Skip to main content
Log in

On the dynamics and recursive properties of multidimensional symbolic systems

  • Published:
Inventiones mathematicae Aims and scope

Abstract

We study the (sub)dynamics of multidimensional shifts of finite type and sofic shifts, and the action of cellular automata on their limit sets. Such a subaction is always an effective dynamical system: i.e. it is isomorphic to a subshift over the Cantor set the complement of which can be written as the union of a recursive sequence of basic sets.

Our main result is that, to varying degrees, this recursive-theoretic condition is also sufficient. We show that the class of expansive subactions of multidimensional sofic shifts is the same as the class of expansive effective systems, and that a general effective system can be realized, modulo a small extension, as the subaction of a shift of finite type or as the action of a cellular automaton on its limit set (after removing a dynamically trivial set).

As applications, we characterize, in terms of their computational properties, the numbers which can occur as the entropy of cellular automata, and construct SFTs and CAs with various interesting properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berger, R.: The undecidability of the domino problem. Mem. Am. Math. Soc. 66, 72 (1966)

    Google Scholar 

  2. Blanchard, F., Maass, A.: Dynamical properties of expansive one-sided cellular automata. Isr. J. Math. 99, 149–174 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  3. Boyle, M., Maass, A.: Expansive invertible onesided cellular automata. J. Math. Soc. Japan 52(4), 725–740 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  4. Boyle, M., Schraudner, M.: Z d shifts of finite type without equal entropy full shift factors. J. Differ. Equ. Appl. (to appear)

  5. Burton, R., Steif, J.E.: Non-uniqueness of measures of maximal entropy for subshifts of finite type. Ergodic Theory Dyn. Syst. 14(2), 213–235 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  6. Culik II, K., Hurd, L.P., Yu, S.: Computation theoretic aspects of cellular automata. Phys. D 45(1–3), 357–378 (1990); Cellular Automata: Theory and Experiment. Los Alamos, NM (1989)

  7. Delvenne, J.-C., Kurka, P., Blondel, V.: Decidability and universality in symbolic dynamical systems. Fundam. Inform. 74(4), 463–490 (2006)

    MATH  MathSciNet  Google Scholar 

  8. Friedland, S.: On the entropy of Zd subshifts of finite type. Linear Algebra Appl. 252, 199–220 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  9. Hedlund, G.A.: Endormorphisms and automorphisms of the shift dynamical system. Math. Syst. Theory 3, 320–375 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  10. Hochman, M., Meyerovitch, T.: A characterization of the entropies of multidimensional shifts of finite type. Ann. Math. (to appear)

  11. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and Computation. Addison-Wesley Series in Computer Science. Addison-Wesley Publishing Co., Reading, MA (1979)

    MATH  Google Scholar 

  12. Hurd, L.P.: Formal language characterizations of cellular automaton limit sets. Complex Syst. 1(1), 69–80 (1987)

    MATH  MathSciNet  Google Scholar 

  13. Hurd, L.P.: Nonrecursive cellular automata invariant sets. Complex Syst. 4(2), 131–138 (1990)

    MATH  MathSciNet  Google Scholar 

  14. Hurd, L.P., Kari, J., Culik, K.: The topological entropy of cellular automata is uncomputable. Ergodic Theory Dyn. Syst. 12(2), 255–265 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  15. Johnson, A., Madden, K.: Factoring higher-dimensional shifts of finite type onto the full shift. Ergodic Theory Dyn. Syst. 25(3), 811–822 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  16. del Junco, A.: A simple measure-preserving transformation with trivial centralizer. Pac. J. Math. 79(2), 357–362 (1978)

    MathSciNet  Google Scholar 

  17. Kari, J.: Rice’s theorem for the limit sets of cellular automata. Theor. Comput. Sci. 127(2), 229–254 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  18. Kari, J.: Theory of cellular automata: a survey. Theor. Comput. Sci. 334(1–3), 3–33 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  19. Lind, D.A.: The entropies of topological Markov shifts and a related class of algebraic integers. Ergodic Theory Dyn. Syst. 4(2), 283–300 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  20. Mozes, S.: Tilings, substitution systems and dynamical systems generated by them. J. Anal. Math. 53, 139–186 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  21. Myers, D.: Nonrecursive tilings of the plane. II. J. Symb. Log. 39, 286–294 (1974)

    Article  MATH  Google Scholar 

  22. Nasu, M.: Textile systems and onesided resolving automorphisms and endomorphisms of the shift. Ergodic Theory Dyn. Syst. 28(1), 167–209 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  23. von Neumann, J.: Theory of self-reproducing automata. University of Illinois Press, Urbana, London (1966)

  24. Ornstein, D.S., Weiss, B.: How sampling reveals a process. Ann. Probab. 18(3), 905–930 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  25. Quas, A., Scedil;ahin, A.A.: Entropy gaps and locally maximal entropy in ℤd subshifts. Ergodic Theory Dyn. Syst. 23(4), 1227–1245 (2003)

    Article  MATH  Google Scholar 

  26. Robinson, R.M.: Undecidability and nonperiodicity for tilings of the plane. Invent. Math. 12, 177–209 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  27. Simpson, S.G.: Medvedev degrees of 2-dimensional subshifts of finite type. Preprint, www.math.psu.edu/simpson/papers/2dim.pdf (2007)

  28. Sutner, K.: Universality and cellular automata. In: Machines, Computations, and Universality. Lect. Notes Comput. Sci., vol. 3354, pp. 50–59. Springer, Berlin (2005)

    Google Scholar 

  29. Walters, P.: An Introduction to Ergodic Theory. Grad. Texts Math., vol. 79. Springer, New York (1982)

    MATH  Google Scholar 

  30. Wolfram, S.: Universality and complexity in cellular automata. Phys. D 10(1–2), 1–35 (1984); Cellular Automata. Los Alamos, N.M. (1983)

    Google Scholar 

  31. Zheng, X., Weihrauch, K.: The arithmetical hierarchy of real numbers. MLQ Math. Log. Q. 47(1), 51–65 (2001)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Hochman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hochman, M. On the dynamics and recursive properties of multidimensional symbolic systems. Invent. math. 176, 131–167 (2009). https://doi.org/10.1007/s00222-008-0161-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-008-0161-7

Keywords

Navigation