2016) MECHANISMS IN ENDOCRINOLOGY: Mechanisms and evaluation of bone fragility in type 1 diabetes mellitus. Eur J Endocrinol/Eur Fed Endocr Soc 174(4):R127–R138

    Article  CAS  Google Scholar 

  93. Giangregorio LM, Leslie WD, Lix LM et al (2012) FRAX underestimates fracture risk in patients with diabetes. J Bone Min Res 27(2):301–308

    Article  Google Scholar 

  94. Kanis JA, Hans D, Cooper C et al (2011) Interpretation and use of FRAX in clinical practice. Osteoporos Int 22(9):2395–2411

    Article  CAS  PubMed  Google Scholar 

  95. Lecka-Czernik B, Fowlkes J (eds) (2016) Diabetic bone disease: basic and translational research and clinical applications. Springer International Publishing, Switzerland

    Google Scholar 

Download references

Conflict of interest

G. Isanne Schacter and William D. Leslie declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William D. Leslie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schacter, G.I., Leslie, W.D. DXA-Based Measurements in Diabetes: Can They Predict Fracture Risk?. Calcif Tissue Int 100, 150–164 (2017). https://doi.org/10.1007/s00223-016-0191-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-016-0191-x

Keywords

Navigation