Skip to main content
Log in

Trans-saccadic processing of visual and motor planning during sequential eye movements

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

How the brain maintains perceptual continuity across eye movements that yield discontinuous snapshots of the world is still poorly understood. In this study, we adapted a framework from the dual-task paradigm, well suited to reveal bottlenecks in mental processing, to study how information is processed across sequential saccades. The pattern of RTs allowed us to distinguish among three forms of trans-saccadic processing (no trans-saccadic processing, trans-saccadic visual processing and trans-saccadic visual processing and saccade planning models). Using a cued double-step saccade task, we show that even though saccade execution is a processing bottleneck, limiting access to incoming visual information, partial visual and motor processing that occur prior to saccade execution is used to guide the next eye movement. These results provide insights into how the oculomotor system is designed to process information across multiple fixations that occur during natural scanning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Becker W (1993) in Contemporary ocular motor and vestibular research: a tribute to David A Robinson. Thieme, Stuttgart, pp 496–503

    Google Scholar 

  • Becker W, Jürgens R (1979) An analysis of the saccadic system by means of double step stimuli. Vis Res 19:967–983

    Article  PubMed  CAS  Google Scholar 

  • Beeler JR, George W (1967) Visual threshold changes resulting from spontaneous saccadic eye movements. Vis Res 7:769–775

    Article  PubMed  Google Scholar 

  • Berman RA, Heiser LM, Dunn CA, Saunders RC, Colby CL (2007) Dynamic circuitry for updating spatial representations III. From neurons to behavior. J Neurophysiol 98:105–121

    Article  PubMed  Google Scholar 

  • Bichot NP, Chenchal Rao S, Schall JD (2001) Continuous processing in monkey frontal cortexduring visual search. Neuropsychologia 39:972–982

    Article  PubMed  CAS  Google Scholar 

  • Bisley JW, Krishna BS, Goldberg ME (2004) A rapid and precise on-response in posterior parietal cortex. J Neurosci 24:1833–1838

    Article  PubMed  CAS  Google Scholar 

  • Bompas A, Sumner P (2009) Temporal dynamics of saccadic distraction. J Vis 9(9):17.1–17.14. http://www.journalofvision.org/9/9/17/. doi:10.1167/9.9.17

    Google Scholar 

  • Bonnet C, Dresp B (2001) RT studies of sensory magnitude and perceptual processing. Psychologica 28:63–86

    Google Scholar 

  • Brooks BA, Fuchs AF (1975) Influence of stimulus parameters on visual sensitivity during saccadic eye movement. Vis Res 15:1389–1398

    Article  PubMed  CAS  Google Scholar 

  • Burr D, Ross J (1982) Contrast sensitivity at high velocities. Vis Res 22:479–484

    Article  PubMed  CAS  Google Scholar 

  • Burr DC, Morrone MC, Ross J (1994) Selective suppression of the magnocellular visual pathway during saccadic eye movements. Nature 371:511–513

    Article  PubMed  CAS  Google Scholar 

  • Burr DC, Morrone MC, Ross J (2001) Separate visual representations for perception and action revealed by saccadic eye movements. Curr Biol 11:798–802

    Article  PubMed  CAS  Google Scholar 

  • Campbell FW, Wurtz RH (1978) Saccadic omission: why we do not see a grey-out during a saccadic eye movement. Vis Res 18:1297–1303

    Article  PubMed  CAS  Google Scholar 

  • Caspi A, Beutter BR, Eckstein MP (2004) The time course of visual information accrual guiding eye movement decisions. PNAS 101:13086–13090

    Article  PubMed  CAS  Google Scholar 

  • Castet E, JeanJean S, Masson GS (2002) Motion perception of saccade-induced retinal translation. PNAS 99:15159–15163

    Article  PubMed  CAS  Google Scholar 

  • d’Avossa G, Tosetti M, Crespi S, Biagi L, Burr DC, Morrone MC (2007) Spatiotopic selectivity of BOLD responses to visual motion in human area MT. Nat Neurosci 10:249–255

    Article  PubMed  Google Scholar 

  • Deubel H, Schneider W (1996) Saccade target selection and object recognition: evidence for a common attentional mechanism. Vis Res 36:1827–1837

    Article  PubMed  CAS  Google Scholar 

  • Diamond MR, Ross J, Morrone MC (2000) Extraretinal control of saccadic suppression. J Neurosci 20:3449–3455

    PubMed  CAS  Google Scholar 

  • Duffy FH, Lombroso CT (1968) Electrophysiological evidence for visual suppression prior to the onset of a voluntary saccadic eye movement. Nature 218:1074–1075

    Article  PubMed  CAS  Google Scholar 

  • Duhamel JR, Colby CL, Goldberg ME (1992) The updating of the representation of visual space in parietal cortex by intended eye movements. Science 255:90–92

    Article  PubMed  CAS  Google Scholar 

  • Duhamel JR, Bremmer F, BenHamed S, Graf W (1997) Spatial invariance of visual receptive fields in parietal cortex neurons. Nature 389:845–848

    Article  PubMed  CAS  Google Scholar 

  • Eggert T, Ditterich J, Straube A (1999) Intrasaccadic target steps during the deceleration of primary saccades affect the RT of corrective saccades. Exp Brain Res 129:161–166

    Article  PubMed  CAS  Google Scholar 

  • Galletti C, Battaglini PP, Fattori P (1993) Parietal neurons encoding spatial locations in craniotopic coordinates. Exp Brain Res 96:221–229

    Article  PubMed  CAS  Google Scholar 

  • García-Pérez MA, Peli E (2001) Luminance artifacts for cathode-ray tube displays for vision research. Spatial Vis 14:201–215

    Article  Google Scholar 

  • Goodale MA, Milner AD (1992) Separate visual pathways for perception and action. Trends Neurosci 15:20–25

    Article  PubMed  CAS  Google Scholar 

  • Hallett PE, Lightstone AD (1976) Saccadic eye movements to flashed target. Vis Res 16:107–114

    Article  PubMed  CAS  Google Scholar 

  • Hanks TD, Ditterich J, Shadlen MN (2006) Microstimulation of macaque area LIP affects decision-making in a motion discrimination task. Nat Neurosci 9:682–689

    Article  PubMed  CAS  Google Scholar 

  • Hayhoe MM, Lachter J, Moeller P (1992) In: Rayner K (ed) Eye movements and visual cognition: scene perception and reading. Springer, New York, pp 130–145

  • Herrmann K, Montaser-Kouhsari L, Carrasco M, Heeger DJ (2010) When size matters: attention affects performance by contrast or response gain. Nat Neurosci 13:1554–1559

    Article  PubMed  CAS  Google Scholar 

  • Hoffman JE, Subramaniam B (1995) The role of visual attention in saccadic eye movements. Percept Psychophys 57:787–795

    Article  PubMed  CAS  Google Scholar 

  • Holt EB (1903) Eye movements and central anesthesia. Psychol Rev 4:3–45

    Google Scholar 

  • Honda H (1989) Perceptual localization of visual stimuli flashed during saccades. Percept Psychophys 45:162–174

    Article  PubMed  CAS  Google Scholar 

  • Honda H (2005) The remote distractor effect of saccade latencies in fixation-offset and overlap conditions. Vis Res 45(21):2773–2779

    Article  PubMed  Google Scholar 

  • Irwin DE (1991) Information integration across saccadic eye movements. Cogn Psychol 23:420–456

    Article  PubMed  CAS  Google Scholar 

  • Irwin DE, Zacks JL, Brown JS (1990) Visual memory and the perception of a stable visual environment. Percept Psychophys 47:35–46

    Article  PubMed  CAS  Google Scholar 

  • Jonides J, Irwin DE, Yantis S (1982) Integrating visual information from successive fixations. Science 215:192–194

    Article  PubMed  CAS  Google Scholar 

  • Kowler E, Anderson E, Dosher B, Blaser E (1995) The role of attention in the programming of saccades. Vis Res 35:1897–1916

    Article  PubMed  CAS  Google Scholar 

  • Ludwig CJ, Gilchrist ID, McSorley E (2005) The remote distractor effect in saccade programming: channel interactions and lateral inhibition. Vis Res 45(9):1177–1190

    Article  PubMed  Google Scholar 

  • Lünenburger L, Lindner W, Hoffmann KP (2003) Neural activity in the primate superior colliculus and saccadic RTs in double-step experiments. Prog Brain Res 142:91–107

    Article  PubMed  Google Scholar 

  • Mackay DM (1970) Mislocation of test flashes during saccadic image displacements. Nature 227:731–733

    Google Scholar 

  • Matin E (1974) Saccadic suppression: a review and analysis. Psychol Bull 81:899–917

    Article  PubMed  CAS  Google Scholar 

  • McClelland JL (1979) On the time relations of mental processes: an examination of systems of processes in cascade. Psychol Rev 86:287–330

    Article  Google Scholar 

  • McPeek RM, Skavenski AA, Nakayama K (2000) Concurrent processing of saccades in visual search. Vis Res 40:2499–2516

    Article  PubMed  CAS  Google Scholar 

  • Melcher D, Colby CL (2008) Trans-saccadic perception. Trends Cogn Sci 12:466–473

    Article  PubMed  Google Scholar 

  • Meyer DE, Osman AM, Irwin DE, Yantis S (1988) Modern mental chronometry. Biol Psychol 26:3–67

    Article  PubMed  CAS  Google Scholar 

  • Murthy A, Ray S, Shorter SM, Priddy EG, Schall JD, Thompson KG (2007) Frontal eye field contributions to rapid corrective saccades. J Neurophysiol 97:1457–1469

    Article  PubMed  Google Scholar 

  • O’Regan JK, Noe A (2001) A sensorimotor account of vision and visual consciousness. Behav Brain Sci 24:939–973

    Article  PubMed  Google Scholar 

  • Palmer J, Huk AC, Shadlen MN (2005) The effect of stimulus strength on the speed and accuracy of a perceptual decision. J Vis 5:376–404

    Article  PubMed  Google Scholar 

  • Pashler H (1984) Processing stages in overlapping tasks: evidence for a central bottleneck. J Exp Psychol Hum Percept Perform 10:358–377

    Article  PubMed  CAS  Google Scholar 

  • Phillips AN, Segraves MA (2010) Predictive activity in macaque frontal eye field neurons during natural scene searching. J Neurophysiol 103:1238–1252

    Article  PubMed  Google Scholar 

  • Pollatsek A, Rayner K, Henderson JM (1990) Role of spatial location in integration of pictorial information across saccades. J Exp Psychol Hum Percept Perform 16:199–210

    Article  PubMed  CAS  Google Scholar 

  • Prablanc C, Masse D, Echallier JF (1978) Error-correcting mechanisms in large saccades. Vis Res 18:557–560

    Article  PubMed  CAS  Google Scholar 

  • Prime SL, Tsotsos L, Keith GP, Crawford JD (2007) Visual memory capacity in transsaccadic integration. Exp Brain Res 180:609–628

    Article  PubMed  Google Scholar 

  • Ray S, Schall JD, Murthy A (2004) Programming of double-step saccade sequences: modulation by cognitive control. Vis Res 44:2707–2718

    Article  PubMed  Google Scholar 

  • Rensink RA (2000) Seeing sensing, scrutinizing. Vis Res 40:1469–1487

    Article  PubMed  CAS  Google Scholar 

  • Riggs LA, Merton PA, Morton HB (1974) Suppression of visual phosphenes during saccadic eye movements. Vis Res 14:997–1011

    Article  PubMed  CAS  Google Scholar 

  • Ross J, Morrone MC, Goldberg ME, Burr DC (2001) Changes in visual perception at the time of saccades. Trends Neurosci 24:113–121

    Article  PubMed  CAS  Google Scholar 

  • Schlag J, Schlag-Rey M (1995) Illusory localization of stimuli flashed in the dark before saccades. Vis Res 35:2347–2357

    Article  PubMed  CAS  Google Scholar 

  • Schmolesky MT, Wang Y, Hanes DP, Thompson KG, Leutgeb S, Schall JD, Leventhal AG (1998) Signal timing across the macaque visual system. J Neurophysiol 79:3272–3278

    PubMed  CAS  Google Scholar 

  • Sharika KM, Ramakrishnan A, Murthy A (2008) Control of predictive error correction during a saccadic double-step task. J Neurophysiol 100:2757–2770

    Article  PubMed  CAS  Google Scholar 

  • Sigman M, Dehaene S (2005) Parsing a cognitive task: a characterization of the mind’s bottleneck. PLoS Biol 3:e37

    Article  PubMed  Google Scholar 

  • Smith PL, Ratcliff R (2004) Psychology and neurobiology of simple decisions. Trends Neurosci 27:161–168

    Article  PubMed  CAS  Google Scholar 

  • Sperling G (1990) Comparion of perception in the moving and stationary eye. In: Kowler E (ed) Eye movements their role in visual, cognitive processes. Elsevier, Amsterdam, pp 307–351

    Google Scholar 

  • Thilo KV, Santoro L, Walsh V, Blakemore C (2004) The site of saccadic suppression. Nat Neurosci 7:13–14

    Article  PubMed  CAS  Google Scholar 

  • Trevarthen CB (1968) Two mechanisms of vision in primates. Psychol Forsch 31:299–348

    Article  PubMed  CAS  Google Scholar 

  • Vaziri S, Diedrichsen J, Shadmehr R (2006) Why does the brain predict sensory consequences of oculomotor commands? Optimal integration of the predicted and the actual sensory feedback. J Neurosci 26:4188–4197

    Article  PubMed  CAS  Google Scholar 

  • Volkmann FC (1986) Human visual suppression. Vis Res 26:1401–1416

    Article  PubMed  CAS  Google Scholar 

  • Walker R, Deubel H, Schneider WX, Findlay JM (1997) Effect of remote distractors on saccade programming: evidence for an extended fixation zone. J Neurophysiol 78:1108–1119

    PubMed  CAS  Google Scholar 

  • Wang XJ (2002) Probabilistic decision making by slow reverberation in cortical circuits. Neuron 36:955–968

    Article  PubMed  CAS  Google Scholar 

  • Welford AT (1952) The ‘psychological refractory period’ and the timing of high-speed performance: a review and a theory. Br J Psychol 43:2–19

    Google Scholar 

  • White BJ, Gegenfurtner KR, Kerzel D (2005) Effects of structured nontarget stimuli on saccadic latency. J Neurophysiol 93(6):3214–3223

    Article  PubMed  Google Scholar 

  • Zuber BL, Stark L (1966) Saccadic suppression: elevation of visual threshold associated with saccadic eye movements. Exp Neurol 16:65–79

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Department of Science & Technology and the Department of Biotechnology, Govt. of India. S. Ray was supported by Council of Scientific and Industrial Research, India. We thank Dr. A. Sripati, Dr. S.J. Heinen and A. Ramakrishnan for their critical comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aditya Murthy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ray, S., Bhutani, N., Kapoor, V. et al. Trans-saccadic processing of visual and motor planning during sequential eye movements. Exp Brain Res 215, 13–25 (2011). https://doi.org/10.1007/s00221-011-2866-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-011-2866-x

Keywords

Navigation