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Abstract We address two fundamental questions in the representation theory
of affine Hecke algebras of classical types. One is an inductive algorithm to
compute characters of tempered modules, and the other is the determination
of the constants in the formal degrees of discrete series (in the form conjec-
tured by Reeder (J. Reine Angew. Math. 520:37–93, 2000)). The former is
completely different from the Lusztig-Shoji algorithm (Shoji in Invent. Math.
74:239–267, 1983; Lusztig in Ann. Math. 131:355–408, 1990), and it is more
effective in a number of cases. The main idea in our proof is to introduce a
new family of representations which behave like tempered modules, but for
which it is easier to analyze the effect of parameter specializations. Our proof
also requires a comparison of the C∗-theoretic results of Opdam, Delorme,
Slooten, Solleveld (J. Inst. Math. Jussieu 3:531–648, 2004; arXiv:0909.1227;

Midori Kato (Shiota) deceased. 1981.06.28–2010.02.17.

D. Ciubotaru
Department of Mathematics, University of Utah, Salt Lake City, UT 84112, USA

M. Kato (Shiota)
Graduate School of Mathematical Sciences, University of Tokyo, 3-8-1 Komaba, Meguro
154-8914, Japan

S. Kato (�)
Research Institute for Mathematical Sciences, Kyoto University, Oiwake Kita-Shirakawa,
Sakyo, Kyoto 606-8502, Japan
e-mail: syuchan@math.kyoto-u.ac.jp

Present address:
S. Kato
Department of Mathematics, Kyoto University, Oiwake Kita-Shirakawa, Sakyo, Kyoto
606-8502, Japan

http://arxiv.org/abs/arXiv:0909.1227
mailto:syuchan@math.kyoto-u.ac.jp


590 D. Ciubotaru et al.

Int. Math. Res. Not., 2008; Adv. Math. 220:1549–1601, 2009; Acta Math.
205:105–187, 2010), and the geometric construction from Kato (Duke Math.
J. 148:305–371, 2009; Am. J. Math. 133:518–553, 2011), Ciubotaru and Kato
(Adv. Math. 226:1538–1590, 2011).

1 Introduction

In this paper, we consider two basic questions in the study of affine Hecke
algebra of classical types with unequal parameters. The first one is the char-
acters of tempered modules. The classical approach (for W -characters) is via
the Lusztig-Shoji algorithm [16, 27], which computes the generalized Green
functions in terms of geometric data. We present an alternative approach,
namely an inductive algorithm on the rank and the ratio of parameters of
the affine Hecke algebra. Since the Lusztig-Shoji algorithm treats each (ge-
ometric) ratio of parameters individually, our algorithm has some advantage,
particularly if one is interested in the connection between two different ratios.
As a consequence of this new algorithm, we answer the second basic ques-
tion, namely the determination of the rational constants in the formal degrees
of discrete series. Our result confirms the expected values of these constants,
motivated by the study of complex smooth representations of p-adic groups
(see the discussion after Theorem C). More generally, in conjunction with
Bushnell-Henniart-Kutzko [4] Theorem B, this provides an explicit formula
for formal degrees of discrete series of p-adic groups of classical types for
many (if not all) Bernstein blocks.

To explain our results more precisely, let Hn(q,u, v) be the affine Hecke
algebra of type Cn with parameters q,u, v (see Sect. 2.2). We specialize to the
cases Hn,m =Hn(q, qm, qm) and H

′
n,m =Hn(q, q2m,1), with m ∈ R. These

are the affine Hecke algebras with two parameters of type Cn and (up to cen-
tral extension) of type Bn, respectively. Let Wn denote the Weyl group of
type BCn, and let ̂Wn denote the set of irreducible Wn-representations. In or-
der to explain our results on the Wn-character of tempered modules, we also
restrict to the so-called positive real central character case (see Sect. 2.3).

There is a correspondence between the set of discrete series with real cen-
tral characters of Hn,m and H

′
n,m. For every partition σ of n, there is a real

central character cσ
m attached to σ and m. When m is generic, i.e., m /∈ 1

2Z,
there exists a unique discrete series with central character cσ

m, and more-
over, every discrete series module of Hn,m or H

′
n,m has central character cσ

m

for some partition σ of n (Opdam [23]). Therefore, we can regard the dis-
crete series with real central character as belonging to families {dsm(σ)}m,
{ds′m(σ)}m for Hn,m and H

′
n,m, respectively, indexed by partitions σ of n.

Then, we have

dsm(σ)∼= ds′m(σ), as Wn-modules. (1.1)
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If m0 is a critical parameter, i.e., m0 ∈ 1
2Z, then it is known by Opdam-

Solleveld [25] that every discrete series of Hn,m0 (resp. H
′
n,m0

) is obtained
as a limit m→m0 of certain dsm(σ) (resp. ds′m(σ)). Here, limm→m0 is in the
sense of [7], Sect. 2.4.

As already mentioned, we are interested in the Wn-character of dsm(σ).
Our strategy is as follows: for m > n− 1, the dsm(σ) is simple and does not
change as a Wn-module by [7]. Namely, we have

dsm(σ) |Wn= {∅, tσ }, if m > n− 1, (1.2)

where the notation for ̂Wn is via bipartitions (cf. Sect. 3.5). Then we keep
track how the Wn-character of dsm(σ) changes as m varies towards −∞.
It can only change when m passes through a critical value m0, but this is a
subtle problem. We resolve this difficulty by considering a larger family of
irreducible modules Dm0(σ ) depending on m 	= m0, m0 − 1

2 < m < m0 + 1
2

with the following properties:

(a) π has central character cσ
m (same as dsm(σ)); and

(b) limm→m0 π is tempered.

For lack of a better name, we call such modules delimits of tempered mod-
ules, or tempered delimits for short. For example, we have dsm(σ) ∈Dm0(σ )

for both m0 − 1
2 < m < m0 and m0 < m < m0 + 1

2 . It should be noted that
the modules appearing as limm→m0 π , π ∈Dm0(σ ) can be thought of as ana-
logues of the nondegenerate limits of discrete series in the sense of Knapp-
Stein [15], Sect. XIV.17 and Theorem 14.92.

A main technical achievement of this paper is the following:

Theorem A (Corollary 3.23) Assume that m0 ∈ 1
2Z. Then for every π ∈

Dm0(σ ), limm→m0 π is an irreducible Hn,m0 -module. In particular,
limm→m0 dsm(σ) is irreducible.

This theorem, proved as a corollary of basic properties of tempered de-
limits (Theorems 3.15, 3.16), represents the basis for our algorithm. By the
geometry of tempered delimits, we deduce:

Theorem B (Formula (3.17)) For every m0 ∈ 1
2Z, we have the following

equality inside the Grothendieck group of Hn,m0 -modules:
[

lim
m′→m0

dsm′(σ )
]

±
[

lim
m→m0

dsm(σ)
]

=
∑

(±)[LA
� L′], (1.3)

where the real variables m,m′ satisfies m0 − 1
2 < m′ < m0 < m < m0 + 1

2 .
Here LA

� L′ denotes parabolic induction from a tempered module LA of
an affine Hecke algebra of type A and a discrete series L′ of a type C affine
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Hecke algebra. Moreover, all the terms in the right hand side are induced
from proper Levi subalgebras.

We remark that the right hand side of (1.3) looks obscure here but the ac-
tual expression is explicit and precise (see (3.17) for details). Moreover, (1.3)
implies certain relations between the W -characters of classical and exotic
Springer fibers (Corollary 3.26).

In addition, if we assume, by induction on the rank of the Hecke algebra,
that we know the discrete series character of smaller affine Hecke algebras of
type C, then we easily deduce the character of the right hand side of (1.3).
Hence, if we know the character of either dsm′(σ ) or dsm(σ), then we deduce
the other. Thanks to (1.2), we always know the Wn-character of dsm(σ) for
m
 0. Our Algorithm 3.30 (on the Wn-characters of tempered delimits) is
an implementation of these observations. As we see in Remark 3.31, our con-
struction also gives an inductive algorithm to compute weight characters of
tempered delimits with respect to the abelian subalgebra that appears in the
Bernstein-Lusztig presentation ([20], Sect. 3).

In Sect. 4, we use the W -character algorithm to complete the computation
of the formal degree for the affine Hecke algebra Hn(q, qm+, qm−) of type Cn,
where q > 1 and m± ∈R. All affine Hecke algebras of classical types are (up
to central extensions) particular cases of this one. Denote the roots of type
Cn by Rn, and let Rsh

n and Rlo
n denote the short and long roots, respectively.

From [25], the formal degree of a discrete series π with central character s

(not necessarily positive real) is known to equal

fd(π)= Cπ qn2−nqnm+∏′
α∈Rn

(α(s)− 1)

∏′
α∈Rsh

n
(qα(s)− 1)

∏′
α∈Rlo

n
(q

m++m−
2 α(s)1/2 − 1)

∏′
α∈Rlo

n
(q

m+−m−
2 α(s)1/2 + 1)

,

(1.4)
where

∏′ means that the product is taken only over the nonzero factors. From
Opdam-Solleveld [24], it is known that the constants Cπ are rational numbers,
and the question is to determine them explicitly. We use an Euler-Poincaré
formula which expresses the formal degree as an alternating sum depending
on the W -character of the discrete series (see (4.3)) as in Reeder [26]. This
formula itself is proved in Schneider-Stuhler [29] (for p-adic groups) and in
Opdam-Solleveld [24] (for affine Hecke algebras).

Following [12], we say that (m+,m−) are generic if |m+ ± m−| /∈
{0,1,2, . . . ,2n − 1}. We use Theorem B to find that the constants Cπ for
generic (m+,m−) do not depend (up to sign) on m. Combined with an ex-
plicit calculation in an asymptotic region of the parameters (m+,m−) and a
certain limiting process, we obtain:
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Theorem C (Theorem 4.7 and Corollary 4.8) Let π be a discrete series with
arbitrary central character for the affine Hecke algebra Hn(q, qm+, qm−),
where q > 1 and m± ∈R. Then, the constant in (1.4) is (up to sign) Cπ = 1

2 .

The scalar 1/2 comes from 1/|�|, where � denotes the quotient of the
character lattice by the root lattice for the Hecke algebra we consider. In
Sect. 4.2 (4.15, 4.17, 4.19), we explain the implications of Theorem C for
the affine Hecke algebras of types Cn,Bn,Dn, respectively.

As mentioned previously, this calculation has consequences for p-adic
groups as well. The expected stability of L-packets of discrete series for a
p-adic group G [28] implies that the formal degrees of discrete series in the
same L-packet have to be proportional, with the proportionality constants
being the multiplicities of discrete series in the stable L-packet sum. In the
case discrete series are in the scope of the Deligne-Langlands-Lusztig corre-
spondence [21], there is a precise conjecture for the values of the constants
formulated in [26] (0.5). Particularly, when the p-adic group is of classical
type (other than the quasisplit triality form of D4), those discrete series are
controlled by various affine Hecke algebras of classical types. For example,
with our notation, the Iwahori cases for split p-adic classical adjoint groups
SO(2n+1), PSp(2n), PSO(2n) correspond to the Hecke algebras H

′
n, 1

2
, Hn,1

and H
′
n,0, respectively. (In fact the last algebra is central extension of the

Iwahori-Hecke algebra for type Dn, but for our purposes, this is sufficient;
see Proposition 3.34.) Using the correspondence between the Plancherel for-
mula for groups and for the Hecke algebras [4], and taking also into ac-
count Hiraga-Ichino-Ikeda [11], Sect. 3.4, one verifies that the values of the
constants obtained from Theorem C match the expected values from p-adic
groups.

The organization of the paper is as follows. In Sect. 2 we recall the geo-
metric setup, and we fix the notation for the affine Hecke algebras. Then we
study a number of properties of Langlands quotients of parabolically induced
modules which we need in Sect. 3. In Sect. 3, we define and classify the tem-
pered delimits, and prove the results about irreducibility under deformations
in the parameter m. We present the inductive algorithm for the W -characters
of discrete series and tempered modules. In Sect. 4, we calculate the constants
in formal degrees.

Convention For two sets J1, J2 ⊂ Z, we define J1 < J2 if and only if j1 < j2
for every j1 ∈ J1 and j2 ∈ J2.

Fix �q = (q1, q) ∈ R
2 so that q > 1 and q1 = qm for some m ∈ R. We say

m is generic if and only if m 	∈ 1
2Z. A q-segment (or just a segment if there

can be no possible confusion) is a sequence of positive real numbers of the
form

a, aq, aq2, . . . , aqM for some M ∈ Z≥0.
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For two q-segments I1, I2, we define

Em(I1) :=
∏

a∈I1

a, e+m(I1)= e+(I1) :=max I1,

e−m(I1)= e−(I1) :=min I1,

I1 � I2 ⇔ min I2 < min I1 and max I1 < max I2,

I1 � I2 ⇔ min I1 < min I2 ≤ q max I1 < q max I2, and
I1 � I2 ⇔ min I1 ≤min I2 ≤ q max I1 < q max I2

or min I1 < min I2 ≤ q max I1 ≤ q max I2.

Finite collections of q-segments (with possible repetitions) are called
q-multisegments (or just multisegments). The set of q-multisegments is de-
noted by Q(q). For I, I′ ∈ Q(q), we write I⊂ I′ if each segment of I gives a
segment of I′ with multiplicity counted.

For a partition λ, we set |λ| :=∑

i λi , λ<
i :=

∑

j<i λj , and λ
≤
i :=

∑

j≤i λj .
We denote by tλ the transpose partition of λ.

For an algebraic variety X over C, we denote by H•(X ) the total Borel-
Moore homology with coefficients in C.

2 Preliminaries

2.1 Basic geometric setup

We denote by Gn = Sp(2n,C) the symplectic group with its maximal torus Tn

and a Borel subgroup Bn ⊃ Tn. Let Rn ⊃R+n be the root systems of (Gn,Tn)

and (Bn,Tn), respectively. We define X∗(Tn) to be the character lattice of Tn

with its natural orthonormal basis ε1, . . . , εn so that

R+n = {(εi ± εj ), i < j,2εi} ⊂Rn = {±(εi ± εj ), i < j,±2εi}
Ř+n = {(εi ± εj ), i < j, εi} ⊂ Řn = {±(εi ± εj ), i < j,±εi},

where Řn ⊃ Ř+n is the dual root system. Let α̌ ∈ Řn denote the coroot of
α ∈Rn. Let Wn :=NGn(Tn)/Tn be the Weyl group of Gn. Let V

(1)
n =C

2n be
the vector representation of Gn and let V

(2)
n := ∧2

C
2n be its second wedge.

We define Vn := V
(1)
n ⊕V

(2)
n to be the 1-exotic representation of Gn. Let V

+
n

be the sum of Tn-weight spaces of Vn for which the corresponding weights
are in Ř+n . We define Wn(s) := {w ∈Wn | Ad(w)s = s} for each s ∈ Tn. For
w ∈Wn, we fix a lift ẇ of w in NG(T ). We set Fn :=Gn ×Bn V

+
n . We form

a map

μn : Fn =Gn ×Bn V
+
n −→Vn (2.1)
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obtained as the anti-diagonal free Bn-quotient of the action map
Gn ×V

+
n →Vn. For every semisimple element a = (s, �q), denote by Fa

n ,
V

a
n, and μa

n, the a-fixed points and the restriction to the a-fixed points of
Fn,Vn, and μn, respectively. Moreover, for every subvariety Y we denote by
Ya , the intersection of Y with the a-fixed points.

We might drop the subscript n when the meaning is clear from the context.

2.2 Hecke algebras

We consider the affine Hecke algebras H
′
n(q,u), Hn(q,u), and H

′′
n(q) of type

Bn, Cn, and Dn, respectively, with positive real parameters u, v, according to
the affine Coxeter diagrams

˜Bn: q q q . . . q q u,

q

˜Cn: u q q . . . q q u, and

˜Dn: q q q . . . q q q.

q q

We consider them as subalgebras of certain specializations (see below) of the
affine Hecke algebra Hn(q,u, v) of type Cn

˜�n: v q q . . . q q u

defined as a C-algebra with the set of generators N0,N1, . . . ,Nn subject to
the relations:

• (N0 + 1)(N0 − v)= 0= (Nn + 1)(Nn − u) and (Ni + 1)(Ni − q)= 0 for
1≤ i < n;
• NiNj =NjNi for i − j ≥ 2, NiNi+1Ni =Ni+1NiNi+1 for 1≤ i < n− 1;
• (N0N1)

2 = (N1N0)
2 and (Nn−1Nn)

2 = (NnNn−1)
2.

Let H
A
n be the affine Hecke algebras of type GL(n) with parameter q , which

can be realized as a subalgebra of Hn(q,u, v) generated by N1, . . . ,Nn−1,
and N1N2 · · ·Nn−1NnNn−1 · · ·N1N

−1
0 .

We remark that Hn(q,u) is obtained from Hn(q,u, v) by making the spe-
cialization u= v. Also, a central extension H

B
n(q,u) of H

′
n(q,u) is obtained

from Hn(q,u, v) by making the specialization v = 1.
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We define an algebra involution ψ :Hn(q,1,1)→Hn(q,1,1) as:

ψ(Ni)=Ni if i 	= n, and ψ(Nn)=−Nn.

A central extension H
D
n =H

D
n (q) of H

′′
n(q) is realized as the ψ-invariant part

of Hn(q,1,1) (see for example [25], Sect. 6.4).
We denote the finite Weyl groups of type BCn and Dn by Wn and WD

n ,
respectively. We denote the affine Weyl groups of type Bn and Cn by ˜Wn and
˜W ′n, respectively.

We define Hn,m := Hn(q, qm), and H
B
n,m := H

′
n(q, q2m). The represen-

tation theories of Hn,m and H
B
n,m are known to be equivalent to that of

Hn(q,u, v) with u= q(m+m′) and v = q(m−m′) for an arbitrary m′ ∈ R, once
we fix a positive real central character (Lusztig [20, 22], see also [12], Sects. 3
and Sect. 2.3 below for the geometric explanation). Moreover, these equiva-
lences preserve Wn-characters, and the notion of tempered modules and dis-
crete series (see for example [22], Sect. 3). Since a central extension does not
have an effect at the level of representations with positive real central charac-
ter, we only deal with the representation theory of Hn,m and H

D
n in this section

and Sect. 3. In addition, we sometimes drop the subscript m for the sake of
simplicity.

We also need in Sect. 4 the finite Hecke algebra of type BCn with parame-
ters q,u according to the Coxeter diagram

q q . . . q q u

we denote it by H
f
n (q,u), or by H

f
n,m when u= qm. We denote by H

D,f
n the

ψ-invariant part of H
f
n (q,1). We remark that the irreducible modules of H

f
n,m

and H
D,f
n are in one-to-one correspondence with ̂Wn and ̂WD

n , respectively.
Let R be a ring. Let M be a R-module and let L be an irreducible

R-module. Then, we denote the Jordan-Hölder multiplicity of L in M as
R-modules by [M : L]R . If R = Hn,m, then we drop the subscript R for the
sake of simplicity.

2.3 Representation-theoretic setup

A result of Bernstein and Lusztig says that the center of Hn is

Z(Hn)=C[eλ;λ ∈X∗(Tn)]Wn, (2.2)

so the central characters of Hn are parameterized by Wn-conjugacy classes
of semisimple elements s ∈ Tn. An element (or a central character) s ∈ Tn is
said to be positive real if εi(s) > 0 for i = 1, . . . , n.
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We denote by Modn
�q the category of finite-dimensional Hn-modules with

positive real central character. We set Mod�q :=
⋃

n≥1 Modn
�q . For a group H

and h ∈H , we denote by R(H) and R(H)h the representation ring of H and
its localization along h, respectively.

For an R(Tn)-module M , let 
(M)⊂ Tn denote the set of R(Tn)-weights
of M . Moreover, we define M[s] :=R(Tn)s ⊗R(Tn) M and

chM :=
∑

s∈Tn

dimM[s] 〈s〉 ∈ Z 〈Tn〉 ,

where Z〈Tn〉 is a formal linear combination of elements of Tn.

We set

Tn(�q) := {s ∈ Tn(R) | εi(s) ∈ q1q
Z for each i = 1, . . . , n}.

For every s ∈ Tn(�q), we define vs ∈Sn as the minimal length element such
that

vss :=Ad(v̇s)s ∈ Tn(�q) satisfies ε1(vss)≥ ε2(vss)≥ · · · ≥ εn(vss).

A marked partition τ =(J, δ) of n is a pair consisting of a collection J =
{J1, J2, . . .} and a function δ : {1, . . . , n}→ {0,1} which satisfies

⊔

j≥1

Jj = {1, . . . , n}, and δ(i)= 1 for at most one i ∈ J for each J ∈ J.

For simplicity, we may denote Jj ∈ τ instead of Jj ∈ J. For a marked partition
τ = (J, δ), we define vτ = v1

τ ⊕ v2
τ with

v1
τ =

∑

i∈{1,...,n}
δ(i)vi and v2

τ =
∑

J∈J

∑

i,j∈J
δ1(#{k ∈ J | i ≤ k < j})vi,j ,

where δ1(i) = 1 (i = 1) or 0 (i 	= 1), and vi ∈ V (1),vi,j ∈ V (2) are
T -eigenvectors of weights εi, εi − εj , respectively. We put Oτ :=Gvτ ⊂V.

We set G(χ) = G(s) := ZG(s). A marked partition τ is adapted to
a = (s, �q) or s if we have svτ = q1v1

τ ⊕ qv2
τ . We set Pn(�q) as the set of

pairs χ = (s, τ ) consisting of s ∈ T (�q) and a marked partition τ adapted to s.
For J ∈ τ , we put J := {εj (s) | j ∈ J }, which we regard as a (q-)segment.
We write I ∈ χ if I = J for some J ∈ τ . We set Oχ := v̇sG(s)vτ . Two
marked partitions τ, τ ′ adapted to s are called equivalent (and we denote this
by τ ∼ τ ′) if

O(s,τ ) =O(s,τ ′). (2.3)



598 D. Ciubotaru et al.

This notion of equivalence can be translated in combinatorial terms on
marked partitions; details are found in [7], Sect. 1.4.

Two parameters χ,χ ′ are called nested to each other if I � I ′ or I ′ � I

holds for each (I, I ′) ∈ χ × χ ′.
For χ ∈ Pn(�q), let us denote by Eχ the projection of μ−1

n (vτ )
a to Gn/Bn.

Then, Mχ := H•(Eχ) admits a structure of a module over the specialized
algebra Ha =Hs :=Hn⊗Z(Hn) Cs . We call Mχ the standard module attached
to χ (cf. [12]). We denote the irreducible Ha-module corresponding to χ

by Lχ , which is a quotient of Mχ . We have a disjoint decomposition

Eχ =
⊔

s′∈Ws⊂Tn

Eχ [s′], which induces

Mχ =
⊕

s′∈Ws⊂Tn

Mχ [s′] =
⊕

s′∈Ws⊂Tn

H•(Eχ [s′]).

Let Mn
�q ⊂Modn

�q denote the full subcategory generated by simple modules
corresponding to Pn(�q). This is the category of Hn,m-modules with central
characters in T (�q) (cf. [12]). We denote by K(Mn

�q) its Grothendieck group.
We put P(�q) :=⋃

n≥1 Pn(�q). We have a natural map P(�q) �→Q(q) sending
a pair (s, τ ) with τ = (J, δ) to {J | J ∈ J}. We sometimes identify I ∈ Q(q)

with its preimage in P(�q) with trivial markings. We denote the set of such
preimages by P0(�q). We denote the size of a marked partition by |τ | (or |χ |).

Similarly, for I ∈ Q(q), we denote the corresponding standard and irre-
ducible H

A
n-modules by MA

I and LA
I , respectively. For a segment I , we define

its transpose to be the segment tI = {b−1 | b ∈ I }. For a multisegment I, we
define its transpose tI to be the multisegment {tI | I ∈ I} (with multiplicity
counted). We sometimes denote MA

tI or LA
tI by tMA

I and tLA
I , respectively.

We define 0Modn
�q to be the category of finite-dimensional H

A
n-modules

with positive real central characters. For each ν ∈ R, let Stνn denote the (cen-
tral) twists of Steinberg representation of H

A
n so that the corresponding unique

segment is I ν
n := {qν, qν+1, . . . , qν+n−1}. We denote the central character of

Stνn by sν
n and the central character of tStνn = t(Stνn) by s̄ν

n.
We have an exact functor

0
Mod�q ×Mod�q � (M1,M2) �→M1 � M2 ∈Mod�q

given by the parabolic induction. By abuse of notation, we also denote the
parabolic induction of type A affine Hecke algebras as

0
Mod�q × 0

Mod�q � (M1,M2) �→M1 � M2 ∈ 0
Mod�q.

For χi = (si,Ji , δi) ∈ Pni
(�q) (i = 1,2), we set χ1 ⊕ χ2 := (s1 × s2,J1 �

J2[n1], δ12), where J2[n1] is the collection of subsets of {n1+1, . . . , n1+n2}
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obtained from J2 by uniformly adding n1, and δ12 is the marking such that
δ12 |J1= δ1 and δ12(k) |J2[n1]= δ2(k − n1) for each k.

2.4 Quotients of parabolic induction

The goal of this subsection is Proposition 2.10, which gives necessary condi-
tions for an irreducible Hn,m-module to appear as the quotient of a parabol-
ically induced module. Before we prove this result, we need to fix notation
and recall known results about quiver representations of type A. Throughout
this subsection, we assume that m is generic.

For χ = (s, τ ) ∈ P(�q) such that τ = (J, δ), we associate χ0 = (s, τ 0) ∈
P0(�q) with τ 0 = (J,0).

Let W [χ ] be the set of elements w of W|χ | such that w−1s−1 ∈
(Lχ). For
�n= (n1, n2), n= n1+n2 with n1, n2 ≥ 0, we define S�n (resp. W �n) as a set of
minimal length representative of Sn/(Sn1 ×Sn2) (resp. Wn/(Sn1 ×Wn2))
inside Sn (resp. Wn).

For χ ′ = (s′, τ ′) ∈ P(�q), we say χ ≤ χ ′ if and only if vss = vs′s′ and
Oχ ⊂ Oχ ′ . We refer to this (partial) ordering as the closure ordering. We
define

W [χ ]◦ :=W [χ ] −
⋃

χ ′>χ

W [χ ′].

For a pair (χ1, χ2) ∈Q(q)× P(�q), we define

W [χ1, χ2] := {(w1 ×w2) ∈W|χ1|+|χ2| |wi ∈W [χi]◦}. (2.4)

Lemma 2.1 For each χ ∈ P(�q), we have W [χ ]◦ 	= ∅. Moreover, we have
Sn ∩W [χ ]◦ 	= ∅ if χ = tStν+m

n for some ν ∈ Z.

Proof For the first assertion, it is enough to choose w ∈W so that the con-
ditions of [7] Proposition 4.9 are satisfied, and this is straight-forward. The
second assertion is also straight-forward since χ corresponds to a regular
nilpotent orbit in gln. �

For s ∈ Tn(�q), let Es(i) denote the s-eigenspace of V
(1)
n with its eigenvalue

q1q
i . We have a natural identification

V
(s,�q)
n
∼= Es(0)⊕Reps, where Reps =

⊕

i∈Z
Hom(Es(i),Es(i + 1)),

compatible with the Gn(s)-action.
For each w ∈Wn, we set w

V
+
n = ẇ−1

V
+
n , and let us denote by Reps

w the

image of (wV
+
n ∩V

(vss,�q)
n ) in Reps under the projection map V

(s,�q)→Reps .
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By abuse of notation, in place of Es,Reps, . . ., we may write Eχ ,Repχ , . . .

when we have a parameter χ = (s, τ ).
For each w ∈ Wn and s ∈ Tn(�q), we define τ s

w to be a marked partition
adapted to vss so that

Oτ s
w
∩ w

V
+
n ∩V

(vss,�q)
n ⊂ w

V
+
n ∩V

(vss,�q)
n ⊂ Es(0)⊕Reps

is open dense. It is clear that τ s
w is well-defined up to equivalence (since there

are only finitely many G(s)-orbits in V
(s,�q)). We set χw := (vss, τ

s
w) for χ =

(s, τ ) ∈ P(�q). (Note that χw depends on s and w, but not on τ .)
For χ = (s, τ ) ∈ P(�q), we set

ρij (χ) := #{I ∈ χ | q1q
i, q1q

j ∈ I } for every j > i.

Theorem 2.2 (Abeasis-Del Fra [2], Zelevinsky [31]) For each χ = (s, τ ) ∈
P(�q), the collection {ρij (χ)}i,j determines τ 0 uniquely. Moreover, we have

(1) O(χw)0 ⊂ Oχ0 if and only if dimAj−i (Es(i)) ≤ ρij (χ) for every
A ∈Reps

w;
(2) If (1) holds, then we have Oχ0 = O(χw)0 if and only if some A ∈ Reps

w

attains all the equalities in the condition (1).

Moreover, we have Oχ ⊂ Oχ ′ only if |χ | = |χ ′| and ρij (χ) ≤ ρij (χ
′) for

every i, j .

Definition 2.3 (Elementary modification) Let τ = (J, δ) be a marked par-
tition adapted to s. For J1, J2 ∈ J, we define another marked partition
εJ1,J2(τ ) := (J′, δ′) as the maximal marked partition (with respect to the clo-
sure ordering) adapted to s which satisfies:

J◦ := J− {J1, J2} ⊂ J′,

δ(J1 ∪ J2)= δ′(J′ − J◦), and O(s,τ ) � O(s,εJ1,J2 (τ )).

Since both τ and εJ1,J2(τ ) are adapted to s, we put εJ1,J2(χ) := (s, εJ1,J2(τ ))

if χ = (s, τ ).

Lemma 2.4 Keep the setting of Definition 2.3. If {J ′1, J ′2} = J′ − J◦, then we
have

• J ′1 = J1 ∪ J2 and J ′2 = J1 ∩ J2 by swapping J ′1 and J ′2 if necessary;

• J ′i (i = 1,2) is marked if and only if q1 ∈ J ′i and δ(J1 ∪ J2)= {0,1}.

Proof Straight-forward from Theorem 2.2 and Definition 2.3. �

The following is a reformulation of results from [2, 3]:
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Theorem 2.5 (Abeasis-Del Fra-Kraft) For each χ = (s, τ ) ∈ P0(�q) and
I, I ′ ∈ χ , we set χ ′ := εI,I ′(χ) (Definition 2.3). Assume χ 	= χ ′ and max I <

max I ′, and we set I � := I ∩ I ′ (if I ∩ I ′ 	= ∅) or {max I,min I ′} (if
q max I =min I ′).
(1) We have dim Oχ ′ = dim Oχ + 1 if there exists no I ′′ ∈ χ ′ such that

I �
� I ′′ � I ∪ I ′, or I ′′ = I, I ′, {max I,min I ′}.

(2) If (1) holds, then Oχ ′ is regular along Oχ and the defining equation is
locally given as:

f ∈Hom(∧kEs(i),∧kEs(j))∗, (2.5)

where q1q
i =min I �, q1q

j = q max I �, and k := ρij (χ
′).

We also need the following result.

Lemma 2.6 ([7] Corollary 4.10) The map

K(Mn
�q) �M �→ chM ∈ Z 〈Tn〉

is an injection.

Proposition 2.7 Let (χ1, χ2) ∈ P0(�q)× P(�q) with n= |χ1| + |χ2|. We have

chMχ1⊕χ2 = ch(MA
χ1

� Mχ2)= ch(tMA
χ1

� Mχ2).

Proof Let us denote ni = |χi | (i = 1,2). We set T := Tn. Let P ⊃ Bn be
the parabolic subgroup of Gn with its reductive part L= GL(n1)× Sp(2n2).
Define WL :=NT(L)/T⊂W . We write χi := (si, τi)= (si,Ji , δi) (i = 1,2),
where δ1 ≡ {0}. We set v := vτ1⊕τ2 and vi := vτi

for i = 1,2. We have v =
v1 ⊕ v2. Let r ∈ Tn1

∼= Tn1 × {1} ⊂ Tn be the element such that εi(r)= r > 1
for every 1≤ i ≤ n1 (and = 1 otherwise). Then, we have rv= v and hence r
acts on Eχ1⊕χ2 .

Here we have v1 ∈ gln1
= gln1

⊕ {0} ⊂ V
r. Let Bv1 be the type An1−1

Springer fiber of v1. We have

(Eχ1⊕χ2)
r =

⊔

w∈W �n
((Eχ1⊕χ2)

r ∩ Pẇ−1B/B)∼=
⊔

w∈W �n
Bs1

v1
× Eχ2 . (2.6)

Thanks to [6], Sect. 8.2, it follows that each H•((Eχ1⊕χ2)
r ∩ Pẇ−1B/B) ad-

mits an R(T)-module structure with

chH•((Eχ1⊕χ2)
r ∩ Pẇ−1B/B)=wchH•((Eχ1⊕χ2)

r ∩ P/B).
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By [12] Theorem 6.2, we conclude that

chMχ1⊕χ2 =
∑

w∈W �n
chH•((Eχ1⊕χ2)

r ∩ Pẇ−1B/B)

=
∑

w∈W �n
wchH•((Eχ1⊕χ2)

r ∩ P/B)= ch(MA
χ1

� Mχ2).

The case MA
χ1

replaced with tMA
χ1

is similar. �

Corollary 2.8 Keep the setting of Proposition 2.7. Let L be an irreducible
Hn-module. Then, we have

[Mχ1⊕χ2 : L] = [MA
χ1

� Mχ2 : L] = [tMA
χ1

� Mχ2 : L].

Proof Combine Proposition 2.7 and Lemma 2.6. �

Lemma 2.9 Let χ = (s, τ ) ∈ Pn2(�q). Let ν′ be an integer and set ν :=m+ν′.
For every w1×w2 ∈W [Stνn1

, χ ]∩ (Sn1×Wn2), we put w = vsν
n1
×s(w1×w2)

and χ ′ := (Stνn1
⊕ χ)w . Then, we have

ρij (Stνn1
)+ ρij (χ)≤ ρij (χ

′)≤ ρij (χ)+ 1 (2.7)

and ρij (χ
′)= ρij (χ)+1 only if ν′ ≤ j < ν′ +n1. If we replace Stνn1

by tStνn1
,

then the inequalities (2.7) remain the same, and ρij (χ
′)= ρij (χ)+ 1 only if

ν′ ≤ i < ν′ + n1.

Proof We drop the superscripts ν during this proof. By construction, the nat-
ural G(sn1)×G(χ)-equivariant embedding

Repsn1 ⊕Repχ ↪→Repχ ′

induces an embedding (of linear spaces which preserves compositions)

Rep
sn1
w1 ⊕Repχ

w2
↪→Repχ ′

w .

It follows that ρij (Stn1)+ ρij (χ)≤ ρij (χ
′) for every i, j . Moreover, the con-

dition on w asserts that

Hom(Esn1 (i),Eχ(i + 1))∩Repχ ′
w = {0} for every i ∈ Z. (2.8)

It follows that every A ∈Repχ ′
w preserves

⊕

i∈Z Eχ (i)⊂⊕

i∈Z Eχ ′(i). More-

over, the image of the induced map Repχ ′
w −→Repχ is contained in Repχ

w2 .
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Since dim Esn1 (i) ≤ 1 for every i ∈ Z, we conclude ρij (χ
′) ≤ ρij (χ) + 1.

This proves the first part of the assertion.
To prove the second assertion, it suffices to see Aj−i (Esn1 (i))= {0} when

j ≥ ν′ + n1. This follows by (2.8). For the case St replaced by tSt, we apply
the same argument except for

Hom(Eχ(i),Es̄n1 (i + 1))∩Repχ ′
w = {0} for every i ∈ Z

instead of (2.8). �

In view of Lemma 2.9, let us define

S+ν,n1
(χ)∼ := {

χ ′ = (s′, τ ′) | s′ = vsν
n1
×s(s

ν
n1
× s), ρij (χ

′)− ρij (χ)≤ 1, and

ρij (χ
′)= ρij (χ)+ 1 only if ν ≤ j < ν + n1

}

S−ν,n1
(χ)∼ := {

χ ′ = (s′, τ ′) | s′ = vsν
n1
×s(s

ν
n1
× s), ρij (χ

′)− ρij (χ)≤ 1, and

ρij (χ
′)= ρij (χ)+ 1 only if ν ≤ i < ν + n1

}

.

Moreover, we define S±ν,n1
(χ) := {χ ′ ∈ S±ν,n1

(χ)∼ |OStνn1
⊕χ ⊂Oχ ′ }.

Proposition 2.10 Let n = n1 + n2 and ν′ be natural numbers, and set ν :=
m+ ν′. Let χ ′ ∈ Pn(�q). If we have a surjection

Stνn1
� Lχ � Lχ ′ for some χ ∈ Pn2(�q),

then we have χ ′ ∈ S+ν,n1
(χ). If we replace Stνn1

with tStνn1
, then the same

statement holds only if χ ′ ∈ S−ν,n1
(χ).

Proof By the Frobenius reciprocity, it suffices to assume

Stνn1
� Lχ ↪→ Lχ ′ (2.9)

as H
A
n1
⊗Hn2 -modules to deduce χ ′ ∈ S+ν,n1

(χ). The condition (2.9) implies


(Stνn1
� Lχ)⊂
(Lχ ′). (2.10)

For every w1 × w2 ∈ (Sn1 ×Wn2 ∩W [Stνn1
, χ ]), we have s′ = (w−1

1 sν
n1
×

w−1
2 s)−1 ∈
(Stνn1

�Lχ). We set χ̃ := (Stνn1
⊕χ)vs′ (w1×w2). By construction

(cf. [7], Sect. 2.1), we have

ξ ∈ Pn(�q) satisfies Lξ [s′] 	= {0} ⇒ Oξ ⊂Oχ̃ .
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Hence, we conclude Oχ ′ ⊂ Oχ̃ . By Lemma 2.9, this happens only if χ ′ ∈
S+ν,n1

(χ)∼. By Corollary 2.8, we have necessarily [MStνn1
⊕χ : Lχ ′ ] 	= 0 pro-

vided that (2.9) holds. This implies OStνn1
⊕χ ⊂ Oχ ′ , hence we conclude

χ ′ ∈ S+ν,n1
(χ). The other case is completely analogous. �

3 Delimits of tempered modules

In this section, we fix m0 ∈ 1
2Z and assume |m − m0| < 1

2 . Let σ be a
partition of n. As mentioned in the introduction, for every such m there
is a central character cσ

m ∈ Tn(�q) and a single discrete series with param-
eter dsm(σ) = (cσ

m, dsm(σ )); here dsm(σ ) is a marked partition adapted to
cσ
m which parameterizes this discrete series. It might be helpful to visualize

dsm(σ) combinatorially as a left justified decreasing Young diagram coming
from the partition σ by labeling every box with its m-content, i.e., the number
m+ c(i, j), where c(i, j) is the content i− j of the box in the (i, j) position.

We sometimes identify dsm(σ) with Ldsm(σ). Let mpm(σ) denote the anti-
spherical parameter with central character cσ

m. The G(cσ
m)-orbit indexed by

mpm(σ) is open dense.

3.1 Tempered delimits at generic parameter

We call a parameter χ ∈ P(�q) positive (resp. negative) if we have Em(I) > 1
(resp. < 1) for every I ∈ χ .

Theorem 3.1 ([7] Sect. 3.3 + [12] Theorem 7.4) The parameter dsm(σ) ad-
mits a unique decomposition dsm(σ) = ds+m(σ)⊕ ds−m(σ) such that ds+m(σ)

is positive and ds−m(σ) is negative. Moreover,

(1) ds−m(σ) is not marked, and hence we can regard ds−m(σ) ∈Q(q);
(2) two parameters ds+m(σ) and ds−m(σ) are nested to each other;
(3) we have a surjection (tLA

ds−m(σ)
� Lds+m(σ)) � Ldsm(σ).

We denote by ds±m(σ) the marked partitions corresponding to ds±m(σ), re-
spectively.

Definition 3.2 Delimits of tempered modules An algebraic flat family of ir-
reducible Hn,m-modules Lm depending on m (m0 − 1

2 < m < m0 + 1
2 but

m 	=m0) with central character cσ
m is called a delimit of tempered module, or

just a tempered delimit if the limit limm→m0 Lm is a tempered module. Let
Dm0(σ ) be the set of isomorphism classes of irreducible tempered delimits
with central character cσ

m.
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A segment I is called balanced along m0 if e+(I )e−(I ) = q2(m−m0).
A multisegment I is called balanced along m0 if each member is a balanced
segment along m0.

Below, for a marked partition τ ∈ Dm0(σ ) and a marked partition τ ′ ob-
tained from τ , we denote the corresponding parameters by using bold letters.
(I.e. τ = (cσ

m, τ ), τ ′, etc.)

Lemma 3.3 Let τm denote a marked partition adapted to every cσ
m (with

m0 < m < m0 + 1
2). Then τm is the parameter of a tempered delimit if and

only if there exists a multisegment τem and a marked partition τsm such that
the following conditions hold:

• We have a surjective map (tLA
τem

� Lτsm) � Lτm ;
• τsm = dsm(σ ′) for some partition σ ′ obtained by removing #τem hooks from

σ (as Young diagrams);
• τem is a balanced multisegment along m0;
• We have e+(I ) 	= e+(I ′) and e−(I ) 	= e−(I ′) for every pair I, I ′ of seg-

ments in τem.

Entirely the same statement holds if we replace m with m0 − 1
2 < m′ < m0

and tLA
τem

with LA
τe

m′
.

Proof We prove only the case of tLA
τem

since the case of LA
τe

m′
is completely

analogous. Let τ be a marked partition corresponding to a tempered delimit.
By the Evens-Langlands classification [10], we have a unique quotient map

LA
� Lτsm � Lτm, (3.1)

where Lτsm is a discrete series at m0 < m < m0 + 1
2 for some smaller affine

Hecke algebra of type C. Here (3.1) is a priori surjection for a specific value
of m. Taking account into the fact that P(�q) is constant for all the generic
value of m and the Morita equivalences from [12], Sect. 9, we deduce that
each element of P(�q) defines an algebraic flat family of representations de-
pending on m such that the function ch is continuous on m. Thanks to the
uniqueness of quotients of Evens-Langlands induced modules (for each indi-
vidual value), we deduce that (3.1) prolongs to an algebraic family depending
on m and its quotient is irreducible for all values of m0 < m < m0 + 1

2 .
Assume τsm = (J, δ)= dsm(σ ′), for some smaller partition σ ′. The type A

factor LA is the unique quotient of the induction of

St
ν′1
k1

� St
ν′2
k2

� · · ·� St
ν′p
kp

with ν′1 −
k1

2
≤ ν′2 −

k2

2
≤ · · · ≤ ν′p −

kp

2
≤ −1

2
,
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to H
A
k , where k =∑p

i=1 ki . By the Frobenius reciprocity, we have

St
ν′1
k1

� St
ν′2
k2

� · · ·� St
ν′p
kp

� Lτsm ⊂ Lτm (3.2)

as R(Tn)-modules. (Here ν′1, ν′2, . . . , are a priori real numbers.) In particular,
the inclusion gives a nonzero map at the limit m→ m0 (cf. [7], Sect. 2.4).
Therefore, we need limm→m0 ν′i = (1 − ki)/2 for i = 1, . . . , p by the tem-
peredness of the weights coming from the left hand side of (3.2). In particular,

either St
ν′i
ki

or tSt
ν′i
ki

corresponds to a m0-balanced segment for each 1≤ i ≤ p.
Since we fixed the central character to be cσ

m, we conclude that ν′i = (m0−
m)+ 1−ki

2 for every i = 1,2, . . . , p. By induction-by-stages, we conclude

tStν1
k1

� (tStν2
k2

� · · · (tSt
νp

kp
� Lτsm)) � Lτm

with νi = (m−m0)+ 1−ki

2 for i = 1, . . . , p. In particular, the multisegment
τem := {Stν1

k1
,Stν2

k2
, . . . ,St

νp

kp
} satisfies the first and the third conditions.

Claim A The partition σ ′ is obtained by removing a certain number of hooks
from σ of length k1, k2, . . . . In particular, k1, k2, . . . , kp are distinct.

Proof Let σ̃ = {I1, I2, . . . , I�} be a multisegment viewed as σ “unbent”
along the diagonal. Notice that q1 ∈ I1 � I2 � · · · � I�. A hook in the
original partition σ then becomes a path consisting of the union of a
segment of the form {q1, q1q, . . . , e+(Ii)} with a segment of the form
{e−(Ij ), qe−(Ij ), . . . , q

−1q1} for some Ii, Ij . A subpartition σ̃ ′ ⊂ σ̃ must
satisfy σ̃ ′ = {I ′i1, . . . , I ′ip}, q1 ∈ Ii1 � · · · � Iip , and I ′it ⊂ Iit . It is sufficient

(by induction) to show that there exists a partition σ̃ ′′ such that σ̃ ′ ⊂ σ̃ ′′ ⊂ σ̃ ,
and σ ′′ is obtained from σ by removing one (balanced) hook. Set S= σ̃ \ σ̃ ′,
and regard it as a balanced multisegment. We denote S = {b ∈ I | I ∈ S}
and S−1 = {b−1 : b ∈ S}. Find the largest value bmax in S ∪ S−1. Assume
this is in S (the other case is completely analogous). Then bmax = e+(Ii) for
some Ii ∈ σ̃ . Next find the smallest value in S, denote it bmin. (Notice that
b−1

min is the largest values in S−1.) Similarly, we must have bmin = e−(Ij )

for some Ij ∈ σ̃ . We claim that the segment {bmin, . . . , bmax}, which is a
hook, belongs to S, or else there exist b−, b+ ∈ {bmin, . . . , bmax} \ S such
that {bmin, . . . , q

−1b−} ∈ S and {b+q, . . . , bmax} ∈ S. But then it is clear that
the segment {b+q, . . . , bmax} cannot be balanced. �

We return to the proof of Lemma 3.3.
Thanks to Claim A, we deduce the second and the fourth conditions. There-

fore, we have proved the “only if” part of the assertion.
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We prove the “if” part of the assertion. We recall that LA
τem

, Lτsm , (and

hence LA
τem

� Lτsm ) are algebraic families depending on m. Moreover, both

of Lτsm and limm→m0 LA
τem

are tempered modules by assumptions (1) and (2),

respectively. In particular, limm→m0(L
A
τem

� Lτsm) is tempered, and hence all
of its irreducible constituents are tempered. �

Corollary 3.4 (Of the proof of Lemma 3.3) Keep the setting of Lemma 3.3.
Let h be the number of hooks in σ which give balanced segments along m0.
Then, we have #Dm0(σ )= 2h.

3.2 The classification of tempered delimits

We define two subsets of Dm0(σ ) as:

D±m0
(σ ) :=

{

τ ∈Dm0(σ )
∣

∣ τsm = ds±m(σ ′) for ±m0 − 1

2
<±m <±m0

}

,

where the ± denote a uniform choice of + or −, and σ ′ is borrowed from
Lemma 3.3.

Proposition 3.5 Let τem = (Je,0) and τsm be the marked partitions obtained
from τm ∈ Dm0(σ ) by Lemma 3.3. Then there exists a marked partition
τfm = (Je, δf) (obtained from τem by possibly changing the marking) and a
decomposition τm = τfm⊕ τsm if one of the following conditions hold:

• τ ∈D+m0
(σ ) and m0 − 1

2 < m < m0;

• τ ∈D−m0
(σ ) and m0 < m < m0 + 1

2 .

Proof Since the two cases are completely analogous, we prove only the first
case. We use the intermediate step of the dsm-algorithm (in the sense of [7],
Algorithm 3.3 step 2) to σ . It yields a sequence of segments

I1, I2, I3, . . .

with max{e+(I1), e−(I1)
−1}> max{e+(I2), e−(I2)

−1}> · · · (3.3)

so that each segment of dsm(σ) is a union of at most two of them.
Let I◦ be the set of all segments I such that I is obtained by gluing I+

and I− in (3.3) with the property that e+(I+)= q2(m−m0)e−(I−)−1. Let τem
and τsm be the marked partitions from Lemma 3.3. We have τem ⊂ I◦. For each
I ∈ I◦, we have some j (I ) so that I = Ij (I )∪ Ij (I )+1. Notice that e+(Ij (I )) <

e+(Ij (I )+1) by m < m0. The assumption dsm(σ ′)= ds+m(σ ′) implies that we
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have Em(I ′) > 1 for every I ′ ∈ dsm(σ ′). In particular, there exists no I ′ ∈
dsm(σ ′) such that I ′ � I .

Moreover, we have I � I ′′ or I ′′ � I for every distinct I, I ′′ ∈ Je. We
set τem = {Ie1 , . . . , IeN } and τs,k

m := {Ie1 } ⊕ {Ie2 } ⊕ · · · ⊕ {Iek } ⊕ τsm. Applying

Proposition 2.10 to {Iek−1} and τs,k
m for each k = 1, . . . ,N , we conclude that

LA
Ie1

� (· · · (LA
IeN

� Lτsm)) � LA
τem

� Lτsm � Lτfm⊕τsm

for some τfm obtained from τem by changing the markings if necessary. By the
uniqueness of the quotient of the Evens-Langlands induction, we conclude
that τm = τfm ⊕ τsm as required. �

Lemma 3.6 There exists a unique decomposition n = n1 + n2 + · · · + np ,
and a unique sequence σ 1, σ 2, . . . , σp of partitions of n1, n2, . . . , np , with
the following properties:

(1) I � I ′ if I ∈mpm(σ i) and I ′ ∈mpm(σ j ) for i < j ;
(2) mpm(σ i) is positive if and only if mpm(σ i+1) is negative for each i;
(3) mpm(σ i) is negative if and only if mpm(σ i+1) is positive for each i.

Proof Let σ 1
0 , σ 2

0 , . . . , σ
p′
0 be the sequence of partitions which gives the finest

nested component decomposition

mpm(σ)=mpm(σ 1
0 )⊕mpm(σ 2

0 )⊕ · · · ⊕mpm(σ
p′
0 ).

By rearranging the order of the sequence if necessary, we can assume I � I ′
if I ∈ mpm(σ i

0) and I ′ ∈ mpm(σ
j

0 ) for i < j . From [7], Sect. 3.5, we know
that every nested component mpm(σ) = mpm(σ i) is either positive or neg-
ative. Hence, by joining σ i

0 with σ i+1
0 if both of mpm(σ i

0) and mpm(σ i+1
0 )

are simultaneously positive or negative, we obtain the desired sequence of
partitions. �

We refer the decomposition of σ into σ 1, σ 2, . . . , σp in Lemma 3.6 as the
canonical decomposition of σ (with respect to the parameter m).

Lemma 3.7 Fix the canonical decomposition σ 1, σ 2, . . . , σp of σ . Let hi be
the number of balanced hooks of σ i and let h be the number of balanced
hooks of σ (along m0). Then, we have h=∑

i hi .

Proof Let I be a balanced segment obtained from a hook of σ . Then, there
exists I+, I− ∈ mpm(σ) such that e−(I ) = e−(I−) and e+(I ) = e+(I+).
If I+ = I−, then we have I+ = I− = I . Hence, we have I ∈ mpm(σ i) for
some i. Otherwise, we have Em0(I

+) 	= 1 	= Em0(I
−). To prove the assertion,
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it suffices to verify I+, I− ∈mpm(σ i) for some i. We assume to the contrary
to deduce contradiction. Then, we have either I+ � I− or I− � I+. By in-
spection, we see that if I+ � I−, then both I+, I− are positive. Similarly,
if I− � I+, then both are negative. Assume that I+ � I− (and hence they
are positive). If there exists I ′ ∈ mpm(σ) such that I+ � I ′ � I−, then we
have e+(I ′) > e+(I ) and e−(I ′) > e−(I ). It follows that I ′ is automatically
positive. Therefore, we conclude that I+, I− ∈ mpm(σ i) for some i by con-
struction of σ i . We have I+, I− ∈ mpm(σ i) for some i in the case I− � I+
by a similar argument, which completes the proof. �

Definition 3.8 Let σ 1, σ 2, . . . , σp be the canonical decomposition of σ with
respect to the parameter m0 < m < m0 + 1

2 . Let Cm0(σ
k) (1≤ k ≤ p) be the

set of (equivalence class of) marked partitions τk adapted to cm
σk which admit

a decomposition

τk = τ
�
k ⊕ τ

�
k ⊕ τ+k ⊕ τ−k = τ

�
k ⊕ τ⊥k (3.4)

(τ⊥k = τ
�
k ⊕ τ+k ⊕ τ−k ) with the following properties:

(1) τ
�
k is the set of all unmarked J ∈ τk such that J is a balanced segment

along m0 obtained from a hook of σk ;
(2) τ

�
k is the set of all marked J ∈ τk such that J is a balanced segment along

m0 obtained from a hook of σk . We have τ
�
k = ∅ if mp(σ k) is negative;

(3) τ+k = dsm′(σ+)= ds−
m′(σ

+) for some σ+ and m0 < m′ < m0 + 1
2 ;

(4) τ−k = dsm′(σ−)= ds+
m′(σ

−) for some σ− and m0 − 1
2 < m′ < m0.

Then, we define

Cm0(σ ) :=
{

p
⊕

k=1

τk

∣

∣

∣ τk ∈ Cm0(σ
k) for k = 1, . . . , p

}

. (3.5)

We may sometimes identify τ ∈ Cm0(σ ) with the corresponding parameter,
which we denote by τ := (cm

σ , τ ).

Lemma 3.9 Keep the setting of Definition 3.8. For each τj ∈ Cm0(σ
j ) and

τl ∈ Cm0(σ
l) with j 	= l, the two parameters τ j and τ l are nested to each

other. In addition, each τ ∈ Cm0(σ ) admits a decomposition

τ = τ �⊕ τ � ⊕ τ+ ⊕ τ− = τ �⊕ τ⊥ (3.6)

with the properties (1)–(4) (τk replaced with τ).

Proof Since all balanced segments are obtained by gluing the intermediate
output of the dsm-algorithm as in the proof of Proposition 3.5, we deduce
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max{e+(I ) | I ∈mp(σ j )} =max{e+(I ) | I ∈ τ j } and

min{e−(I ) | I ∈mp(σ j )} =min{e−(I ) | I ∈ τ j }.

If j > 1, then we further have

{e+(I ) | I ∈mp(σ j )} = {e+(I ) | I ∈ τ j } and

{e−(I ) | I ∈mp(σ j )} = {e−(I ) | I ∈ τ j }.

Therefore, we deduce

{e+(I ) | I ∈ τ j }> {e+(I ) | I ∈ τ l} and

{e−(I ) | I ∈ τ j }< {e−(I ) | I ∈ τ l}
whenever j > l. This implies the first assertion. Thanks to Lemma 3.6 and [7]
Corollary 3.17, the second assertion follows from the first assertion. �

Corollary 3.10 We have #Dm0(σ )≤ #Cm0(σ ).

Proof Thanks to Lemma 3.7, Definition 3.8 and Lemma 3.9, it suffices to
prove the assertion only when σ = σ 1 gives the canonical decomposition of
σ with respect to m0 < m < m0+ 1

2 . Thus, we can assume that mp(σ ) is either
positive or negative. If mp(σ ) is positive, then we deduce Dm0(σ )⊂ Cm0(σ )

by Proposition 3.5.
If mp(σ ) is negative, then we have e−(I )−1 ≥ q1−εe+(I ) for ε = 2(m−

m0) > 0. We borrow notation I1, I2, . . . and I◦ from the proof of Proposi-
tion 3.5. If I ∈ I◦ is obtained as a union of Ij (I ) and Ij (I )+1, then Ij (I ) is glued
with some Ik with k < j (I). Therefore, we deduce that dsm(σ ′) = ds−m(σ ′)
implies that dsm(σ ′) does not contain a balanced segment along m0. It fol-
lows that #Cm0(σ ) is at least the cardinality of the power set of I◦. Hence, we
conclude the result by Corollary 3.4 in this case. �

Definition 3.11 The decomposition (3.6) is unique if we rearrange the car-
dinality of τ � to be maximal in the equivalence class (in the sense of (2.3)).
When this maximality condition is attained, we call (3.6) the standard decom-
position (with respect to the parameter m0).

Proposition 3.12 Let τ, τ ′ ∈ Cm0(σ ). We have Oτ ′ ⊂ Oτ if and only if
τ � ⊂ (τ ′)� as multisegments (by using standard decomposition). Moreover,
we have

dim Oτ = dim Oτ ′ + #(τ ′)� − #τ �.
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Proof Thanks to Lemma 3.9 and [7] Corollary 2.10, it suffices to prove the
assertion in the case mpm(σ) consists of only positive (or only negative)
nested components. By separating out nested components which satisfies
dsm′(σ ′)= dsm(σ ′) for m0− 1

2 < m′ < m0 < m < m0+ 1
2 , there remain three

cases to be considered: (0) mpm(σ) consists of a unique balanced segment, or

(p) e+(I )≥ q1+εe−(I )−1 for every I ∈mpm(σ), or

(n) e+(I )≤ q−1+εe−(I )−1 for every I ∈mpm(σ),
(3.7)

where ε = 2(m−m0) > 0.
Case (0): We have τ = ({J }, δ) with a single J and different choice of δ

from τ ′. If δ 	≡ 0, then we have τ = τ � and if δ ≡ 0, then we have τ = τ �.
Hence, the assertion is straight-forward in this case.

Case (p): We assume that τ � ∪ {I } = (τ ′)� as multisegments. By the dsm

algorithm and condition (p), we deduce that there exists I∗ ∈ τ so that I � I∗.
By rearranging I∗ if necessary, we can assume that e−(I∗) = min{e−(I ′) |
I ′ ∈ τ , I � I ′}. Notice that such I∗ is unique since the minimal/maximal en-
tries of segments of an output of the dsm-algorithm are all distinct. We have
τ = εI∗,I (τ

′) by inspection. By the minimality assumption on I∗, there exists
no segment I ′ ∈ τ − {I∗, I } such that

I∗ ∩ I � I ′ � I∗ ∪ I.

By Theorem 2.5, we conclude that

Oτ ′ ⊂Oτ and dim Oτ = dim Oτ ′ + 1.

We set I = {q1q
m−, . . . , q1q

m+}. Then, we have

ρm−,m++1(τ
′)= ρm−,m++1(τ )− 1 and

ρm−−l,m++1(τ
′)= ρm−−l,m++1(τ ) for every l > 0.

(3.8)

Let τ0 ∈ Cm0(σ ) be the marked partition obtained by setting τ
�
0 to be the col-

lection of all hooks in σ which gives a balanced segment along m0. We have
Oτ 0 ⊂Oτ ∩Oτ ′ . Notice that each pair of segments of τ

�
0 are nested to each

other. Therefore, a repeated use of (3.8) claims that

ρm−,m++1(τ
′′)=

{

ρm−,m++1(τ )− 1 (I ∈ (τ ′′)�)
ρm−,m++1(τ ) (I 	∈ (τ ′′)�)

(3.9)

for every τ ′′ ∈ Cm0(σ ). Therefore, we have Oτ ′ ⊂ Oτ only if τ � ⊂ (τ ′)� by
Theorem 2.2.
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Case (n): The proof goes in a similar fashion if we replace “I � I∗” by
“I∗ � I”, and min by max.

This case-by-case analysis implies the result as desired. �

Corollary 3.13 Keep the setting of Proposition 3.12. Then Oτ is smooth
along Oτ ′ .

Proof We assume the setting of the proof of Proposition 3.12 and denote
s := cσ

m. The case (0) is clear. We verify the assertion in the case (p). Then,
every relevant G(s)-orbit is obtained as the pullback of an orbit of Reps to
(Es(0) ⊕ Reps). By Theorem 2.5(2), we have an algebraic function fI on
(Es(0)⊕Reps) for each I ∈ τ

�
0 such that

Oτ ⊂ {fI = 0} if I ∈ τ � and Oτ ∩ {fI 	= 0} =Oτ if I 	∈ τ �.

Moreover, we have dfI 	≡ 0 on Oτ by inspection. Therefore, {fI ; I ∈
(τ ′)� − τ �} gives an algebraically independent system of equation of Oτ ′
along an open dense subset of Oτ . In particular, Oτ ′ is locally a complete
intersection inside Oτ . This is the very definition of smoothness. Hence we
have verified the case (p). The case (n) is similar. �

The proofs of the following three Theorems 3.14, 3.15, and 3.16 are simul-
taneously given in Sect. 3.3.

Theorem 3.14 (Classification of tempered delimits) We have an equality
Cm0(σ ) = Dm0(σ ), where Cm0(σ ) and Dm0(σ ) are as in (3.5) and Defini-
tion 3.2, respectively.

Theorem 3.15 Let τ ∈Dm0(σ ) and let τ = τ � ⊕ τ⊥ be its standard decom-
position as in Definition 3.11. Fix τ� ⊂ τ � and consider an induced decom-
position τ = τ� ⊕ τ�. We have

[LA
τ� � Lτ�] =

∑

τ ′∈Dm0 (σ );τ �
�⊂(τ ′)�⊂τ�⊕τ

�
�

[Lτ ′ ] ∈K(Mn
�q), (3.10)

where τ ′ = (τ ′)�⊕ (τ ′)⊥ is the standard decomposition of τ ′ ∈Dm0(σ ).

Theorem 3.16 Let τ0 ∈ Dm0(σ ) be the minimal element with respect to the

closure ordering (i.e. τ
�
0 is maximal). Then, limm→m0 Lτ⊥0

is an irreducible
discrete series.

Corollary 3.17 (Of Theorem 3.15) Let τ ∈Dm0(σ ) and m0 < m < m0 + 1
2 .

We have

τem⊕ τsm ∈Dm0(σ ).
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In particular, (3.10) applied for τ� := τem and τ� := τsm for each τ ∈Dm0(σ )

yields an overdetermined system of character equations.

In Sect. 4, we need the following Corollary 3.19 of Theorem 3.15.

Definition 3.18 We say that τ, τ ′ in Dm0(σ ) are linked if there exist prop-
erly parabolically induced modules V1, . . . , Vk such that in the Grothendieck
group of Hn,m we have:

[Lτ ] + [Lτ ′ ] or [Lτ ] − [Lτ ′ ] ∈ SpanZ([V1], . . . , [Vk])⊂K(Mn
�q).

Corollary 3.19 Assume m0 − 1
2 < m < m0 + 1

2 and m 	= m0. Any two tem-
pered delimits in Dm0(σ ) are linked (in the sense of Definition 3.18).

Proof We use induction on h, the number of balanced hooks at m, to show
that there exists a system of 2h distinct equations (in the Grothendieck group)
of the form

[Lτ i
] + [Lτ j

] = [Vij ],
where Vij is a properly parabolically induced modules, for τi, τj ∈ Dm0(σ ).

Moreover, every τ ∈ Dm0(σ ) appears exactly 2h−1 times in these equations.
Since 2h−1 + 2h−1 = 2h, the claim follows. �

3.3 Proofs of Theorems 3.14, 3.15, and 3.16

We start with certain weaker versions of Theorems 3.16 and 3.15, which turn
out to be sufficient in order to prove the full statements.

Lemma 3.20 Let τ0 ∈ Cm0(σ ) be the minimal element with respect to the clo-

sure ordering (i.e. τ �
0 is maximal). Then, limm→m0 Lτ⊥0

must be an irreducible
discrete series.

Proof Let σ ′ be a partition of n′ such that τ⊥0 ∈ Cm0(σ
′). By the assumption

τ
�
0 is maximal, we deduce that σ ′ does not contains a balanced hook along m0.

Hence, we have

τ⊥0 = dsm′(σ
′)= dsm(σ ′)

for m0 − 1
2 < m′ < m0 < m < m0 + 1

2 . In particular, limm→m0 Lτ⊥0
must be

discrete series by Opdam-Solleveld [25]. �

Proposition 3.21 Let τ ∈ Cm0(σ ) and let τ = τ �⊕τ⊥ be the standard decom-
position. Fix τ� ⊂ τ � and consider an induced decomposition τ = τ� ⊕ τ�.
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We have

[LA
τ� � Lτ�] =E +

∑

τ ′∈Dm0 (σ );τ �
�⊂(τ ′)�⊂τ�⊕τ

�
�

[Lτ ′ ] ∈K(Mn
�q), (3.11)

where τ ′ = (τ ′)� ⊕ (τ ′)⊥ is the standard decomposition, and E is a non-
negative sum of irreducible Hn-modules which are not of the form Lτ for any
τ ∈ Cm0(σ ).

Proof Notice that LA
τ � = MA

τ � . By Corollary 2.8, every composition factor

Lτ ′ of LA
τ � � Lτ⊥ satisfies Oτ ⊂ Oτ ′ . By Corollary 3.13, we deduce that

[Mτ : Lτ ′ ] = 1 for every τ ′ ∈ Cm0(σ ) such that Oτ ⊂Oτ ′ . Consequently, we
have

[LA
τ � � Lτ⊥ : Lτ ′ ] ≤ 1 for every τ ′ ∈ Cm0(σ ).

By induction-by-stages, we have

LA
τ � � Mτ⊥ ∼= LA

I1
� (LA

I2
� (· · ·� (LA

IN
� Mτ⊥))), (3.12)

where τ � = {Ik}Nk=1. If N = 0, there is nothing to prove. Let n′ := n − #I1
and σ ′ be the Young diagram obtained by extracting a hook corresponding to
I1 from σ . Consider the following assertion:

(♥) The H-module LA
I1

� Lτ̃ contains both of Lτ̃ (1) and Lτ̃ (2) as compo-

sition factors for every τ̃ ∈ Cm0(σ
′), and τ̃ (1), τ̃ (2) ∈ Cm0(σ ) that satisfy

τ̃ � = (̃τ (1))� and τ̃ � ∪ {I1} = (̃τ (2))�.

If (♥) holds, and (3.11) holds for all smaller N , then the comparison of multi-
plicity yields [LA

I1
� Lτ̃ ] =E′ + [Lτ̃ (1)] + [Lτ̃ (2)], where E′ is a non-negative

(formal) linear combination of irreducible Hn-modules which are not iso-
morphic to L(cm

σ ,τ) for some τ ∈ Cm0(σ ). Therefore, in order to prove (3.12),
it suffices to verify (♥) provided that (3.11) holds for all smaller N cases.

Set τ̃+ := {I1} ⊕ τ̃ . We have τ̃+ ∈ Cm0(σ ). By Corollary 2.8, every com-
position factor Lτ ′ of (LA

I1
� Lτ̃ ) satisfies Oτ̃+ ⊂Oτ ′ . By Corollary 3.13, we

deduce that [Mτ̃+ : Lτ ′ ] = 1 for every τ ′ ∈ Cm0(σ ) such that Oτ̃+ ⊂Oτ ′ . To
show (♥), it suffices to verify that

[LA
I1

� Lτ̃ ′ : Lτ̃ (i)] = 0

for i = 1,2 and every irreducible constituent Lτ̃ ′ 	∼= Lτ̃ of Mτ̃ . This follows if

(♥)′ Oτ̃ (i) does not contain O{I1}⊕τ̃ ′
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holds by Corollary 2.8. Here we have

dim O{I1}⊕τ̃ ′ > dim Oτ̃+ and

dim Oτ̃ (i) ≤ dim Oτ̃+ + 1 (for each i = 1,2).
(3.13)

Thus, in order to deduce inclusion, we have necessarily dim O{I1}⊕τ̃ ′ =
dim Oτ̃+ + 1. It follows that τ̃ ′ is obtained from τ̃ by applying a unique ele-
mentary modification or putting one extra marking. Here I1 corresponds to a
hook of σ , but I1 does not correspond to a hook of σ ′. Therefore, we conclude
that {I1} ⊕ τ̃ ′ 	= τ̃ (i) for i = 1,2. This in turn implies (♥)′, and hence (♥). In
conclusion, the induction proceeds and we obtain the result. �

The rest of this section is devoted to the proof of Theorems 3.14, 3.15,
and 3.16.

We apply Proposition 3.21 to τ0 (borrowed from Lemma 3.20). Then, we
obtain

[LA
τ

�
0

� Lτ⊥0
] =E +

∑

τ∈Cm0 (σ )

[Lτ ] ∈K(Mn
�q)

by Proposition 3.12. Here, limm→m0 LA
τ

�
0

is a tempered module while

limm→m0 Lτ⊥0
is a well-defined discrete series. It follows that every irre-

ducible constituent of LA
τ

�
0

� Lτ⊥0
is a tempered delimit. In particular, we have

Cm0(σ )⊂Dm0(σ ). Moreover, Corollary 3.10 implies that Cm0(σ )=Dm0(σ )

by the comparison of the cardinality. This proves Theorem 3.14 and hence
also Theorem 3.16. Moreover, we conclude E = 0 since there can be no other
tempered delimits outside of Cm0(σ ). Therefore, we conclude Theorem 3.15
as desired.

3.4 Further properties of tempered delimits

We first recall a result based on the theory of analytic R-groups due, in the
setting of affine Hecke algebras, to Delorme-Opdam [9]:

Theorem 3.22 (Slooten [30] Theorem 3.4.4) Let σ be a partition of n. Let
I = {I1, . . . , IN } be a multisegment consisting of segments with Em(Ik) = 1.
Let d be the number of segments Ik of distinct size such that e+(Ik) 	∈
{e+(I ) | I ∈ dsm(σ)} and e−(Ik) 	∈ {e−(I ) | I ∈ dsm(σ)}. Then, the module
LA

I � dsm(σ) is irreducible when m 	= m0, and is a direct sum of 2d irre-
ducible components when m=m0.

Corollary 3.23 For every τ ∈Dm0(σ ), the limit module limm→m0 Lτ is irre-
ducible.
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Proof We borrow the notation τ 0 from Theorem 3.16. By Theorem 3.22,
limm→m0 LA

τ
�
0

� Lτ⊥0
splits into 2h direct sums of tempered modules, where h

is the number of segments in τ
�
0. By Theorem 3.15, we know that LA

τ
�
0

� Lτ⊥0
contains 2h irreducible constituent even at generic m. It follows that all of
such irreducible constituents, which is the whole of Dm0(σ ), must be irre-
ducible by taking limit m→m0. �

Lemma 3.24 For every distinct choice of partitions σ,σ ′ of n, we have

Dm0(σ )∩Dm0(σ
′)= ∅.

Proof Let χ ∈ P(�q) be a parameter corresponding to an element of Dm0(σ ). It
is sufficient to prove that σ is canonically recovered from χ0 :=
limm→m0 χ0 ∈Q(q).

Let I ∈ χ0 be a segment so that (1) I or I−1 is of the form {qm0, qm0+1, . . .}
or {. . . , qm0−1, qm0}, and (2) max(I ∪ I−1) attains the maximum among all
the segments in χ0 which satisfy condition (1). Such a segment I must be
unique (if it exist) since it gives the first segment in the smallest nested com-
ponent with respect to � (via the dsm-algorithm, see also Definition 3.8).

Let χ ′ = (I′, δ) be the marked subpartition of χ so that I′ is the collection
of all segments I ′ such that I � I ′. By the dsm-algorithm and Definition 3.8,
we deduce that χ ′ forms a nested component of χ such that either both min I ′
and max I ′ or both (min I ′)−1 and (max I ′)−1 are the maximal/minimal val-
ues of a hook extracted from σ . Moreover, the marking of I ′ determines either
I ′ or (I ′)−1 must belong to χ , and consequently we obtain the shape of all
the intermediate segments of the dsm-algorithm step (2). Therefore, χ ′ is de-
termined uniquely from χ0.

In particular, we can assume χ ′ = ∅. Then, according to the marking of I ,
all the segments of χ must be either uniformly marked (after changing the
marking within the equivalence class if necessary) or uniformly unmarked. It
follows that every I ′ ∈ χ must satisfy Em(I ′) > 1 or Em(I ′) < 1 uniformly.
Assume that Em(I ′) > 1 for every I ′ ∈ χ . Then, we arrange χ as

max I =max I1 > max I2 > · · ·> max I�.

A segment Ik appears in the dsm-algorithm step (2) if and only if I = I1 or
min Ik = q−1 min Il for some l < k. All the others are union of two segments
appearing in the dsm-algorithm step (2). This recovers the all segments ap-
pearing in the dsm-algorithm step (2), and hence recovers σ uniquely. The
other case is completely analogous, and hence the result follows. �
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Theorem 3.25 Every tempered irreducible Hn,m0 -module is obtained as

lim
m→m0

LA
I � Lτ

for a unique balanced multisegment I (along m0) and τ ∈ Dm0(σ ) for a
unique partition σ of some n′. In particular, such limm→m0 LA

I � Lτ is an
irreducible Hn,m0 -module.

Proof By the Evens-Langlands classification [10] (see also [7]), a tempered
module is written as a quotient of a parabolic induction of the form LA

I′ � ds,
where I′ is a multisegment and ds = limm→m0 dsm(σ ′) is a discrete series
obtained from a partition σ ′. Since every discrete series is a tempered de-
limit, we can further assume that σ ′ does not contain a balanced hook as in
Theorem 3.16 (cf. Theorem 3.15).

We set I′′ to be the collection of all distinct segments of I′ so that we have
e+(I ′′) 	∈ {e+(I ) | I ∈ dsm(σ ′)} and e−(I ′′) 	∈ {e−(I ) | I ∈ dsm(σ ′)} for every
I ′′ ∈ I′′. Let I be the multisegment obtained from I′ by removing segments
in I′′. By the irreducibility of tempered induction of affine Hecke algebras of
GL(n), we deduce LA

I � (LA
I′′ � ds)∼= LA

I′ � ds. Then, Theorem 3.22 implies
that both LA

I′′ � ds and LA
I′ � ds share the same number of irreducible con-

stituents. It follows that LA
I � L is irreducible for every irreducible constituent

L of LA
I′ � ds. Here I′ ⊕mpm(σ ′) is adapted to cσ

m for the larger partition σ

of n′ by the construction of I′. Therefore, we conclude L = Lτ for some
τ ∈Dm0(σ ), which implies the existence part of the assertion.

We prove the uniqueness of σ and τ ∈Dm0(σ ). Since the set I is uniquely
determined by χ ∈ P(�q) corresponding to the tempered module, we can as-
sume I= ∅. Then, the assertion reduces to Lemma 3.24 as desired. �

Corollary 3.26 (Of Corollary 3.13 and Theorem 3.15) Assume that some
τmax ∈ Dm0(σ ) satisfies sgn ⊂ Lτmax (as W -modules). Then, for every τ ∈
Dm0(σ ), we have

Mτ
∼= Lτ � � Lτ⊥ . (3.14)

In addition, if m0 = 1/2 or 1, then for each such τ , there exist

• a nilpotent element x = xτ ∈ g (with g= so2n+1 and sp2n, respectively);
• an irreducible representation ξ = ξτ of Ax appearing in the Springer cor-

respondence, where Ax = StabG(xτ )/StabG(xτ )
◦ (with G = SO(2n+ 1)

and Sp(2n), respectively);

such that we have

[H•(Bx)ξ ] =
∑

τ ′∈Dm0 (σ );(τ ′)�⊂τ �

(−1)#τ �−#(τ ′)�[H•(Eτ ′)] (3.15)
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as virtual W -modules (without gradings). Here Bx is the Springer fiber of
(the flag variety of G along) x and the subscript ξ means the ξ -isotopic com-
ponent as Ax-modules.

Proof Choose m0 < m < m0 + 1
2 . By [7] Theorem 1.22, our assumption is

equivalent to the fact that Oτmax is the open dense orbit of V
(cσ

m,�q). Taking
into account Theorem 3.15, Corollary 3.13, and the Ginzburg theory (cf. [12],
Theorem 11.2), it suffices to prove that Oτ is not contained in any orbit clo-
sure except for Oτ ′ for some τ ′ ∈Dm0(σ ) in order to prove (3.14).

We prove this by contradiction. Let τ ∈ Dm0(σ ) be a marked partition
so that there exists a parameter χ which does not come from Dm0(σ ), but
Oτ ⊂Oχ . If τ− 	= ∅, then we deduce that τmax cannot define an open dense
orbit. Thus, we assume τ− = ∅ in the following. Let I1, I2, . . . be the set of
segments obtained from balanced hooks of σ along m0. For each k, there ex-
ists at most one segment I of τ such that Ik � I ; this is because Oτmax is open
dense. Thus, we further conclude that εIk,I (τ ) comes from Dm0(σ ) for every
I ∈ τ . Therefore, χ cannot exist, which finishes the first part of the proof.

For the latter part, notice that every tempered Hn,m0 -module is of the form
H•(Bx)ξ by Kazhdan-Lusztig [14] Theorem 8.2 (before taking fixed points,

but this does not affect the H
f
n,m0 - or W -module structures). Therefore, in-

verting the multiplicity matrix (of simple modules in standard modules as
Hn,m-modules) given by (3.14) and Theorem 3.15 for Dm0(σ ) yields the as-
sertion for m. By Corollary 3.23, the assertion holds for the limit m→m0 as
required. �

Remark 3.27

(a) If ξ = 1, then the result becomes simpler as in [7] Corollary 1.23 (the
right hand side of (3.15) is only [H•(Eτmax)]).

(b) In view of Lusztig [17–19, 22], Theorem 1.22, the same statement holds
at all critical values m0 ≥ 3/2, but the homology of the classical Springer
fiber in the left hand side of (3.15) is replaced by the appropriate ho-
mology group. It should be added that Corollary 3.26 becomes weaker
for larger values of m0, since it becomes more difficult for τmax with the
desired property to exist.

3.5 An inductive algorithm for characters of tempered delimits

We give an inductive algorithm for computing W -characters of tempered de-
limits, and in particular of discrete series and limits of discrete series for all
values of the parameter m. Fix a partition σ of n, and we retain the notation



On characters and formal degrees of discrete series 619

as before. In the following

�W(π)=
∑

χ∈̂W

[π : χ ]C[W ] χ

denotes the W -character of a module π. The induction proceeds in two ways:
increasingly on the rank n, and decreasingly on the value m of the parameter.

Remark 3.28 Taking into account Theorem 3.25, we know that the W -character
of every tempered module is obtained as an induced module of a suitable tem-
pered delimits.

First, we fix a parameterization of ̂Wn: Let C[ε1, . . . , εn] be the polynomial
ring in which Wn acts naturally by extending the action on R ⊂X∗(T ). For a
bi-partition (μ, ν) of n, we define

p0
i (μ) :=

∏

μ<
i <k<l≤μ

≤
i

(ε2
k − ε2

l ),

p+i (μ, ν) :=
∏

ν<
i <k<l≤ν

≤
i

(ε2
k+|μ| − ε2

l+|μ|), and

p(μ, ν) :=
∏

i>|μ|
εi ×

∏

i≥1

p0
i (μ)p+i (μ, ν).

Lemma 3.29 (Cf. [5], Sect. 11.4) Let (μ, ν) be a bi-partition of n. Then the
following Wn-module is irreducible:

{μ,ν} :=C[Wn]p(tμ, tν)⊂C[ε1, . . . , εn].
Algorithm 3.30

Step 0. Let m0 = n− 1 be the critical point. If m > n− 1 then [7] gives that
�W(dsm(σ))= {∅, tσ }.

Step 1. Consider m0 < m < m0 + 1
2 . Applying Theorem 3.15 in Dm0(σ ), we

find that

�W(LA
τem

� Lτsm)=
∑

τ ′∈Dm0 (σ );(τ ′)em⊂τem

�W(Lτ ′m). (3.16)

Solving this linear system gives

�W(Lτ )=
∑

τ ′∈Dm0 (σ );(τ ′)em⊂τem

(−1)#(τem\(τ ′)em) �W(LA
(τ ′)em � L(τ ′)sm),

τ ∈Dm0(σ ). (3.17)
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Notice that in this equation, the right hand side is known since (τ ′)s =
dsm(σ ′) for some partition σ ′ of n′ ≤ n.

Step 2. Set m = m0. By Corollary 3.23, for every τ ∈ Dm0(σ ), the module
L(τ) := limm→m0 Lτ is irreducible. Hence by Corollary 3.23 and by previ-
ous step, we get the W -character �W(L(τ)) for every τ ∈Dm0(σ ).

Step 3. Consider m0 − 1
2 < m < m0. We need to find �W(dsm(σ)) (in

order proceed with the algorithm). By Corollary 3.23, there exists a
unique τ ∈Dm0(σ ), such that limm→m0 dsm(σ)= L(τ), and in particular,
�W(dsm(σ)) = �W(L(τ)). Applying Lemma 3.9, this τ is characterized
by τ �, which is precisely the set of unmarked balanced segments of dsm(σ).

Step 4. If m0 > 1− n, set m0 =m0 − 1
2 and move to Step 1.

Remark 3.31 Notice that (3.17) remains valid if we replace �W with ch.
Moreover, we can compute ch(dsm(σ)) for m
 0 (by [7], Sect. 4.7), and
ch(LA

� L) from chLA and chL. Since chLτ depends on m holomorphically
in the region m0 − 1

2 < m < m0 + 1
2 for each τ ∈Dm0(σ ), we can also com-

pute chLτ by using the above algorithm.

Example 3.32 Consider the case n = 6 and σ = (2,2,2), so that we have
{εi(cσ

m)}6i=1 = {qm+1, qm, qm, qm−1, qm−1, qm−2}. Then we find the follow-
ing cases:

1. m0 < m < m0 + 1
2 with m0 ∈ 1

2Z and m0 ≥ 2. We have Dm0(σ ) =
{dsm(σ)}, where �W(dsm(σ))= {(0)(32)}.

2. 3
2 < m < 2. We have D 3

2
(σ )= {dsm(σ),Lτ 1

m
}, where:

(a) �W(dsm(σ))= {(0)(32)};
(b) �W(Lτ 1

m
) = {(0)(321)} + {(0)(2212)} + {(1)(221)} + {(1)(32)} +

{(12)(22)} ((τ 1
m)e = {qm−2, qm−1}).

3. m= 3
2 . D 3

2
(σ ) is as before, but lim

m↘ 3
2

dsm(σ) is not a discrete series.

4. 1 < m < 3
2 . We have D1(σ )= {dsm(σ),Lτ 1

m
,Lτ 2

m
,Lτ 3

m
}, where:

(a) �W(dsm(σ))= {(0)(321)}+ {(0)(2212)}+ {(1)(221)}+ {(1)(32)}+
{(12)(22)};

(b) �W(Lτ 1
m
) = {(0)(313)} + {(0)(214)} + {(1)(312)} + {(1)(213)} +

{(12)(31)} + {(12)(212)} + {(13)(21)} ((τ 1
m)e = {qm−2, qm−1});

(c) �W(Lτ 2
m
)= {(1)(221)} + {(2)(22)} + {(0)(23)} ((τ 2

m)e = {qm−1});
(d) �W(Lτ 3

m
) = {(0)(16)} + {(0)(2,14)} + {(0)(2212)} + 2{(1)(15)} +

2{(12)(14)} + 2{(13)(13)} + {(14)(12)} + 2{(1)(213)} + {(2)(14)} +
2{(12)(212)} + {(2)(212)} + {(1)(221)} + {(21)(13)} + {(13)(21)} +
{(212)(12)} + {(12)(22)} + {(21)(21)} ((τ 3

m)e = {(τ 1
m)e, (τ 2

m)e}).
5. m= 1. D1(σ ) is as before, but limm↘1 dsm(σ) is not a discrete series.
6. 1

2 < m < 1. We have D 1
2
(σ )= {dsm(σ),Lτ 1

m
,Lτ 2

m
,Lτ 3

m
}, where:
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(a) �W(dsm(σ))= {(0)(16)}+ {(0)(214)}+ {(0)(2212)}+ 2{(1)(15)}+
2{(12)(14)} + 2{(13)(13)} + {(14)(12)} + 2{(1)(213)} + {(2)(14)} +
2{(12)(212)} + {(2)(212)} + {(1)(221)} + {(21)(13)} + {(13)(21)} +
{(212)(12)} + {(12)(22)} + {(21)(21)};

(b) �W(Lτ 1
m
) = {(13)(21)} + {(212)(2)} + {(14)(2)} + {(14)(1,1)} +

{(213)(1)} + {(15)(1)} ((τ 1
m)e = {qm+1, qm, qm−2, qm−2});

(c) �W(Lτ 2
m
) = {(12)(14)} + {(21)(13)} + {(22)(12)} ((τ 2

m)e =
{qm,qm−1});

(d) �W(Lτ 3
m
) = {(13)(13)} + {(14)(12)} + {(212)(12)} + {(213)(1)} +

{(15)(1)}+{(16)(0)}+{(2,14)(0)}+{(2212)(0)}+{(221)(1)} ((τ 3
m)e

= {(τ 1
m)e, (τ 2

m)e}).
7. m= 1

2 . D 1
2
(σ ) is as before, but lim

m↘ 1
2

dsm(σ) is not a discrete series.

8. 0 < m < 1
2 . We have D0(σ )= {dsm(σ),Lτ 1

m
}, where:

(a) �W(dsm(σ))= {(13)(13)}+{(14)(12)}+{(212)(12)}+{(213)(1)}+
{(15)(1)} + {(16)(0)} + {(214)(0)} + {(2212)(0)} + {(221)(1)};

(b) �W(Lτ 1
m
)= {(23)(0)} ((τ 1

m)e = {qm+1, qm, qm−1}).
9. m= 0. D0(σ ) is as before, but limm↘0 dsm(σ) is not a discrete series.

10. m0 < m < m0+ 1
2 with m0 ∈ 1

2Z<0. We have Dm0(σ )= {dsm(σ)}, where
�W(dsm(σ))= {(23)(0)}.

We explain that the algorithm gives also the WD
n -character of discrete series

for H
D
n,m. For every partition σ of n, we set L0(σ ) := limm→0 dsm(σ).

Lemma 3.33 (Cf. [5], Sect. 11.4) Recall the Wn-representation {μ,ν} from
Lemma 3.29.

(1) The restriction of {μ,ν} to WD
n is irreducible unless μ= ν;

(2) We have {μ,ν} ∼= {ν,μ} as WD
n -modules;

(3) We have {μ,ν} ⊗ sgn∼= {tν, tμ};
(4) The dimension of HomWD

n
({μ,ν}, {μ′, ν′}) equals:

⎧

⎨

⎩

1, if (μ, ν) ∈ {(μ′, ν′), (ν′,μ′)}, but μ 	= ν,

2, if (μ, ν) ∈ {(μ′, ν′), (ν′,μ′)}, and μ= ν,

0, otherwise.

Proposition 3.34 The restriction of L0(σ ) from Hn,0 to H
D
n is irreducible.

Proof In this proof, we freely identify H
f
n with C[Wn], and H

D,f
n with

C[WD
n ]. Applying the dsm-algorithm to σ (0 < m < 1

2 ), we deduce that
the largest segment I ∈ dsm(σ) (with respect to the cardinality) satisfies
qm ∈ I . Let (μ, ν) be the bi-partition corresponding to GOdsm(σ) by [13]
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Theorem 5.1. We have Lσ := {tν, tμ} ⊂ L0(σ ) by the exotic Springer corre-
spondence. If Em(I) < 1, then we deduce that μ1 < ν1 from the fact that I is
not marked. If Em(I) > 1, then we have μ1 > ν1. Thanks to Lemma 3.33 and
[13] Theorem 10.7, we conclude that the restriction of Lσ from Wn to WD

n is
irreducible. (Notice that the correspondences in [12] and [13] are equivalent
under tensoring with sgn, and the correspondences in [13] and Lemma 3.33
are equivalent, respectively.)

By Lemma 3.33, we have [L0(σ ) : Lσ ]C[WD
n ] > 1 only when [L0(σ ) :

L′σ ]C[Wn] > 0 with L′σ := {tμ, tν}. In particular, there exists a marked par-
tition τ corresponding to L′σ and Odsm(σ) ⊂ GOdsm(σ) ⊂ Oτ . This hap-
pens only if Em(I) < 1 since we need μ1 ≤ ν1 by [1]. Moreover, we
have pr(GOdsm(σ)) = pr(Oτ ) as G-orbits in V, where pr is the projec-

tion Vn→ V
(2)
n . We define � to be the set of parameters χ which satisfy

Odsm(σ) ⊂ Oχ , pr(Odsm(σ)) = pr(Oχ), and GOχ ⊂ Oτ . Recall that Lχ de-
notes the irreducible Hn,m-module parameterized by χ .

Claim B If [Lχ : L′σ ]C[Wn] 	= 0 for some χ ∈ �, then χ must be maximal
with respect to the closure ordering in �.

Proof The variety pr−1(pr(Odsm(σ))) ∩ V
(cσ

m,�q)
n is a vector bundle over

Odsm(σ). Hence, a closure relation in � just represents a vector subbun-
dle over pr(Odsm(σ)); this means that Oχ is smooth along Oχ ′ for every
χ,χ ′ ∈ � such that Oχ ′ ⊂ Oχ . From this, we deduce [Mdsm(σ) : Lχ ] = 1
for χ ∈ �. By the analogous vector bundle structure for all of Vn, we con-
clude [Mχ : L′σ ]C[Wn] = 1. Applying the Ginzburg theory, we conclude that
[Lχ : L′σ ]C[Wn] = 1 for a unique χ ∈ �. In view of the above multiplicity
estimates, we conclude that χ is maximal in � with respect to the closure
ordering. �

We return to the proof of Proposition 3.34.
In the case Em(I) < 1, we have GOdsm(σ) ⊂Oχ ′ ⊂Oχ for a parameter χ ′

obtained from dsm(σ) = (cσ
m, τ ) by adding an extra marking on J ∈ τ with

I = J . This implies that dsm(σ) is not maximal in �. Thus, we have necessar-
ily [L0(σ ) : L′σ ]C[Wn] = 0. Therefore, we conclude [L0(σ ) : Lσ ]C[WD

n ] = 1.
We now show that L0(σ ) is irreducible as an H

D
n -module. In order to

deduce this by contradiction, we assume that there exists a proper H
D
n -

submodule M ⊂ L0(σ ). We have H
D
nLσ = H

D
nNnLσ = L0(σ ) since Hn,0 =

H
D
n + H

D
nNn. Because [L0(σ ) : Lσ ]C[WD

n ] = 1, we have [M,Lσ ]C[WD
n ] = 0.

Since L0(σ ) is irreducible as an Hn,0-module, we have a surjection

Ind
Hn,0

HD
n

M =Hn,0⊗HD
n

M � L0(σ ).
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As WD
n -modules, Ind

Hn,0

HD
n

M =M⊕NnM , and therefore NnM contains Lσ as

a WD
n -module. However, Lσ must give rise to an irreducible Wn-submodule

of L0(σ ). Therefore, we conclude Lσ ⊂NnM ∩M ⊂M . This is a contradic-
tion and thus L0(σ ) is irreducible as an H

D
n -module. �

4 Formal degrees

4.1 Preliminaries

In this section, we consider the Hecke algebra with three parameters Hn =
Hn(q,u, v), and assume that u and v are specialized to u= qm+ and v = qm− ,
where q > 1 and m± ∈ R. We retain the notation from Sect. 2.2. If w ∈ ˜Wn

has a reduced expression w = si1 . . . sik , il ∈ {0,1, . . . , n}, in terms of the
affine simple reflections, then define the elements of Hn, Nw = Ni1 . . .Nik ,
where Nil are the generators of Hn from Sect. 2.2. This definition does not
depend on the choice of reduced expression.

The algebra Hn has a structure of normalized Hilbert algebra (in the sense
of [8], A.54), with the ∗ operation given on generators by

N∗w =Nw−1, w ∈ ˜Wn,

the trace functional τ given by

τ(Nw)= 0, if w 	= 1, and τ(1)= 1,

and the inner product [ , ] given by

[x, y] = τ(x∗y), for all x, y ∈Hn.

Since all of the irreducible Hn-modules are finite dimensional, the trace tr is
well defined on every irreducible module, and there exists a positive Borel
measure μ̂ on the tempered dual ̂S of Hn such that the abstract Plancherel
formula holds:

[x,1] =
∫

̂S

trπ(x)dμ̂(π), x ∈H. (4.1)

Moreover, an irreducible tempered representation π has positive volume
μ̂(π) > 0 if and only if π is a discrete series. In this case, we denote by
fd(π)= μ̂(π) the formal degree of π. The formal degree fd(π) is known up
to a rational constant Cπ independent of q (but depending on π ). The purpose
of this section is to calculate this constant.

To begin, we have the following known result. Recall that Rn denotes the
set of roots of Tn in Gn = Sp(2n,C), and let us denote by Rsh

n and Rlo
n the

short and the long roots, respectively.
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Theorem 4.1 ([25], Theorem 4.6) If π is a discrete series of Hn with central
character s ∈ Tn, there exists a rational constant Cπ independent of q such
that

fd(π)= Cπ qn2−nqnm+∏′
α∈Rn

(α(s)− 1)

∏′
α∈Rsh

n
(qα(s)− 1)

∏′
α∈Rlo

n
(q

m++m−
2 α(s)1/2 − 1)

∏′
α∈Rlo

n
(q

m+−m−
2 α(s)1/2 + 1)

,

(4.2)
where

∏′ means that the product is taken only over the nonzero factors.

Notice also that the known part of (4.2) only depends on the central char-
acter Wns, and not on π. Our strategy in the determination of the constant
in the formula (4.2) is to compare this formula to an Euler-Poincaré formula
which also gives the formal degree.

The second idea we need, that of the Euler-Poincaré pairing, traces back to
Kottwitz and [29]. For the setting of the affine Hecke algebra, the reference
is [24].

Convention 4.2 If S is a subset of ˜�n, let H
f
S and WS denote the finite Hecke

subalgebra of Hn and the finite subgroup of ˜Wn generated by the roots in
S, respectively. By Tits’ deformation theorem, we have an isomorphism of
algebras H

f
S
∼= C[WS]. We use this identification in the following, and for

example, for every σ ∈ ̂WS , we denote by gd(σ ) the generic degree of the
corresponding H

f
S -module. There exists an explicit formula for computing

gd(σ ) (see [5], page 447), which we recall later in (4.20).

Definition 4.3 ([24], Equations (3.15), (3.19)) If π is a finite dimensional
Hn-module, define the Euler-Poincaré element fπ as follows:

fπ = 1

2

∑

S�˜�n

(−1)n−|S|
∑

γ∈Irr(Hf
S )

[π : γ ]
H

f
S

gd(γ )

dimγ
eγ , (4.3)

where eγ ∈H
f
S is the primitive central idempotent in corresponding to γ . For

π,π ′ finite dimensional Hn-modules, define the Euler-Poincaré pairing

EP(π,π ′)=
∑

i≥0

(−1)i dim Exti
Hn

(π,π ′). (4.4)

The remarkable property of fπ , established in this setting in [24] Proposi-
tion 3.6, is that one has

trπ ′(fπ)= EP(π,π ′), (4.5)
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for all finite dimensional Hn-modules π,π ′. Moreover, it is shown in [24]
Theorem 3.8, that

Exti
Hn

(π,π ′)=C, if π ∼= π ′ and i = 0,

Exti
Hn

(π,π ′)= 0, otherwise,
(4.6)

whenever π is an irreducible discrete series and π ′ is an irreducible tempered
module. This allows one to use fπ in (4.1) to find the following formula for
fd(π).

Theorem 4.4 ([24], Proposition 3.4)

(1) Let π be a discrete series Hn-module. The formal degree of π is

fd(π)= [fπ,1] = 1

2

∑

S�˜�n

(−1)n−|S|
∑

γ∈̂WS

[π : γ ]C[WS ] gd(γ )

PS

, (4.7)

where PS is the Poincaré polynomial for the Hecke algebra H
f
S .

(2) Assume that π is irreducible tempered, but not a discrete series, or else,
that it is a parabolically induced module from a discrete series on a
proper Hecke subalgebra. Then, we have

[fπ,1] = 0. (4.8)

One can simplify formula (4.7), as in [26]. In the following, using Con-
vention 4.2, we identify C[Wi ×Wn−i] with the corresponding finite Hecke
subalgebra of Hn.

Corollary 4.5 Let π be a finite dimensional Hn-module. Then one has

[fπ,1] = 1

2

n
∑

i=0

(−1)n−i

·
∑

γ1�γ2∈ ̂Wi×Wn−i

[π : γ1 � γ2]C[Wi×Wn−i ] gd(γ1)gd(γ2⊗ sgn)

Pi(q, qm−)Pn−i (q, qm+)
,

(4.9)
where Wi ×Wn−i is the Coxeter group generated by the reflections in the
roots of ˜�n except the i-th root (the roots are numbered 0, . . . , n), and Pj

denotes the Poincaré polynomial for type Bj and corresponding labels.

Every quantity in formula (4.9) is computable, provided that we know the
restrictions of π to C[Wi ×Wn−i] ⊂Hn, for every 0≤ i ≤ n.
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4.2 The constant in formal degrees

Definition 4.6 A label (m+,m−), for the Hecke algebra Hn(q, qm+, qm−) is
called generic if |m+ ± m−| /∈ {0,1,2, . . . ,2n − 1}, and it is called critical
otherwise.

Let us recall briefly recall the part of the reduction to positive real central
character for Hn [20] that is relevant to us. Assume π is a discrete series of Hn

with central character c(π) ∈ Tn, not necessarily positive. Then there exists k,
1≤ k ≤ n, and two discrete series π1, π2 of Hk,m1 and Hn−k,m2 , respectively,
where 2|m1| =m+ −m−, 2|m2| =m+ +m−, such that π1, π2 have positive
real central characters c(π1), c(π2), with c(π1) × c(π2) ∈ Tk × Tn−k = Tn,
and

c(π)= (−c(π1), c(π2)),

lim
q→1

π = Ind
˜Wn

˜Wk×˜Wn−k
( lim
q→1

π1 � lim
q→1

π2), and, in particular

π |Wn = IndWn

Wk×Wn−k
(π1|Wk

� π2|Wn−k
);

(4.10)

here π1|Wk
and π2|Wn−k

are understood as restrictions in the Hecke alge-
bra Hk,m1 and Hn−k,m2 , respectively, and Wk,Wn−k in the induction are
viewed as the subgroups of Wn generated by the reflections in the roots
{ε1 − ε2, . . . , εk−1 − εk,2εk} and {εk+1 − εk+2, . . . , εn−1 − εn,2εn}, respec-
tively. Here we remark that Algorithm 3.30 (and in particular Corollary 3.19)
holds verbatim with respect to m1 (for π1) and m2 (for π2) independently.

We state the main result of this section.

Theorem 4.7 Let π be a discrete series for Hn with central character c(π).
If the parameters (m+,m−) for Hn are generic, then the constant in formula
(4.2) for the formal degree fd(π) is (up to a sign) Cπ = 1

2 .

The proof is presented in the following subsections. The general case fol-
lows immediately from Theorem 4.7.

Corollary 4.8 Let π be a discrete series for Hn with central character c(π).
Then in formula (4.2), we have Cπ =±1

2 .

Proof Assume that π0 is a discrete series for Hn for critical values (m0+,m0−)

of the labels, and having central character c(π0). Let k, m0
1 = m0+−m0−

2 ,

m0
2 = m0++m0−

2 , and discrete series π0
1 , π0

2 of Hk,m0
1

and Hk,m0
2

be as in the dis-

cussion around (4.10). Recall from Sect. 3 that π0
1 and π0

2 belong to families
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of discrete series indexed by partitions σ1 of k and σ2 of n− k, respectively.
To emphasize this dependence, we write, as in Sect. 3, π0

i = dsm0
i
(σi) =

(cσi

m0
i

, dsm0
i
(σi)), i = 1,2, where cσi

m0
i

is the central character, and dsm0
i
(σi)

is the marked partition adapted to cσi

m0
i

that parameterizes the discrete series.

Set mt
i =m0

i + t for t ∈ (−1
2 , 1

2) and i = 1,2, and consider the correspond-
ing discrete series πt

i = dsmt
i
(σi)= (cσi

mt
i

, dsmt
i
(σi)). Then, by Corollary 3.23,

we have

lim
t→0

πt
i = π0

i , i = 1,2. (4.11)

For every t ∈ (−1
2 , 1

2), set mt+ =mt
1 +mt

2 and mt− =mt
2 −mt

1 =m0,−, and

let πt be the discrete series module of Hn(q, qmt+, qmt−) corresponding in
the reduction to positive real central character to the pair (πt

1, π
t
2). Notice

that the labels (mt+,mt−) are generic, in the sense of Definition 4.6, for all
t ∈ (−1

2 , 1
2) \ {0}. Moreover (4.11) implies that limt→0 πt = π0. This, in con-

junction with Theorem 4.4 1), gives

lim
t→0

fd(πt )= fd(π0). (4.12)

Since we assumed that π is a discrete series, this limit must be nonzero.
Therefore, one only needs to analyze the factors in (4.2) for πt that vanish
at t→ 0. More precisely, with the notation

Rn(j) := {α ∈Rn : α(c(π0))= qj },
Rlo

n (j)± := {α ∈Rlo
n : α(c(π0))1/2 =±qj },

we have:

Cπ0 = lim
t→0

Cπt

∏′
α∈Rn(0)(α(c(πt ))− 1)

∏′
α∈Rn(−1)∩Rsh

n
(qα(c(πt ))− 1)

∏′
α∈Rlo

n (−m0
2)+

(qmt
2α(c(πt ))1/2 − 1)

· 1
∏′

α∈Rlo
n (−m0

1)−
(qmt

1α(c(πt ))1/2 + 1)
. (4.13)

Firstly, notice that for all roots of the form α = ±εi ± εj such that
1≤ i ≤ k, k+ 1≤ j ≤ n, we have α(c(πt )) < 0 and therefore, these roots do
not appear in (4.13). Secondly, we remark that for all the roots α (both short
and long) that appear in (4.13), the corresponding factors must be of the form
±(q±2t −1), where t→ 0. This implies that we have Cπ0 = limt→0 Cπt , and
this proves the claim. �
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Before presenting the proof of Theorem 4.7, we explain how the result in
Corollary 4.8 relates to the expected form of the formal degree in the case of
affine Hecke algebras of Hn,m, H

′
n,m, H

D
n of types Cn,Bn,Dn, respectively.

To emphasize the type of the root system, let RC
n ,RB

n ,RD
n , denote the roots in

these cases. We have RC
n =Rn, RB

n = Řn, and RD
n =Rsh

n .
(1) For Hn,m, we specialize m+ =m, m− =m. Assuming πC is a discrete

series with central character s, we find:

fd(πC)= qn2−nqnm
∏′

α∈Rn
(α(s)− 1)

2
∏′

α∈Rsh
n

(qα(s)− 1)
∏′

α∈Rlo
n
(qmα(s)1/2 − 1)

∏′
α∈Rlo

n
(α(s)1/2 + 1)

= CC
π

qn2−nqnm
∏′

α̌∈ŘC
n
(α̌(s)− 1)

∏′
α̌∈ŘC

n
(q(α)α̌(s)− 1)

, q(α)=
{

q, α short,
qm, α long,

(4.14)

where

CC
π =

1

2eC+1
, eC = 2#{i : 1≤ i ≤ n, εi(s)= 1}. (4.15)

(2) For H
′
n,m, we specialize m+ = 2m, m− = 0. Assuming πB is a discrete

series with central character s, we find:

fd(πB)= qn2−nq2nm
∏′

α∈Rn
(α(s)− 1)

∏′
α∈Rsh

n
(qα(s)− 1)

∏′
α∈Rlo

n
(qmα(s)1/2 − 1)

∏′
α∈Rlo

n
(qmα(s)1/2 + 1)

= CB
π

qn2−nq2nm
∏′

α̌∈ŘC
n
(α̌(s)− 1)

∏′
α̌∈ŘC

n
(q(α)α̌(s)− 1)

, q(α)=
{

q, α short,
q2m, α long,

(4.16)

where

CB
π =

1

2eB , eB = #{i : 1≤ i ≤ n, εi(s)=±qm}
+ #{i : 1≤ i ≤ n, εi(s)=±q−m}. (4.17)

(3) For H
D
n , we specialize m+ = 0, m− = 0. Assuming πD is a discrete

series with central character s, we find:

fd(πD)= qn2−n
∏′

α∈Rn
(α(s)− 1)

∏′
α∈Rsh

n
(qα(s)− 1)

∏′
α∈Rlo

n
(α(s)1/2 − 1)

∏′
α∈Rlo

n
(α(s)1/2 + 1)

= CD
π

qn2−n
∏′

α̌∈ŘD
n
(α̌(s)− 1)

∏′
α̌∈ŘD

n
(qα̌(s)− 1)

, (4.18)
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where

CD
π =

1

2eD , eD = 2#{i : 1≤ i ≤ n, εi(s)=±1}. (4.19)

In types B and D, we needed to account for central extensions.

4.3 The proof in the generic case for positive central character

Convention 4.9 We restrict, as we may, to the specialization Hn,m. If σ is
a partition of n, recall from Sect. 3 that there is a real central character cσ

m

attached to it. The Hecke algebra Hn,m admits a family of discrete series
dsm(σ) with central character cσ

m.

The starting point is the case m→∞ (so m > n − 1), when the Wn-
character is easy to understand.

We recall the formula for the generic degree (see [5], Sect. 13.5) of
the module of the finite Hecke algebra H

f
n (u, v) of type Cn with param-

eters u on the short roots and v on the long roots corresponding to γ =
{(a1, . . . , ak+1)(b1, . . . , bk)} ∈ ̂Wn, in the bipartition notation. Here each par-
tition is written in nondecreasing order, and assume that at least one of a1 or
b1 are nonzero. Then, form the symbol

(

λ1 λ2 . . . λk λk+1
μ1 μ2 . . . μk

)

,

where λi = ai + (i − 1) and μj = bj + (j − 1). The generic degree gd(γ )

with parameters u and v is

um+(m
2)v

∑

j bj Pn(u, v)(u− 1)n
∏

i′<i(u
λi − uλi′ )

∏

j ′<j (uμj − u
μj ′ )

∏

i,j (uλi−1v + uμj )

u(2m−1
2 )+(2m−3

2 )+···(∏i

∏λi

l=1(ul − 1)(ul−1v+ 1))(
∏

j

∏μj

l=1(ul − 1)(ul+1 + v))(u+ v)k
.

(4.20)

Proposition 4.10 Assume that m > n− 1. In Hn,m, we have Cdsm(σ) =±1
2 ,

for every partition σ of n.

Proof From [7], Sect. 4.7 we have

dsm(σ)|Wn = {∅, tσ }. (4.21)
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We identify the lowest power of q in the Euler expansion (4.9). This expan-
sion becomes:

2(−1)n[fπ,1] = gd{σ,∅}
Pn

+
n

∑

i=1

(−1)i

·
∑

γ1�γ2∈ ̂Si×Sn−i

[σ : γ1 � γ2] ̂Si×Sn−i
gd{γ2,∅}gd{∅, tγ1}

PiPn−i

.

(4.22)
We are interested, in the case when m→∞, to determine the lowest de-

gree of q which may appear in the terms from (4.22). We use the generic
degree formula (4.20) for u = q , v = qm. The observation, using (4.20), is
that for every i ≥ 1, each factor of the form gd{∅, tγ1} in (4.22) contains a
factor vi and this dominates all factors in u. Therefore the lowest degree of
q in every term for i ≥ 1 is a linear nonconstant function in m. Moreover,
in the first term in (4.22) (corresponding to i = 0), since the bipartition is
{σ,∅}, there is no factor of v present, and the lowest degree factor for m
 0
is a power of u= q independent of m. This implies that the lowest power of
q in the right hand side of (4.22) appears with coefficient one. On the other
hand, in the product formula for fd(π) (see (4.2)), clearly the coefficient of
the lowest power in a q-expansion is ±Cπ. �

Remark 4.11 Let σ = (0 < a1 ≤ a2 ≤ · · · ≤ al+1) denote a partition which we
identify with the corresponding irreducible Sn-module. We define its lowest
harmonic degree as lhd(σ )=∑l

j=1(l + 1− j)aj . It is an elementary combi-
natorial calculation to see that the lowest powers of q in both (4.22) and (4.2)
for dsm(σ) are q lhd(σ ).

Theorem 4.12 Assume that m is generic. Let σ be a partition of n. Then, in
Hn,m, we have Cdsm(σ) =±1

2 .

Proof We analyze the behavior of fd(dsm(σ)) as m crosses a critical value
m0 ∈ 1

2Z. Let h denote the number of balanced hooks at m0 in σ. If π is any
Hn,m-module, recall that �W(π) denotes the Wn-character of π.

Let ds→m (σ),ds←m (σ) be the discrete series modules parameterized by σ

for m0 − 1
2 < m < m0 and m0 < m < m0 + 1

2 , respectively. Then there exists
a tempered delimit π→m ∈Dm0(σ ) such that

�W(ds→m (σ))=�W(π→m ).

It is clear that also [fds→m (σ),1] = [fπ→m ,1], since [fπ,1] depends only on the
W -character (for real positive central character). Now using Corollary 3.19
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and Theorem 4.4(2), we find that [fπ→m ,1] = ±[fds←m (σ),1], and therefore
[fds→m (σ),1] = ±[fds←m (σ),1], which implies the claim of Theorem 4.12. �

4.4 The proof in the generic case for nonpositive central character

Convention 4.13 As in the discussion around (4.10), let π , π1, π2 be discrete
series of Hn, Hn,m1 , Hn,m2 , respectively. We retain the notation from (4.10). In
addition, we regard π1 and π2 as part of the families dsm1(σ1) and dsm2(σ2)

for partitions σ1 of k and σ2 of n− k, respectively. Consequently, we denote
the discrete series π of Hn by ds(m+,m−)(σ1, σ2).

The proof is analogous to the case of positive real central character for
Hn,m. The analogous asymptotic region that we need is:

m− 
m+ 
 0 : m1 = m+ −m−
2

→−∞,

m2 = m+ +m−
2

→+∞.

(4.23)

Again by [7], Sect. 4.7, we have that

dsm1(σ1)|Wk
= {σ1,∅}, dsm2(σ2)|Wn−k

= {∅, tσ2}. (4.24)

From this and (4.10), we see that

ds(m+,m−)(σ1, σ2)|Wn = {σ1,
tσ2}. (4.25)

In order to apply (4.9) we need to analyze the restrictions ds(m+,m−)(σ1,

σ2)|Wi×Wn−i
. The following lemma is sufficient for our purposes.

Lemma 4.14 Assume that m− 
 m+ 
 0. If HomWi×Wn−i
(γ � δ,

ds(m+,m−)(σ1, σ2)) 	= 0 and i ≥ 1, where γ ∈ ̂Wi and δ ∈ ̂Wn−i , then
HomW1(sgn, γ ) 	= 0, where W1 ⊂Wi denotes the reflection group generated
by s0 :=N0|q=1.

Proof An algebraic family of modules of a finite group is rigid, and hence we
have

ds(m+,m−)(σ1, σ2)∼= lim
q→1

ds(m+,m−)(σ1, σ2), as Wi ×Wn−i-modules,

for every 0≤ i ≤ n.

Therefore, we replace dsm1(σ1),dsm2(σ2),ds(m+,m−)(σ1, σ2) with their
limits q→ 1 during this proof. We have presentations
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C[˜Wk] ∼=C[Wk] ⊗C[ε±1
1 , . . . , ε±1

k ], and

C[˜Wn−k] ∼=C[Wn−k] ⊗C[ε±1
k+1, . . . , ε

±1
n ],

inside

C[˜Wn] ∼=C[Wn � X∗(Tn)] =C[Wn] ⊗C[ε±1
1 , . . . , ε±1

n ].
By examining the central characters, we deduce that each ε1, . . . , εk acts
on dsm1(σ1)⊂ ds(m+,m−)(σ1, σ2) by the uniform eigenvalue −1, while each
εk+1, . . . , εn acts on dsm2(σ2) ⊂ ds(m+,m−)(σ1, σ2) by the uniform eigen-
value 1. Moreover, by (4.24), a long reflection of Wi acts on dsm1(σ1) by
the identity, while a long reflection of Wn−i acts on dsm2(σ2) by the negative
of the identity.

We have s0 =N0|q=1 = ε−1
1 · sθ , where sθ is the long reflection of Wn cor-

responding to θ = 2ε1. In particular, we have s0 ∈ ˜Wn and its Wn-conjugate
act on

dsm1(σ1) � dsm2(σ2)⊂ ds(m+,m−)(σ1, σ2)

with uniform eigenvalue −1. Since

C[Wn](dsm1(σ1) � dsm2(σ2))= ds(m+,m−)(σ1, σ2),

the same is true for ds(m+,m−)(σ1, σ2).

The semisimplicity of the complex representations of finite groups implies
then that s0 acts on ds(m+,m−)(σ1, σ2) by the negative of the identity.

Therefore, we conclude that the claim holds via the intermediate restriction
〈s0〉 ⊂Wi ×Wn−i ⊂ ˜Wn. �

Proposition 4.15 Assume that m− 
m+ 
 0. Fix 1≤ k ≤ n and partitions
σ1, σ2 of k and n− k, respectively. Let π := ds(m+,m−)(σ1, σ2) be as in Con-
vention 4.13. Then we have Cπ =±1

2 .

Proof The proof is analogous to the proof of Proposition 4.10. In this case,
the analogue of (4.22) is the formula:

2(−1)n[fπ,1] = gd{σ2,
tσ1}

Pn(q, qm+)
+

n
∑

i=1

(−1)i

·
∑

γ�δ∈ ̂Wi×Wn−i

[π : γ � δ]gd(γ )gd(δ⊗ sgn)

Pi(q, qm−)Pn−i (q, qm+)
. (4.26)

In this formula, gd(γ ) is computed in H
f
i (q, qm−), while gd{σ2,

tσ1} and

gd(δ) in H
f
n (q, qm+) and H

f
n−i (q, qm+), respectively. In light of Lemma 4.14,



On characters and formal degrees of discrete series 633

every γ ∈ ̂Wi , i ≥ 1 that appears in (4.26) contains the sign representation in
its restriction to W1. In other words, when written in the bipartition notation,
γ = {γ1, γ2}, we have γ2 	= ∅. The formula for generic degree (4.20) implies
then that gd(γ ) contains the factor v|γ2|, where v = qm− , and |γ2| is the size
of γ2. Since m− 
m+ 
 0, the smallest power of q in the q-expansion is in
the first term of (4.26), this being the only term of the sum that does not have
as a factor a power of qm− . In particular, the coefficient of the lowest power
of q in [fπ,1] in the region (4.23) is ±1/2. �

Now we can prove Theorem 4.7 in the nonpositive case as well.

Proof of Theorem 4.7 Fix k such that 1≤ k ≤ n, and fix σ1, σ2 partitions of k

and n− k, respectively. Recall the family of discrete series ds(m+,m−)(σ1, σ2)

as in Convention 4.13. Proposition 4.15 verified the claim of Theorem 4.7 in
the asymptotic region m− 
m+ 
 0.

To transfer the result from the asymptotic region to every generic region,
one can proceed as in the proof of Theorem 4.12.

Fix a pair (m−∞1 ,m∞2 ) in the asymptotic region (4.23), and construct a line
of parameters t �→ (mt

1,m
t
2), t ≥ 0, where mt

1 = m−∞1 + t ,
mt

2 = m∞2 − t, a line of central characters ct (σ1, σ2) := (−cσ1
mt

1
, cσ2

mt
2
), and

the corresponding lines of discrete series πt
1 = dsmt

1
(σ1), πt

2 = dsmt
2
(σ2),

πt = ds(mt+,mt−)(σ1, σ2) of Hk,mt
1
, Hn−k,mt

2
, and Hn, respectively. Recall

that mt+ = mt
2 +mt

1 (and hence mt+ = m∞+ is independent of t), and mt− =
mt

2 −mt
1. (Notice that these lines of parameters cover all possible values of

the labels (m+,m−) as (m−∞1 ,m∞2 ) varies in the asymptotic region.)
Let t = t0 > 0 be a value for which the label (m

t0+,m
t0−) is critical, and

let Uε(t0) := (t0 − ε, t0 + ε) be an interval such that the label (mt+,mt−) is
generic for t ∈Uε(t0) \ {0}. By induction, we may assume that we know Cπt

for all t ∈ Uε(t0) with t < t0. As in the proof of Theorem 4.12, we know
that πt

i , πt ′
i , t0 − ε < t < t0 < t ′ < t0 + ε are linked, i = 1,2. The reduction

to positive real central character implies that also πt and πt ′ are linked. But
then again Theorem 4.4(2) gives Cπt =±C

πt ′ . �

Remark 4.16 In order to apply these proofs to obtain the type D formu-
las in Sect. 4.2, in light of Proposition 3.34, it is sufficient to notice that
if we have a Wn-type {μ,μ} which splits {μ,μ} = {μ,μ}+ ⊕ {μ,μ}− as
WD

n -representations, then 1
2 limm→0 gd{μ,μ} = gdD{μ,μ}+ = gdD{μ,μ}−

([5], Sect. 13.5).
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