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Abstract: We introduce a notion of universal preparability for a state of a system, more
precisely: for a normal state on a von Neumann algebra. It describes a situation where
from an arbitrary initial state it is possible to prepare a target state with arbitrary precision
by a repeated interaction with a sequence of copies of another system. ForB(H)we give
criteria sufficient to ensure that all normal states are universally preparable which can be
verified for a class of non-commutative birth and death processes realized, in particular,
by the interaction of a micromaser with a stream of atoms. As a tool, the theory of tight
sequences of states and of stationary states is further developed and we show that in the
presence of stationary faithful normal states universal preparability of all normal states
is equivalent to asymptotic completeness, a notion studied earlier in connection with the
scattering theory of non-commutative Markov processes.

1. Introduction

The present paper discusses preparability of states as an asymptotic property of quantum
Markov processes and applies the resulting theory to some physical systems of experi-
mental interest. From a system theoretic point of view these processes model a repeated
interaction of one system with a sequence of copies of another system and hence we
prove controllability of certain quantum systems and contribute to quantum control the-
ory. In this introduction we first give some intuitive background before summarizing the
contents of the paper.

A typical quantumMarkov process in discrete time is obtained by tensoring an initial
system with observable algebra A to an infinite tensor product of copies of another
algebra C. Its Markov dynamics is obtained as the product of the tensor shift on the
infinite tensor product of C with a coupling automorphism α acting non-trivially only on
the tensor product of A with one of the copies of C. The Markovian semigroup (T n) is
then obtained by applying the conditional expectation ontoA, with respect to a product
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state on the copies of C, to elements having started in A and evolved for n time steps.
Such processes have been introduced in [Ku85], some overview is given in [Ku06].

A paradigmatic example from physics is the experimental setting of a micromaser,
which is addressed in Sect. 7 below: A stream of two-level atoms passes through a cavity,
one after the other. While being inside the cavity an atom interacts with one mode of
the electromagnetic field. In this case A = B(H) stands for the observables of the field
mode, the algebra C given by the 2×2-matrices represents a two-level atom and the tensor
product of copies of C represents a stream of such atoms. The coupling automorphism α

describes the overall effect of the interaction between the field mode and a single atom
while passing through the cavity ([WBKM00], [Ku06]).

As a basic building block this setting also appears in other experiments, such as the
famous realization of quantum feedback described in [S-H11] and related to the physics
Nobel Prize 2012 for S.Haroche. See also [Ro14] for a recent survey on Markovian
models, feedback and reservoir engineering in the context of the experimental progress.
In our paper we do not study feedback but we develop a rigorous theory of coherent
open-loop control of the system A for a given coupling with another system C. The
input states can vary and they may be entangled between different copies of C. To work
out further connections of our setting with recent developments in physics will be a
rewarding task for the future.

Our starting point here is that such a type ofMarkovian dynamics suggests to consider
it from the point of view of scattering theory: the shift takes the role of a free dynamics
which is locally perturbed by the coupling automorphism α. This was begun in [KM00]
where the notion of asymptotic completeness for such systemswas introduced. It roughly
means that observables in A asymptotically end up in the tensor products of C (see
Definition 5.10 for the precise notion). Asymptotic completeness and scattering theory
for Markov processes have been further discussed in [WBKM00], [Go04,Go04b], and
[GKL06].

There is a dual point of view of asymptotic completeness which is at the core of the
present paper: If for large times the dynamics drives the algebra A completely into the
tensor product of copies of C, then one can hope that a prescribed target state ρ on A
can be prepared by preparing a state θ on this tensor product of C such that its restriction
to the time shifted copy ofA is close to ρ. Then the time evolution on the states (i.e., in
the Schödinger picture) should drive an arbitrary initial state σ on A close to the target
state ρ. This property is called universal preparability in this paper (cf. its rigorous
definition in 2.2(c)). In the physical applications we have in mind (the micromaser is
an example) states on system A cannot be directly accessed by experiment, while one
can choose as C a system whose states can be manipulated more easily. This intuitive
idea is mathematically verified in the equivalence between (a) and (b1) of our main
Theorem 6.1.

From this dual point of view and in a system theoretic language asymptotic complete-
ness means controllability of the systemA via input states on a tensor product of copies
of C. Alternatively it can be discussed from the point of view of coding theory as was
done in [GKL06], and some ideas from there are further developed in the present paper.
It may be viewed as one of the outcomes of this paper—some indications were already
seen in [GKL06]—that asymptotic completeness is a topological notion, encoded in the
property of topological transitivity (cf. Definition 2.2), rather than a measure theoretic
one (cf. Theorem 6.1(c)). As a consequence, stationary states enter the discussion only
in later sections. Nevertheless, asymptotic completeness needs the topologies of von
Neumann algebras.
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Our starting point here was to find a proof of asymptotic completeness of the mi-
cromaser dynamics that is not ad hoc designed for this particular system but instead is
embedded into a systematic approach to asymptotic completeness. Such an approach
has been started in the dissertation [Ha06] by one of the authors and is further developed
in the present paper. Asymptotic completeness of the micromaser and related systems
now follows easily in Theorem 7.3 from the main Theorem 6.1 in combination with
Theorem 3.6.

It turned out that for many parts of our discussion it suffices to concentrate on one-
sided time evolutions. This amounts to generalize a coupling automorphism α ofA⊗ C
to a ∗-homomorphism J : A → A ⊗ C on von Neumann algebras, which we call a
transition. In the presence of α it is given by J (a) = α(a ⊗ 1l) for a ∈ A (cf. Definition
2.1 and the discussion thereafter). Moreover, it suffices to consider only finitely many
time steps and thus infinite tensor products are avoided in this paper. We think that
this also emphasizes the practical applicability of our results for the design of physical
experiments.

Let us now summarize the contents of this paper.
In Sect. 2, we introduce the basic notions of a transition J , taken from [GKL06], of

(universal) J -preparability, and of topological transitivity. We develop their basic theory
and find in Theorem 2.9 a useful sufficient criterion for universal J -preparability of all
normal states onB(H), the bounded linear operators on a Hilbert spaceH. This criterion
gives a first hint why universal preparability is more common than one might originally
think when confronted with the definition.

In Sect. 3, we show that the concatenation of preparation procedures works well
in our setting and we use this tool to prove another sufficient criterion for universal
J -preparability of all normal states on B(H), which is easier to verify in practice, see
Theorem 3.6. It relies on the intuitive idea that if a vector state, in concrete realizations
given as a ground state, is universally J -preparable not only in the forward but also in
the reverse time direction, then we can go between any two normal states via the vector
state by concatenating these procedures in a suitable way. For earlier versions of this
idea in related contexts see also [WBKM00,BG07].

For a deeper analysis of J -preparability the theory of stationary states for positive
operators is needed and for this reason we review in Sect. 4 some relevant parts of this
theory and develop it further. In particular for infinite dimensional systems it is necessary
to develop a non-commutative version of the probabilistic concept of a tight sequence of
probability measures. Such a version has been defined first in [FR01], we add to that a
non-commutative version of Prokhorov’s theorem, Theorem 4.3, and a number of further
connections between tightness and stationarity. In Sect. 4, we also review some theory
about absorbing states.

In Sect. 5, we consider stationary states for transitions and the corresponding sta-
tionary Markov processes and we review and develop the theory of the dual extended
transition operator from [Go04] and [GKL06]. Introducing the concept of a tight tran-
sition it turns out that tightness in this sense is satisfied in many situations and we thus
obtain a large class of transitions for which the following analysis is applicable. We
finally review the concept of asymptotic completeness.

Now we have all pieces together to prove in Sect. 6 the main result of this paper,
Theorem 6.1. It states that for a tight transition J on B(H) asymptotic completeness is
equivalent to the universal J -preparability of all normal states and is also equivalent to
topological transitivity of J . The first equivalence brings together the scattering theory
ofMarkov processes and the issue of state preparation by repeated interactions discussed
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in the first part of the paper. The second equivalence makes clear that stationary states
should be seen as a tool and that we actually deal with a deeper topological property
here. We also give another system theoretic point of view by proving the equivalence
with an observability property for the time reversed system, see Theorem 6.8.

In the final Sect. 7 we show that our theory can be applied to a class of non-
commutative birth and death processes discussed in [BGKRSS], which contains the
micromaser as a special case (Theorem 7.3).

We add some remarks on our notational conventions. Because allmain results concern
von Neumann algebras and, even more specific, the von Neumann algebra B(H) of
bounded linear operators on aHilbert spaceH, we simplify the terminology by restricting
to such a setting from the beginning. We refer to [KR86] and [Tak79] for definitions
and facts about operator algebras. For a von Neumann algebra A we denote by A∗ its
predual, the Banach space of normal linear functionals on A. All tensor products are
tensor products of von Neumann algebras. Any weak∗-continuous map T on A is also
called normal and its preadjoint on A∗ is denoted by T∗. In the case of A = B(H) the
predual can be identified with T (H), the Banach space of trace class operators on H.
If we refer to a projection p ∈ A we always mean an orthogonal projection. Given a
normal state ϕ on A we denote by suppϕ its support projection. If 0 �= ξ ∈ H then we
denote by ωξ = 〈ξ, · ξ 〉 the corresponding functional on B(H) and by pξ := suppωξ

its (one-dimensional) support projection. The inner product is anti-linear in the first and
linear in the second component. We always assume the Hilbert spaces and the preduals
of von Neumann algebras to be separable, so in particular there always exist faithful
normal states.

2. A Protocol of State Preparation Based on Transitions

Webegin by introducing the concept of a transition, cf. [GKL06]. A transition constitutes
the fundamental building block of the type of dynamics which is studied in this paper.
In quantum physics such dynamics describe repeated interactions between systems.

Definition 2.1 ([GKL06]). Let A and C be von Neumann algebras. An injective unital
normal ∗-homomorphism J : A → A ⊗ C is called a transition.

If α is a ∗-automorphism of A ⊗ C then we get a transition by J (a) := α(a ⊗ 1l).
(Normality is automatic here, see [Tak79], III.3.10.) In this case we say that the transition
J is obtained from a coupling automorphism α. In particular, if u ∈ A ⊗ C is unitary
we can define a transition J (a) := u∗ a ⊗ 1l u. In the general case we may still think
of J as describing on observables in A the effect of one step of a time evolution which
is produced by an interaction between two systems with observable algebras A and C.
This is the Heisenberg picture.

In the corresponding Schrödinger picture the preadjoint J∗ : (A ⊗ C)∗ → A∗ maps
normal states on A ⊗ C to normal states on A. In particular, if we have at time 0 a
normal product state σ ⊗ θ onA⊗ C then after the interaction between the two systems
has taken place the state on A has changed to J∗(σ ⊗ θ) = (σ ⊗ θ)J . Hence studying
transitions means to concentrate on the change of state of the system A in dependence
of initial states on A and C (and the interaction between A and C). More specifically, if
A and C are algebras of functions on finite sets A and C then a transition is induced by
a map γ : A × C → A: Depending on the actual state c ∈ C a state a ∈ A moves to
γ (a, c) ∈ A. This explains the term transition and was the starting point of [GKL06]. It
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is the main objective of this paper to ask which state changes on A can be triggered by
choosing suitable states on C when a transition J is given (cf. Definition 2.2 below).

Considering only one time step is not enough, however. From a transition J : A →
A ⊗ C we can construct a repeated interaction of the system described by A with a
sequence of copies of systems described by C, as follows (cf. [GKL06]): Let us denote
the copies of C by C(1), C(2), . . . and the corresponding copies of J by J(1), J(2), . . ., so
J(n) : A → A⊗ C(n). Then we get the time evolution for the repeated interactions up to
time n as a composition

Jn := J(1) J(2) . . . J(n) : A → A ⊗ Cn with Cn :=
n⊗

j=1

C( j) ;

here the standard unital embeddings of the C( j) into Cn = ⊗n
j=1 C( j) are used but omitted

from the notation. Note that Jn∗ := J(n)∗ J(n−1)∗ . . . J(1)∗, so this really describes the
change of state on A after we interacted at time 1 with the system described by C(1),
etc., finally at time n with the system described by C(n).

Suppose, in particular, that the transition J comes from a coupling automorphism
α : A⊗C → A⊗C such that J (a) := α(a⊗ 1l). Then we have copies α( j) onA⊗C( j)
and an automorphism αn = α(1) . . . α(n) of A ⊗ Cn . The restriction of αn to A ⊗ 1l
induces Jn .

In this case there exists a reverse transition Jr given by Jr (a) := α−1(a ⊗ 1l). Note
that to get an inverse of αn some reordering of the tensor positions must be applied:
(αn)

−1 = (id⊗Rn) ◦ (α−1)n ◦ (id⊗Rn), where id stands for the identity on A and Rn
is the automorphism of Cn which interchanges the positions in Cn = ⊗n

j=1 C( j) by the
rule j ↔ n − j + 1 for j = 1, . . . , n. We can think of Jr as a time reversal of J .

In [GKL06] the sequence (Jn)n∈N is interpreted as a non-commutative topological
Markov chain. TheMarkovian character will be further illustrated when we later discuss
stationary states. But for the following protocol of state preparation on A we only need
a transition J : A → A ⊗ C.

With Definition 2.2 below we are led to the main questions discussed in this paper.
Loosely speaking, given a transition J as abovewewould like tomake use of it to prepare
a target state ρ onA from an arbitrary initial state σ onA by preparing a suitable state θ

on C. Except for trivial cases, however, we cannot hope to do this within one time step.
If we have a normal state θ on Cn = ⊗n

j=1 C( j) then an initial state σ on A, originally
combined with θ as a product state σ ⊗ θ , is changed after n steps into the normal state
(σ ⊗ θ)Jn on A. We can interpret this as a protocol for the preparation of states on A
and in this paper we are particularly interested in the potential of such a protocol for
producing from an arbitrary initial state on A any desired target state on A with any
prescribed precision. We introduce some terminology.

Definition 2.2. Let J : A → A ⊗ C be a transition.

(a) A normal state ρ on A is called J -preparable from a normal state σ on A if there
exists a sequence (θk)k∈N, where each θk is a normal state on an algebra Cnk (with
nk ∈ N) such that the sequence

(
(σ ⊗ θk)Jnk

)
k∈N converges weakly to ρ. Such a

sequence (θk) is called a preparing sequence (from σ to ρ).
(b) If every normal state ρ is J -preparable from all normal states σ on A then we call

J topologically transitive.
(c) A normal state ρ on A is called universally J -preparable if there exists a sequence

(θk)k∈N, where each θk is a normal state on an algebra Cnk (with nk ∈ N) such that
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for all normal states σ onA the sequence
(
(σ ⊗ θk)Jnk

)
k∈N converges weakly to ρ.

Such a sequence (θk) is called a universally preparing sequence (for ρ).

Remark 2.3. We add a few comments on these definitions.

1. Spelling out the definition of weak convergence, we see that it is equivalent to 2.2(a)
to say that ρ is J -preparable from σ if we can find a sequence of sizes (nk) for the
tensor product algebras Cnk and normal states θk on them, such that for any given
x ∈ A and ε > 0 we have |(σ ⊗ θk)Jnk (x) − ρ(x)| < ε if k is chosen big enough.
In other words, if we are able to provide these states θk then by repeatedly applying
the transition J we can change the state in A from σ to ρ, with arbitrary precision.
We accept that this may only be an approximation and we may in some cases need
nk → ∞ to achieve convergence but the definition is flexible enough to include more
elementary cases as well: If already (σ ⊗ θ)Jn = ρ for a normal state θ on Cn for
some finite n then ρ is J -preparable from σ in the sense of 2.2(a). In fact, in this case
we can choose a constant sequence (θk) with θk := θ for all k (here we have nk = n
for all k). The reader should think of 2.2(a) and 2.2(c) as quantum versions of the
notion of approximate controllability in classical control theory, cf. [Co07].

2. It is clear that if all normal states are universally J -preparable then J is topologically
transitive. We shall see later in our main Theorem 6.1 that for A = B(H) and under
an additional assumption on J (tightness) the converse also holds

3. Definition 2.2(b) shows that our originally physically motivated investigation is also
of interest in the theory of dynamical systems and in ergodic theory. To connect
with the general theory of topologically transitive spaces of operators, see [DMR08],
we can consider the space of all operators on the predual A∗ which have the form
σ �→ (Jn)∗(σ ⊗ θ).

4. If there is a universally preparing sequence then one can prepare a state ρ of a system
A by preparing a certain sequence of normal states on the algebras Cn even if no
information on the initial state σ of A is available. The micromaser discussed in
Sect. 7 is a typical example of such a system (cf. [WBKM00]).

5. Note that the preparing sequences in the sense of Definition 2.2 are not uniquely
determined and in fact there are a lot of additional issues an experimentalist may
care about, for example finding good solutions within a reasonably small time period
or avoiding experimental difficulties involved in preparing specific classes of states
(note that we allowed the use of arbitrarily entangled states θk on Cnk as preparing
states). More generally one may ask in the design of preparing states for efficiency
or optimality with respect to various criteria. We don’t discuss these important issues
in this paper and there is a lot of work to be done in this respect.

The choice of theweak topology for the predual agrees in applicationswith physicists’
focus on expectations for observables inA. But inmany physically relevant cases we can
replace the weak topology by the norm topology. Recall that a von Neumann algebra
is called atomic if every nonzero projection majorizes a nonzero minimal projection.
Moreover, if a sequence of normal states on an atomic von Neumann algebra converges
weakly to a normal state then it converges in norm, see [Tak79], III.V.11; therefore,
Definition 2.2 can be strengthened as follows.

Proposition 2.4. If A is atomic, in particular if A = B(H), we can replace the weak
convergence in Definition 2.2 by norm convergence.

For the caseA = B(H) for a Hilbert spaceH this also follows from our Lemma 4.2
below.
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From a mathematical point of view the existence of universally preparing sequences
may be surprising at first sight. Our main result of this section, Theorem 2.9, explains
how they arise naturally in some situations. The rest of this section prepares its proof.
This theorem will in turn play a crucial role in the proof of the main result of this paper,
Theorem 6.1.

Proposition 2.5. Let J : A → A⊗ C be a transition, further let ρ be a normal state on
A and (θk) a sequence where each θk is a normal state on an algebra Cnk . Denote by
I = I(ρ, (θk)) the set of all normal states σ on A such that ρ is J -preparable from σ

with preparing sequence (θk). Then I is convex and closed, weakly or w.r.t. the norm (it
might be empty, however).

Proof. The convexity of I is clear because the result of a preparation with the preparing
sequence (θk) depends linearly on the initial state σ . For convex sets weak and norm
closure coincide, so it is enough to show that I is norm closed. Let a be any element
in the unit ball of A and ε > 0. If σ is in the closure of I then find σ ′ ∈ I such that
‖σ − σ ′‖ < 1

2ε and k0 ∈ N so that |(σ ′ ⊗ θk)Jnk (a) − ρ(a)| < 1
2ε for all k ≥ k0. Then

for k ≥ k0 we also have |(σ ⊗ θk)Jnk (a) − ρ(a)| < ε. Hence σ ∈ I. ��
The next result shows that if a sequence of states prepares a vector state ωξ on B(H)

from a faithful normal state ϕ then the same sequence prepares ωξ from any normal
state.

Proposition 2.6. SupposeA = B(H), whereH is a Hilbert space, and let J : B(H) →
B(H)⊗C be a transition. Let ϕ be a faithful normal state on B(H) and ωξ a vector state
from the unit vector ξ ∈ H. If ωξ is J -preparable from ϕ with a preparing sequence (θk)

then ωξ is universally J -preparable with universally preparing sequence (θk).

Proof. Any normal state σ on B(H) can be approximated by states with finite dimen-
sional support, this is obvious if we think of these states as density matrices, i.e.,
ρ(·) = Tr(d ·) for a positive trace class operator d with Tr(d) = 1. Using Proposi-
tion 2.5 it is therefore enough to show that ωξ is J -preparable with preparing sequence
(θk) from any initial state σ with finite dimensional support q. For such a state σ and
the given faithful normal state ϕ the function a �→ σ(a)

ϕ(a)
is continuous and positive on

{a ∈ q B(H)q : a ≥ 0, ‖a‖ = 1}, the positive part of the unit sphere of the finite di-
mensional algebra q B(H)q. Because this is a compact set the function attains a finite
maximum c > 0 there and it follows that σ ≤ c ϕ.

Let pξ be the (one-dimensional) support projection of the vector state ωξ . Then we
have

0 ≤ (σ ⊗ θk)Jnk (1l − pξ ) ≤ c(ϕ ⊗ θk)Jnk (1l − pξ ) → cωξ (1l − pξ ) = 0 (k → ∞).

Hence (σ ⊗ θk)Jnk (pξ ) → 1 if k → ∞. This implies limk→∞ ‖(σ ⊗ θk)Jnk −ωξ‖ = 0
(see for example [Go04], A.5.3, for a worked out argument concerning the last step). ��
Definition 2.7. Let J : A → A ⊗ C be a transition and let (θk) and (θ ′

k) be preparing
sequences of any two states in the sense of Definition 2.2 so that θk is a state on Cnk and
θ ′
k is a state on Cn′

k
. If nk = n′

k for all k ∈ N then (θk) and (θ ′
k) are called compatible.

If we have compatible preparing sequences then superposition becomes available
as an additional tool. Recall that a σ -convex combination of elements x1, x2, . . . is an
expression

∑∞
i=1 ci xi with 0 ≤ ci ∈ R for all i and

∑∞
i=1 ci = 1.
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Proposition 2.8. Let J : A → A ⊗ C be a transition. If we have a compatible set
of universally preparing sequences for a set of normal states on A then any σ -convex
combination of such sequences is a compatible universally preparing sequence for the
corresponding σ -convex combination of states.

Proof. Consider a σ -convex combination τ := ∑∞
i=1 ciτi where all τi are universally

J -preparable with compatible preparing sequences (θ
(i)
k ). For all k ∈ N define θk :=

∑∞
i=1 ciθ

(i)
k .We check that τ is universally J -preparable with the compatible universally

preparing sequence (θk). Indeed, fix a normal state σ on A and an element a in the unit
ball ofA. Then we can, for any δ > 0, find i0 big enough so that

∑
i>i0 ci < δ and then,

for any ε > 0, find k0 big enough so that for all k > k0 and all i = 1, . . . , i0

|(σ ⊗ θ
(i)
k )Jnk (a) − τi (a)| < ε.

Then for k > k0 we have |(σ ⊗ θk)Jnk (a) − τ(a)| < ε + 2 δ. ��
Remark A physicist who can prepare states ρ1 and ρ2 in some way can also prepare
convex combinations by performing the corresponding procedures with corresponding
probabilities. But this is not J -preparation of a convex combination in the sense of
Definition 2.2. Proposition 2.8 gives us a sufficient condition for J -preparability of a
convex combination.
We are ready for the main conclusion from these considerations which gives us a useful
sufficient condition for universal preparability of all normal states onA = B(H). It will
be used later to prove one of our main results, Theorem 6.1.

Theorem 2.9. Suppose A = B(H), where H is a Hilbert space, and let J : B(H) →
B(H)⊗C be a transition. If there exists a faithful normal stateϕ onB(H) so that all vector
states are J -preparable fromϕ by compatible preparing sequences then all normal states
onB(H) are universally J -preparablewith compatible universally preparing sequences.

Proof. ApplyingProposition2.6wefind that all vector states are universally J -preparable
by compatible universally preparing sequences. The representation of an arbitrary nor-
mal state by a density matrix shows that all normal states on B(H) can be written as
σ -convex combinations of vector states and hence the theorem follows from Proposi-
tion 2.8. ��

3. Time Reversal Criterion for Universal Preparability

In this section we give another sufficient condition for universal preparability which
is based on the idea of time reversal, see Theorem 3.6. Because we want to con-
catenate preparation procedures we start by discussing the transitivity properties of
J -preparability in more detail. Keeping track of the positions in the tensor products
makes the notation somewhat laborious although the geometric ideas are simple.

Lemma 3.1. Let J : A → A ⊗ C be a transition. Further let θ be a state on Cn =⊗n
j=1 C( j) and χ be a state on Cm = ⊗m

j=1 C( j). Now we form a product state θ ⊗ χn

on Cn+m = ⊗n+m
j=1 C( j) where χn is the state χ but shifted by n positions in the tensor

product to
⊗n+m

j=n+1 C( j). Then for any state σ on A we have
(
σ ⊗ (θ ⊗ χn)

)
Jn+m = (

[
(σ ⊗ θ)Jn

] ⊗ χ)Jm .
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Proof. Let a ∈ A. Suppose that Jm(a) = ∑
i ai ⊗ci with ai ∈ A and ci ∈ Cm (in infinite

dimensional algebras this may only be possible approximately but this is enough for the
following argument). Then Jn+m = Jn J(n+1) . . . J(n+m) hence Jn+m(a) = ∑

i Jn(ai )⊗cni
where cni is the element ci but shifted by n positions in the tensor product. Therefore,
we find
(
σ ⊗ (θ ⊗ χn)

)
Jn+m(a) = (σ ⊗ θ)

(∑

i

Jn(ai )χ(ci )
) = [

(σ ⊗ θ)Jn
]( ∑

i

aiχ(ci )
)

= ([
(σ ⊗ θ)Jn

] ⊗ χ
)
Jm(a).

��
The following result shows that preparability is transitive. Again the idea behind its

formulation and its proof is simple: If ρ can be prepared from τ and τ from σ then first
move σ close to τ and afterwards move τ close to ρ.

Proposition 3.2. Let J : A → A ⊗ C be a transition and let σ, τ, ρ be normal states
on A. If τ is J -preparable from σ with preparing sequence (θ ′

k) and ρ is J -preparable
from τ with preparing sequence (θ ′′

k ) then ρ is J -preparable from σ .
Suppose that θ ′

� is a state on Cn′(�) and θ ′′
m is a state on Cn′′(m). There is a preparing

sequence (θk) from σ to ρ where all θk have the form

θk = θ ′
� ⊗ (θ ′′

m)n
′(�)

(notation as in Lemma 3.1) for suitable �,m. IfA is atomic, in particular ifA = B(H),
then any sequence (θk) of this form is a preparing sequence provided both � → ∞ and
m → ∞ if k → ∞.

Proof. Given any weak neighbourhood Uρ of ρ choose m big enough so that we have
(τ ⊗ θ ′′

m)Jn′′(m) ∈ Uρ . Because θ �→ Jn′′(m)∗(θ ⊗ θ ′′
m) is a weakly continuous map on

A∗ it maps a weak neighbourhood Uτ of τ into Uρ . If we now choose � big enough
(depending on m) so that we have (σ ⊗ θ ′

�)Jn′(�) ∈ Uτ then with Lemma 3.1 also

(
σ ⊗ (θ ′

� ⊗ (θ ′′
m)n

′(�))
)
Jn′(�)+n′′(m) ∈ Uρ.

If A is atomic then by Proposition 2.4 we can replace weak convergence by norm
convergence and obtain, again with Lemma 3.1,

‖(σ ⊗ (θ ′
� ⊗ (θ ′′

m)n
′(�))

)
Jn′(�)+n′′(m) − ρ‖

≤ ‖([(σ ⊗ θ ′
�)Jn′(�)

] ⊗ θ ′′
m)Jn′′(m) − (τ ⊗ θ ′′

m)Jn′′(m)‖ + ‖(τ ⊗ θ ′′
m)Jn′′(m) − ρ‖

≤ ‖(σ ⊗ θ ′
�)Jn′(�) − τ‖ + ‖(τ ⊗ θ ′′

m)Jn′′(m) − ρ‖
and this tends to 0 if � → ∞ and m → ∞. ��
Corollary 3.3. Suppose A is atomic and let J : A → A ⊗ C be a transition. Sup-
pose further that τ is universally J -preparable. If ρ is J -preparable from τ then ρ is
universally J -preparable. If ρ1, ρ2 are J -preparable from τ with compatible preparing
sequences then ρ1, ρ2 are universally J -preparable with compatible universally prepar-
ing sequences.

Proof. The construction of the universally preparing sequences can be done as in Propo-
sition 3.2. ��
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For the rest of this sectionwe assume that we have a transition J : B(H) → B(H)⊗C
which is induced by a coupling automorphism α of B(H) ⊗ C, i.e., J (a) = α(a ⊗ 1l)
for a ∈ B(H). Then we also have another transition Jr : B(H) → B(H) ⊗ C given for
a ∈ B(H) by Jr (a) = α−1(a ⊗ 1l) which can be thought of as a time reversal. Recall
from the beginning of Sect. 2 that (αn)

−1 = (id⊗Rn) ◦ (α−1)n ◦ (id⊗Rn), where Rn
interchanges the positions in

⊗n
j=1 C( j) by j ↔ n − j + 1 for j = 1, . . . , n.

The next result shows that in this situation preparation of a vector state onB(H) from
an arbitrary normal state can be inverted. This will allow us in Theorem 3.6 to use in
certain situations a vector state as an intermediate step when preparing general normal
states.

Proposition 3.4. Let ωξ be a vector state on B(H), with ξ a unit vector in H. If ωξ is
J r -preparable from a normal state ρ on B(H) with a preparing sequence (θrk ) then,
conversely, ρ is J -preparable from ωξ . A preparing sequence (θk) from ωξ to ρ can be
chosen compatibly with (θrk ), i.e., θk is a state on the same algebra Cnk as θrk for all k,
as follows:

θk(c) := (ρ ⊗ θ̂rk )(αnk )
−1(1l ⊗ c),

where c ∈ Cnk , 1l is the identity in B(H), and θ̂rk := θrk ◦ Rnk .

Remark Note that even if θrk is not a highly entangled state the corresponding θk may
be highly entangled and so it is an interesting problem how to simplify this preparing
sequence.

Proof. We have to show limk→∞(ωξ ⊗ θk)Jnk (a) = ρ(a) for all a ∈ B(H).
Let us denote the (one-dimensional) support projection of ωξ by pξ . By assumption

ωξ is Jr -preparable from ρ with a preparing sequence (θrk ). Hence, for any ε > 0 we
have for all k big enough that

(ρ ⊗ θrk )(α
−1)nk (pξ ⊗ 1l) = (ρ ⊗ θrk )J

r
nk (pξ ) > 1 − ε.

Interchanging the positions in the tensor product by Rn and noting Rn1l = 1l we also
have

(ρ ⊗ θ̂rk )(αnk )
−1(pξ ⊗ 1l) = (ρ ⊗ θ̂rk )(id ⊗ Rnk )(α

−1)nk (id ⊗ Rnk )(pξ ⊗ 1l)

= (ρ ⊗ θrk )(α
−1)nk (pξ ⊗ 1l) > 1 − ε. (*)

The next step is based on the following elementary estimate.

Lemma 3.5. If z is a bounded operator, q a projection and ϕ a state then

ϕ(q) > 1 − ε implies |ϕ(z) − ϕ(qzq)| < 3
√

ε ‖z‖.
The Lemma is obtained by writing

z = qzq + (1l − q)zq + qz(1l − q) + (1l − q)z(1l − q) ;
now using the Cauchy–Schwarz inequality and z∗z ≤ ‖z‖21l and φ(q) > 1 − ε to get

|φ((1l − q)zq)| ≤ √
φ(1l − q)

√
φ(qz∗zq) <

√
ε ‖z‖

and similarly for the terms qz(1l − q) and (1l − q)z(1l − q). The Lemma is proved.
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Suppose z ∈ B(H) ⊗ Cnk . With the formula given for θk in Proposition 3.4 and with
Qωξ denoting the conditional expectation determined by Qωξ (a⊗c) = ωξ (a) cwe have

(ωξ ⊗ θk)(z) = θk(Qωξ (z)) = (ρ ⊗ θ̂rk )(αnk )
−1(1l ⊗ Qωξ (z)).

With Lemma 3.5 for q = pξ ⊗ 1l we obtain by (*) for all k big enough that

|(ρ ⊗ θ̂rk )(αnk )
−1(1l ⊗ Qωξ (z)) − (ρ ⊗ θ̂rk )

(αnk )
−1((pξ ⊗ 1l) 1l ⊗ Qωξ (z) (pξ ⊗ 1l))| < 3

√
ε ‖z‖.

To simplify the second term note that, because pξ is one-dimensional, we have
pξapξ = ωξ (a)pξ for all a ∈ B(H) and from that, easily checked on elementary
tensors,

(pξ ⊗ 1l) 1l ⊗ Qωξ (z) (pξ ⊗ 1l) = (pξ ⊗ 1l) z (pξ ⊗ 1l).

So the inequality becomes

|(ωξ ⊗ θk)(z) − (ρ ⊗ θ̂rk )(αnk )
−1(pξ ⊗ 1l) z (pξ ⊗ 1l))| < 3

√
ε ‖z‖.

Again applying Lemma 3.5 for q = pξ ⊗ 1l we also have for k big enough that for all
z ∈ B(H) ⊗ Cnk

|(ρ ⊗ θ̂rk )(αnk )
−1(z) − (ρ ⊗ θ̂rk )(αnk )

−1((pξ ⊗ 1l)z(pξ ⊗ 1l))| < 3
√

ε ‖z‖.
Combining both inequalities we obtain

|(ρ ⊗ θ̂rk )(αnk )
−1(z) − (ωξ ⊗ θk)(z)| < 6

√
ε ‖z‖.

Given any a ∈ B(H) we can choose z := Jnk (a) = αnk (a ⊗ 1l) and this becomes

|(ρ ⊗ θ̂rk )(a ⊗ 1l) − (ωξ ⊗ θk)Jnk (a)| < 6
√

ε ‖a‖.
But (ρ ⊗ θ̂rk )(a ⊗ 1l) = ρ(a) and with k → ∞ we conclude that

lim
k→∞(ωξ ⊗ θk)Jnk (a) = ρ(a),

as asserted. ��
This gives us, after Theorem 2.9, another sufficient condition for universal prepara-

bility of all normal states on A = B(H).

Theorem 3.6. Let J : B(H) → B(H)⊗C be a transition. If there exists a vector stateωξ ,
where ξ is a unit vector in H, which is both universally J -preparable and universally
Jr -preparable then all normal states are universally J -preparable with compatible
universally preparing sequences.

Proof. By assumption ωξ is universally J -preparable. Because ωξ is also universally
Jr -preparable we can apply Proposition 3.4 for any normal state ρ and find that all
normal states on B(H) are J -preparable from ωξ with compatible preparing sequences.
Concatenation of the two steps as in Corollary 3.3 now yields the result. ��
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This theorem is motivated by physics: If α describes some physical interaction be-
tween A and C then one would expect that preparing C repeatedly in the ground state it
should drive an arbitrary state on A into the ground state ωξ on A, similarly for α−1.
Thus from a physical point of view the assumption seems rather natural.

Indeed, we apply Theorem 3.6 to a class of generalized micromaser interactions in
Sect. 7. In this setting the idea of using a time reversal is a physically very plausible
idea and it is discussed from this point of view also in [WBKM00]. A similar idea in a
framework of uploading and downloading quantum information can be found in [BG07].

4. Tightness and Stationary States

In this section we develop the theory of tightness for normal states on B(H) started in
[FR01] and prove a non-commutative version of Prokhorov’s theorem. Then we collect
some results about stationary states for unital positive maps which are relevant for our
investigation. While many of these results are already well known there are others which
we could not find in the literature and we think that in particular Theorem 4.3, Propo-
sition 4.6, Corollary 4.7, Proposition 4.10 and Proposition 4.12 may be of independent
interest and useful elsewhere too.

Definition 4.1 ([FR01]). A sequence (θn)
∞
n=0 of normal states on B(H) is called tight if

for all ε > 0 there exists a finite dimensional projection p ∈ B(H) such that for all n

θn(p) > 1 − ε.

If T : B(H) → B(H) is a normal unital positive map then we say that a normal state θ

on B(H) is tight with respect to T if the sequence (θ ◦ T n)∞n=0 is tight.

This is a generalization of a definition in classical probability which corresponds to
the special case A = L∞(Ω,Σ,μ), the essentially bounded functions on a probability
space (Ω,Σ,μ) (compare [Sh96], III.2,Definition 2). Recall thatwe can identify normal
functionals on B(H) with trace class operators T (H) and that the trace class operators
are the dual of the compact operators K(H), so we have the σ(T (H),K(H))-topology
as a weak∗ topology on the predual B(H)∗.

Lemma 4.2. Let (θn)∞n=0 be a sequence of normal states on B(H). If it converges weak∗
to a normal state θ then (θn)

∞
n=0 is also norm convergent to θ .

Proof. Let ε > 0. Because θ is normal we can choose a finite dimensional projection
q ∈ K(H) ⊂ B(H) such that θ(q) > 1− ε. Because of the weak∗-convergence of θn to
θ there exists n0 ∈ N so that for all n > n0 also θn(q) > 1 − ε. With Lemma 3.5 for θ

and θn , applied to z with ‖z‖ ≤ 1, we get

‖θ − θn‖ ≤ ‖θ(q · q) − θn(q · q)‖ + 6
√

ε.

But ‖θ(q · q) − θn(q · q)‖ = ‖(θ − θn)(q · q)‖ → 0 for n → ∞ because q is finite
dimensional. ��

The following is a non-commutative version of a theorem of Prokhorov in classical
probability theory, see for example [Sh96], III.2, Theorem 1.

Theorem 4.3. A sequence (θn)
∞
n=0 of normal states on B(H) is tight if and only if it is

relatively compact in the norm topology.
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Proof. ByAlaoglu’s theorem, see [KR86], 1.6.5, the unit ball ofB(H)∗ isweak∗ compact
and hence there exists a subsequence (θnk ) of (θn)

∞
n=0 (H is separable) which converges

weak∗ to a positive normal functional θ . In particular ifq is a finite dimensional projection
then θnk (q) → θ(q) for k → ∞ and tightness of (θn)

∞
n=0 implies that θ(1l) = 1, so θ is

a state. Now by Lemma 4.2 the subsequence (θnk ) converges to θ in the norm topology.
This shows that if (θn)

∞
n=0 is tight then it is relatively compact in the norm topology.

To get the converse, let (qk)∞k=0 be a sequence of finite dimensional projections in
B(H)which converges weak∗ to 1l. Suppose (θn)

∞
n=0 is not tight. Then there exists ε > 0

such that for a subsequence (θnk ) we have θnk (qk) ≤ 1 − ε. But if (θn)
∞
n=0 is relatively

compact in the norm topology then a subsequence of (θnk ) converges in the norm to a
normal state and then the corresponding subsequence of (θnk (qk)) converges to 1. This
cannot be the case. ��
Definition 4.4. Let T be a normal unital positive map on a von Neumann algebraA. We
say that a normal state φ onA is stationary for T if φ ◦T = φ. In this case we also write
T : (A, φ) → (A, φ).

Proposition 4.5. [FR01] Let T be a normal unital positive map on B(H). There exists
a stationary normal state φ for T if and only if there is a normal state θ on B(H)

which is tight with respect to T . In fact, if θ is tight with respect to T then the sequence
( 1
N

∑N−1
n=0 θ ◦ T n)∞N=0 converges to a stationary normal state (in the norm topology).

Proof. Obviously a stationary normal state is tightwith respect to T . Conversely, suppose
that θ is any normal state which is tight with respect to T . Then (θ ◦ T n)∞n=0 is a tight

sequence and hence ( 1
N

∑N−1
n=0 θ ◦ T n)∞N=0 is also a tight sequence. We infer from

Theorem 4.3 and its proof that there exists a normal state φ which is an accumulation
point of this sequence. Now it follows from standard results in ergodic theory, see for
example [Kr85], Chapter 2, Theorem 1.1 applied to the preadjoint T∗ of T , that we
actually have

φ = lim
N→∞

1

N

N−1∑

n=0

θ ◦ T n

(in the norm topology). Further

‖φ ◦ T − φ‖ ≤ lim
N→∞ ‖ 1

N
(θ − θ ◦ T N )‖ = 0,

so φ is stationary. ��
Proposition 4.6. If T is a normal unital positive map on B(H) then there exists a pro-
jection pt ∈ B(H) such that a normal state θ is tight with respect to T if and only if
supp θ ≤ pt .

Proof. We make use of the following result in [Da76], Chapter 4, Lemma 3.2: For any
norm closed order ideal O in the set of all normal positive linear functionals on B(H)

there exists a projection p ∈ B(H) so that a normal positive linear functional τ on B(H)

is in O if and only if supp τ ≤ p. Recall that by definition O is an order ideal if it is a
cone such that 0 ≤ ρ ≤ τ ∈ O implies ρ ∈ O.

Hence Proposition 4.6 is proved if we can show that the set O of all functionals cθ
with 0 ≤ c ∈ R and θ tight with respect to T is a norm closed order ideal.
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O is a cone. In fact, if 0 �= θ1, θ2 ∈ O then for any ε > 0 there exist finite dimensional
projections p1, p2 such that θi ◦ T n(pi ) > ‖θi‖ (1 − ε) for i = 1, 2 and all n. The
supremum p := p1 ∨ p2 is also a finite dimensional projection and we get for all
λ1, λ2 ≥ 0 that

(λ1θ1 + λ2θ2) ◦ T n(p) > (λ1‖θ1‖ + λ2‖θ2‖) (1 − ε) = ‖λ1θ1 + λ2θ2‖ (1 − ε),

hence λ1θ1 + λ2θ2 ∈ O.
O is norm closed. In fact, suppose that θ is a normal state such that for all δ > 0

there exist θδ ∈ O such that ‖θ − θδ‖ < δ. Note that ‖θδ‖ > 1− δ. For any ε > 0 there
exists a finite dimensional projection p so that θδ ◦ T n(p) > ‖θδ‖ (1− ε) for all n. Then

θ ◦ T n(p) = θδ ◦ T n(p) + (θ − θδ) ◦ T n(p) > (1 − δ) (1 − ε) − δ

for all n. Hence θ ∈ O. A similar argument applies to any multiple cθ with c > 0.
Finally suppose that 0 ≤ ρ ≤ θ ∈ O. We may assume that ρ �= 0 and θ is a state.

Because θ is tight, for all ε > 0 there exists a finite dimensional projection q such that
θ ◦ T n(q) > 1 − ‖ρ‖ ε for all n. Then

1 − ‖ρ‖ ε < θ ◦ T n(q) = ‖ρ‖ ( 1

‖ρ‖ρ ◦ T n(q)
)
+ ‖θ − ρ‖ ( 1

‖θ − ρ‖ (θ − ρ) ◦ T n(q)
)
.

Because ‖θ − ρ‖ = (θ − ρ)(1l) = 1 − ‖ρ‖ we get for all n that

1

‖ρ‖ρ ◦ T n(q) >
1

‖ρ‖
(
1 − ‖ρ‖ε − (1 − ‖ρ‖)) = 1 − ε,

hence ρ ∈ O. ��
Corollary 4.7. If there exists a faithful normal state which is tight with respect to a
normal unital positive map T on B(H) then all normal states are tight with respect to
T .

Definition 4.8 ([FR02]). Let T be a normal unital positive map on a von Neumann
algebra A. A positive element a ∈ A is called

superharmonic if a ≥ T (a),

subharmonic if a ≤ T (a),

harmonic if a = T (a).

Proposition 4.9. Let T be a normal unital positive map on a von Neumann algebra A
and let p ∈ A be a projection.

(1) p is superharmonic if and only if T (pap) = p T (pap) p for all a ∈ A.
(2) p is subharmonic if and only if p T (a) p = p T (pap) p for all a ∈ A.
(3) p is harmonic if and only if p T (a) p = T (pap) for all a ∈ A.
(4) The support supp φ of a stationary normal state φ is subharmonic.
(5) If there exists a stationary faithful state for T then all positive superharmonic or

subharmonic elements are harmonic.

Proof. The nontrivial parts can be derived from Lemma 2 in [Lu95], see also Section 2
of [FR02] or [GK12]. For convenience we include a short proof which is valid for our
setting.
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(1) Inserting a = 1l into the right hand side yields T (p) = p T (p) p, hence T (p) ≤
‖T (p)‖ p ≤ p and p is superharmonic. Conversely, if p is superharmonic then for
a ≥ 0

0 ≤ T (pap) ≤ ‖a‖ T (p) ≤ ‖a‖ p

which implies T (pap) = p T (pap) p. Because all a ∈ A are linear combinations
of positive elements this is valid for all a.

(2) Inserting a = 1l yields p = p T (p) p, hence

0 = p T (1l − p) p ≥ (
T (1l − p)p

)∗(
T (1l − p)p

) ≥ 0,

which implies T (1l− p) p = 0. Here we have used the Kadison–Schwarz inequality
for the selfadjoint projection 1l− p, see [St13], Theorem 1.3.1(ii). We conclude that

T (1l − p) = (1l − p) T (1l − p) (1l − p) ≤ ‖T (1l − p)‖ (1l − p) ≤ 1l − p,

hence p ≤ T (p) and p is subharmonic. Conversely, if p is subharmonic and θ is
any normal state then we define the normal positive functional θp(·) := θ(p · p).
Note that

T∗θp(1l − p) = θp(T (1l − p)) ≤ θp(1l − p) = 0,

so supp(T∗θp) ≤ p and T∗θp = (T∗θp)p. Inserting the definitions gives θ(p T (a) p)
= θ(p T (pap) p) for all a ∈ A. Because this is true for all θ we get the stated result.

(3) follows by combining (1) and (2).
(4) Putting pϕ := suppϕ and p⊥

ϕ := 1l− pϕ , we have 0 ≤ T (p⊥
ϕ ) ≤ 1l andϕ(T (p⊥

ϕ )) =
ϕ(p⊥

ϕ ) = 0, hence T (p⊥
ϕ ) ≤ p⊥

ϕ and thus pϕ ≤ T (pϕ).
(5) If 0 ≤ a ∈ A is superharmonic and ϕ is a stationary faithful state on A then

0 ≤ ϕ(a − T (a)) = ϕ(a) − ϕ(a) = 0 and hence a = T (a). A similar argument
applies to subharmonic elements. ��

Proposition 4.10. Let T be a normal unital positive map on a von Neumann algebraA
and ϕ,ψ stationary normal states such that suppψ is not dominated by suppϕ. Then
there exists a stationary normal state ϕ⊥ such that suppϕ ⊥ suppϕ⊥.

Proof. Let p := supp θ with θ := 1
2 (ϕ +ψ). Then we infer from the assumptions about

the supports that suppϕ ≤ p and q := p − suppϕ �= 0. Now we define

Tp : pAp → pAp, y �→ p T (y)p,

which is a normal unital (on pAp) positive map with a stationary faithful normal state
θ |pAp. Note that, by Proposition 4.9(4), p and supp ϕ are subharmonic and hence q is
superharmonic for both T and Tp. By Proposition 4.9(5) these projections are harmonic
for Tp.
Claim The normal positive functional θq(·) := θ(q ·q) is stationary for T . This is shown
by the following computation which involves Proposition 4.9(1) for T and Proposition
4.9(3) for Tp. Let a ∈ A. Then

θq ◦ T (a) = θ(q T (a)q) = θ(qp T (a)pq) = θ(qp T (pap)pq)

= θ(q Tp(pap)q) = θ(Tp(qpapq)) = θ(Tp(qaq)) = θ(qaq) = θq(a).

Because q ⊥ suppϕ we can now define ϕ⊥ := θq
‖θq‖ . ��
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For completely positive T this result follows also from [GK12], Theorem 7.1.
Finally we include a few results about absorbing states which will be needed later.

The following proposition is well known.

Proposition 4.11 [Go04, A.5.2]. Let T be a normal unital positive map on B(H) and
ξ ∈ H a unit vector. Let ωξ be the corresponding vector state with (one-dimensional)
support pξ .

The following assertions are equivalent:

(a1) The state ωξ is absorbing, i.e., for all normal states θ on B(H) and all a ∈ B(H)

lim
n→∞ θ ◦ T n(a) = ωξ (a).

(a2) For all normal states θ and all a ∈ B(H) in the norm topology

lim
n→∞ θ ◦ T n = ωξ .

(b) T is ergodic, i.e., there are only trivial fixed points (namely C1l),
and ωξ is stationary.

(c1) limn→∞ T n(pξ ) = 1l in the strong operator topology
(c2) limn→∞ T n(pξ ) = 1l in the weak∗ topology

If we replace ωξ by an arbitrary normal state ϕ (not necessarily a vector state) then we
still have

(a1) ⇔ (a2) ⇒ (b) ⇒ (c1) ⇔ (c2).

Proposition 4.12. Let T be a normal unital positive map on B(H) such that all normal
states are tight with respect to T .

(i) If there is a stationary vector state which is the only stationary normal state for T
then it is absorbing.

(ii) Suppose the vector state ωξ is stationary and let pξ be its support. Then ωξ is
absorbing if and only if for every normal state θ on B(H) there exists n ∈ N such
that θ ◦ T n(pξ ) �= 0.

Proof. (i) By Proposition 4.5 it follows that for any normal state θ the sequence
( 1
N

∑N−1
n=0 θ ◦ T n) converges in the norm to a stationary normal state. This must

be the given stationary vector state ωξ because by assumption there is no other sta-
tionary normal state. Now we want to use Proposition 4.11(c1): If pξ is the support
of this vector state we have

lim
N→∞

1

N

N−1∑

n=0

θ ◦ T n(pξ ) = ωξ (pξ ) = 1.

On the other hand pξ is subharmonic by Proposition 4.9(4) which implies that a :=
limn→∞ T n(pξ ) exists in the strong operator topology and T (a) = a. Then we
can also write a as a Cesaro limit in the strong operator topology, namely a =
limN→∞ 1

N

∑N−1
n=0 T n(pξ ). Comparison with the limit above gives θ(a) = 1 for all

normal states θ , hence a = 1.
(ii) If ωξ is absorbing then the given criterion is satisfied because θ ◦ T n(pξ ) →

ωξ (pξ ) = 1 for n → ∞ for all normal states θ . For the converse assume that ωξ

is not absorbing. Then it follows from (i) that ωξ is not the only stationary normal
state and by Proposition 4.10 there exists a stationary normal state ϕ with supp ϕ

orthogonal to pξ . But then ϕ ◦ T n(pξ ) = ϕ(pξ ) = 0 for all n. ��
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5. Transitions and Stationary States

Wefirst review a basic notion of a (discrete-time, one-sided) non-commutative stationary
Markov chain whichmatches the one used in [GKL06]. It will turn out in the next section
that we can make use of it to deepen our understanding of universal preparability. We
concentrate on the transition specifying the Markov chain and do not say much about
the chain itself. A broader discussion and motivation of non-commutative stationary
Markov chains can be found in [GKL06] and in [Ku06].

Suppose that a transition J : A → A⊗ C is given and let us fix a normal state ψ on
C. Then the associated transition operator

Tψ := Pψ J ,

where Pψ : A ⊗ C → A is the conditional expectation determined by Pψ(x ⊗ y) =
x ψ(y), is a normal unital completely positive map on A.

We can put copies ψ( j) of ψ on copies C( j) of C and define a normal product state
ψn := ψ(1) ⊗ . . . ⊗ ψ(n) on Cn := ⊗n

j=1 C( j). Then we can check that

(Tψ)n = Pψn Jn ,

this reflects the Markovian character of the time evolution (cf. [Ku85], 2.2.7).
For a normal state ϕ on A it is easy to check that the following assertions are equiv-

alent:

– ϕ ◦ Tψ = ϕ, we write Tψ : (A, ϕ) → (A, ϕ)

– (ϕ ⊗ ψ)J = ϕ, we write J : (A, ϕ) → (A ⊗ C, ϕ ⊗ ψ)

– (ϕ ⊗ ψn)Jn = ϕ for all n ∈ N

The first assertion says that ϕ is a stationary normal state for Tψ . Note that while
the existence of stationary states follows from fixed point theorems the existence of
stationary normal states, as requested here, is a non-trivial assumption if A is infinite
dimensional. The last assertion can be interpreted by saying that J : (A, ϕ) → (A ⊗
C, ϕ ⊗ψ) specifies a non-commutative stationary Markov chain. If only the transition J
is given then in order to construct a stationary Markov chain we can choose any normal
state ψ on C and then check if we can find a corresponding stationary normal state ϕ for
Tψ on A. In the following we are particularly interested in faithful states.

In the setting of our main results, see Theorem 6.1, we always have faithfulness of
the stationary state ϕ. This is related to the following concepts which we also quickly
review here, for proofs, further motivation and discussion we refer to [GKL06]. Our
notation is slightly different from [GKL06] because here we avoid the use of infinite
tensor products.

Definition 5.1. A transition J : A → A ⊗ C is called irreducible if p = 0 and p = 1l
are the only projections p ∈ A which satisfy J (p) ≤ p ⊗ 1l.

A positive unital map T is called irreducible if 0 and 1l are the only subharmonic
projections (or, equivalently by replacing p by 1l − p, if 0 and 1l are the only superhar-
monic projections). It is called ergodic, if its fixed space is one-dimensional and hence
given by C1l.

Proposition 5.2 [GKL06, Section 1]. Let J : A → A⊗ C be a transition and ψ on C a
faithful normal state. Suppose further that the transition operator Tψ has a stationary
normal state ϕ. Then J is irreducible if and only if Tψ is irreducible.
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Recall that in a C∗-algebra a conditional expectation is defined as an idempotent
linear map of norm one onto a C∗-subalgebra, see [Tak79], III.3.3.
Theorem 5.3 [KN79]. Let T be a normal unital completely positive map on a von
Neumann algebra A with a stationary faithful normal state ϕ. Then the set F(T ) of
all fixed points is a von Neumann subalgebra of A and there exists a unique normal
conditional expectation P onto F(T ) which preserves the state ϕ, i.e., ϕ ◦ P = ϕ. The
set of all stationary normal states of T is equal to {θ ◦ P : θ is a normal state on F(T )}.
Proposition 5.4. Suppose T is a normal unital completely positive map on a von Neu-
mann algebra A with a stationary normal state ϕ. Then the following assertions are
equivalent:

(a) T is irreducible.
(b) T is ergodic and ϕ is faithful.

If the assertions are satisfied then ϕ is the unique stationary normal state for T .

Proof. Assume that T is irreducible. By Proposition 4.9(4) suppϕ is subharmonic, so
by irreducibility suppϕ = 1l and ϕ is faithful. It follows that the fixed points form a von
Neumann subalgebra F(T ), by Theorem 5.3. By irreducibility any projection in this
subalgebra must be 0 or 1l, hence T is ergodic.

Conversely assume that T is not irreducible and that ϕ is faithful. We choose a non-
trivial superharmonic projection p. Then the sequence (T n p) converges weak∗ to a fixed
point a ≥ 0. Because a ≤ p we have a �= c1l for 0 �= c ∈ C. Because ϕ is faithful and
ϕ(a) = ϕ(p) �= 0 we also have a �= 0. Hence T is not ergodic.

Because the fixed point algebra F(T ) is one dimensional it follows immediately
from the characterization of the set of stationary normal states in Theorem 5.3 that ϕ is
unique. ��

Stationary states make it possible to introduce further tools into the investigation of
transitions. Among them are the extended transition operators. See [Go04] for detailed
background about these. For the convenience of the reader we review their definition
including some further context andwe add a few additional directions to this topic, based
on Sect. 4 and applied later in Theorem 6.1.

If we have a non-commutative stationary Markov process specified by J : (A, ϕ) →
(A⊗C, ϕ ⊗ψ), where ϕ and ψ are faithful normal states, then there is further structure
available from the GNS-construction applied to these states. We use notation as follows.
There is an inner product 〈a, b〉ϕ := ϕ(a∗b) onA andA becomes a dense subspace in the
GNS-Hilbert spaceHϕ with respect to the corresponding norm‖·‖ϕ . To simplify notation
we also identifyA with its GNS-representation onHϕ . In this senseA ⊂ B(Hϕ). If we
want to make explicit that we consider an element a ∈ A as an element of Hϕ then we

write a1l and think of 1l as the cyclic vector. But for the norm 〈a1l, a1l〉
1
2
ϕ = ϕ(a∗a)

1
2 we

often further simplify notation and just write ‖a‖φ instead of ‖a1l‖φ . Similar conventions
apply to the other algebras, for example the algebraA⊗Cn gives rise to an inner product
〈·, ·〉ϕ⊗ψn for the GNS-Hilbert space Hϕ ⊗ Hψn , etc.

Proposition 5.5. Let T : A → A be a normal unital completely positive map with
a stationary normal state ϕ and let A′ be the commutant of A in B(Hϕ). Further let
T ′ : A′ → A′ be the dual operator in the sense that we have for all a ∈ A and a′ ∈ A′

〈1l, T (a) a′ 1l〉ϕ = 〈1l, a T ′(a′) 1l〉ϕ.

Then T is irreducible if and only if T ′ is irreducible.
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Proof. The dual operator T ′ : A′ → A′ is also a normal unital completely positive map,
see for example [GK82] or [Go04], 1.5.1. Suppose T is irreducible. Then by Proposition
5.4 the stationary normal state ϕ is faithful and 1l becomes a cyclic and separating vector
for A. But then also the restriction of the vector state ω1l = 〈1l, · 1l〉ϕ to A′ is faithful
and hence the fixed point space of T ′ is a von Neumann subalgebra F(T ′) in A′, see
Theorem 5.3. Let p′ be any projection in F(T ′). Then for a ∈ A

〈p′1l, T (a) p′1l〉ϕ = 〈1l, a T ′(p′)1l〉ϕ = 〈1l, ap′1l〉ϕ = 〈p′1l, ap′1l〉ϕ,

hence ωp′1l(·) = 〈p′1l, · p′1l〉ϕ restricted to A is a stationary normal positive functional
for T . But because T is irreducible we get from Proposition 5.4 that ϕ is the only
stationary normal state, hence ωp′1l restricted to A must be a scalar multiple of ϕ. In
other words there exists λ ≥ 0 so that for all a ∈ A we have 〈a1l, p′1l〉ϕ = λ〈a1l, 1l〉ϕ ,
so p′ = λ1l. This shows that T ′ is ergodic and it has a stationary faithful normal state.
We conclude by Proposition 5.4 that T ′ is irreducible. The other direction is now also
clear because (T ′)′ = T . ��

For a non-commutative stationary Markov process specified by J : (A, ϕ) → (A ⊗
C, ϕ ⊗ ψ), with ϕ and ψ faithful normal states, it follows from stationarity that J can
be extended to an isometry v : Hϕ → Hϕ ⊗Hψ . The dual extended transition operator
Z ′ is the normal unital completely positive map on B(Hϕ) defined by the following
Stinespring representation:

Z ′(x) := v∗ x ⊗ 1l v.

Proposition 5.6 [GKL06, Section 4]. Properties of Z ′.
(1) The vector state ω1l = 〈1l, · 1l〉 for 1l ∈ A1l ⊂ Hϕ is stationary for Z ′.
(2) Let A′ be the commutant of A in B(Hϕ). Then Z ′(A′) ⊂ A′ and Z ′|A′ = T ′.
(3) Suppose there exists a (ϕ ⊗ψ)-preserving conditional expectation fromA⊗C onto

J (A). Then Z ′(A) ⊂ A and Z ′|A = T +, where

T + : A → A, 〈T +(a)1l, b1l〉ϕ = 〈a1l, T (b)1l〉ϕ (a, b ∈ A).

The identity above means that T + is the adjoint of T with respect to the state ϕ and
may be rewritten as ϕ(T +(a)∗ b) = ϕ(a∗ T (b)) (cf. also [GK82], section 3).

For later use in the proof of Theorem 6.1 belowwe include the following observation.

Lemma 5.7. If J is an irreducible transition such that J : (A, ϕ) → (A⊗C, ϕ⊗ψ), with
ϕ andψ faithful normal states, then every stationary normal stateη for the corresponding
dual extended transition operator Z ′ has the form

η =
∞∑

j=1

ωa j1l with a j ∈ A for all j.

Proof. Let η be a normal state on B(Hϕ) which is stationary for Z ′. Like any normal
state on B(Hϕ) we can write η in the form η = ∑∞

j=1 ωξ j with ξ j ∈ Hϕ , see [KR86],
Theorem 7.1.12. We have to show that under the given assumptions we can choose
ξ j = a j1l with a j ∈ A, for all j .

It follows from Proposition 5.2 and Proposition 5.5 that with J also T := Tψ and
T ′ are irreducible. If η is stationary for Z ′ then because Z ′|A′ = T ′ (from Proposition
5.6(2)) the restriction of η to A′ is stationary for T ′. Because T ′ is irreducible we get
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from Proposition 5.4 that there cannot be more than one stationary normal state, hence
the restrictions of η and of ω1l to A′ coincide. In particular

ωξ j |A′ ≤ ω1l|A′ for all j.

We now want to define a j as an operator on Hϕ , for all j . Note that A1l is a dense

subspace of Hϕ , so there is a sequence (a(n)
j )n∈N ⊂ A such that ‖(a(n)

j 1l − ξ j‖ϕ → 0
for n → ∞. We define a j first on the dense subspace A′1l ⊂ Hϕ by

a j (b
′1l) := lim

n→∞ a(n)
j b′1l = lim

n→∞ b′a(n)
j 1l = b′ξ j ,

where b′ ∈ A′. We compute

‖a j (b
′1l)‖2ϕ =〈a j (b

′1l), a j (b
′1l)〉ϕ = 〈b′ξ j , b′ξ j 〉ϕ = ωξ j (b

′∗b′) ≤ ω1l(b
′∗b′) = ‖b′1l‖2ϕ ,

from which we conclude that a j is bounded and can be extended to an operator a j ∈
B(Hϕ). We can easily check on the dense subspace A′1l ⊂ Hϕ that it commutes with
A′. Indeed, if b′, c′ ∈ A′ then

a j c
′(b′1l) = lim

n→∞ a(n)
j c′b′1l = lim

n→∞ c′a(n)
j b′1l = c′a j (b

′1l).

Hence a j ∈ A′′ = A and, with b′ = 1l, we have a j1l = ξ j , as claimed. ��
We now use the dual extended transition operator Z ′ to define a concept of tightness

for a transition J .

Definition 5.8. Let J : (A, ϕ) → (A ⊗ C, ϕ ⊗ ψ) be a transition for faithful normal
states ϕ on A and ψ on C. If all normal states on B(Hϕ) are tight for the corresponding
dual extended transition operator Z ′ then we say that J : (A, ϕ) → (A ⊗ C, ϕ ⊗ ψ) is
tight.

We emphasize that tightness is a rather weak property for a transition J which in
practice is satisfied in many cases of interest. This is illustrated by the following propo-
sition.

Proposition 5.9. Let J : A → A ⊗ C be a transition.
If one of the following conditions (1) or (2) is satisfied:

(1) A = B(H) and C = B(K) withH and K finite dimensional Hilbert spaces,
(2) A is finite dimensional and J is irreducible,

then there exist faithful normal states ϕ and ψ such that J : (A, ϕ) → (A⊗ C, ϕ ⊗ ψ)

and for all such choices the latter is tight.

(3) Let A = B(H) with a Hilbert space H and J : (B(H), ϕ) → (B(H) ⊗ C, ϕ ⊗ ψ)

with faithful normal states ϕ on B(H) and ψ on C and suppose that there exists a
(ϕ ⊗ ψ)-preserving conditional expectation from B(H) ⊗ C onto J (B(H)). Then
J : (B(H), ϕ) → (B(H) ⊗ C, ϕ ⊗ ψ) is tight.

(4) LetA = B(H)with a Hilbert spaceH and the transition J be induced by a coupling
automorphism α ofB(H)⊗C such that J (a) = α(a⊗1l) for all a ∈ B(H). Suppose
further that ϕ on B(H) and ψ on C are faithful normal states such that ϕ ⊗ ψ is
stationary for the automorphism α. Then J : (B(H), ϕ) → (B(H) ⊗ C, ϕ ⊗ ψ) is
tight.
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Proof. In both (1) and (2) we have tightness of all normal states for Z ′ because A and
hence also B(Hϕ) are finite dimensional. Further in (1) we can choose the (faithful)
tracial states for ϕ and ψ . In (2) choose any faithful normal state ψ on C and then any
Tψ -stationary state ϕ onA, which exists by a fixed point argument and is normal because
A is finite dimensional. Because J is irreducible it follows from Proposition 5.2 that
also Tψ is irreducible and hence, by Proposition 5.4, ϕ is faithful.

In (3) we have to prove the tightness of all normal states for Z ′. BecauseA = B(H),
writeB(Hϕ) = A⊗A′ whereA′ = B(H′)with aHilbert spaceH′. Further we take from
Proposition 5.6 that Z ′ restricted to A′ � 1l ⊗ A′ is T ′ and Z ′ restricted to A � A ⊗ 1l
is T + (here the existence of the conditional expectation is used). Because 1l is a cyclic
and separating vector for A it follows that the restriction ϕ′ of ω1l to A′ is a stationary
faithful normal state for T ′ and the restriction ϕ ofω1l toA is a stationary faithful normal
state for T +. We conclude from Corollary 4.7 that all normal states on A′ are tight for
T ′ and all normal states onA are tight for T +. Now let θ be any normal state on B(Hϕ).
Then for any ε > 0 there exist finite dimensional projections p′ ∈ A′ and p ∈ A such
that for all n

θ ◦ (T ′)n(p′) > 1 − ε

2
, θ ◦ (T +)n(p) > 1 − ε

2
.

For the finite dimensional projection p ⊗ p′ ∈ A ⊗ A′ = B(Hϕ) we get for all n

θ ◦ (Z ′)n(p ⊗ p′) = θ ◦ (Z ′)n(p ⊗ 1l) − θ ◦ (Z ′)n(p ⊗ (1l − p′))
≥ θ ◦ (Z ′)n(p ⊗ 1l) − θ ◦ (Z ′)n(1l ⊗ (1l − p′))
≥ θ ◦ (T +)n(p) − θ ◦ (T ′)n(1l − p′) > 1 − ε

2
− ε

2
= 1 − ε.

Hence θ is tight for Z ′.
In (4) the stationarity of ϕ⊗ψ for the automorphism α clearly implies J : (B(H), ϕ)

→ (B(H)⊗C, ϕ ⊗ψ). It also implies that α commutes with the modular automorphism
group of ϕ⊗ψ , hence, becauseA is globally invariant under this modular automorphism
group, the same applies to J (A). By a theorem of Takesaki, cf. [Tak72], this implies the
existence of a (ϕ⊗ψ)-preserving conditional expectation fromB(H)⊗C onto J (B(H)).
(In the terminology of [Ku85] this follows from the fact that under the assumptions in
(4) the automorphism α provides a dilation for the transition operator Tψ , cf. [Ku85],
2.1.3.) Thus we have shown that the assumptions in (4) imply the assumptions in (3)
and we have already proved above that in this case all normal states are tight for Z ′. ��

Finally we review the concept of asymptotic completeness for a transition. The dis-
cussion of its relationship with preparability will be the topic of the following section.

Definition 5.10 ([KM00], [GKL06]). A transition J : (A, ϕ) → (A ⊗ C, ϕ ⊗ ψ), with
faithful normal states ϕ and ψ , is called asymptotically complete if for all a ∈ A

lim
n→∞ ‖Qn Jn(a) − Jn(a)‖ϕ⊗ψn = 0 ,

where Qn is the conditional expectation from A⊗ Cn onto 1l ⊗ Cn � Cn determined by
Qn(a ⊗ c) = ϕ(a) c.

Asymptotic completeness was introduced for transitions induced by a coupling in
[KM00]. For its relation to scattering we refer to [KM00], further motivation and back-
ground can be found in [WBKM00], [Go04], and [GKL06]. We shall see later, compare



80 R. Gohm, F. Haag, B. Kümmerer

Corollary 6.9, that surprisingly it turns out that asymptotic completeness in many cases
does not depend on the choice of these faithful normal states. But for the moment we
haven’t proved this and we continue to work with Definition 5.10 and first state a few
already well known properties of asymptotic completeness.

Lemma 5.11 [GKL06]. A transition J : (A, ϕ) → (A⊗C, ϕ⊗ψ), with faithful normal
states ϕ and ψ , is asymptotically complete if and only if for all a ∈ A

lim
n→∞ ‖Qn Jn(a)‖ψn = ‖a‖ϕ.

Asymptotic completeness implies that

lim
n→∞(Tψ)n(a) = ϕ(a) 1l ,

in particular J and Tψ are irreducible.

The main reason for introducing the dual extended transition operator Z ′ has been
the following result.

Theorem 5.12 [Go04,GKL06]. For all a ∈ A and all n ∈ N

‖Qn Jn(a)‖2ψn
= 〈a1l, (Z ′)n(p1l) a1l〉ϕ ,

where p1l is the (one-dimensional) support of the vector state ω1l.
A transition J : (A, ϕ) → (A ⊗ C, ϕ ⊗ ψ), with faithful normal states ϕ and ψ , is

asymptotically complete if and only if the vector state ω1l is absorbing for Z ′.

In fact, the first formula explains how the dual extended transition operator Z ′ can be
used to prove the second statement. See [GKL06] for a concise proof of this fundamental
result and [Go04] for a broader discussion of it.

Corollary 5.13. If J : (A, ϕ) → (A ⊗ C, ϕ ⊗ ψ) is asymptotically complete then it is
tight.

Proof. Asymptotic completeness implies that Z ′ has an absorbing state by Theorem
5.12. But then all normal states must be tight for Z ′, by Theorem 4.3. ��

6. Asymptotic Completeness and Universal Preparability

We come to our main result. Recall that the assumption of tightness is a very weak
one which is automatic in many cases of interest (see Proposition 5.9). In particular the
existence of the faithful normal states ϕ and ψ is often automatic and otherwise rather
a technical assumption, there is no need for an experimentalist to prepare these specific
states. In fact, one of the equivalent properties below is about universal preparation of
normal stateswhich can be chosen beforehand in anyway. The theorem lists this property
and a number of other properties which are equivalent to asymptotic completeness and
which are interesting both from a mathematical and a physical point of view. These
properties are subsequently discussed further in this section.

Theorem 6.1. Let J : (B(H), ϕ) → (B(H) ⊗ C, ϕ ⊗ ψ) be a tight transition with
faithful normal states ϕ on B(H) and ψ on C (as in Definition 5.8). Then the following
assertions are equivalent:
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(a) J : (B(H), ϕ) → (B(H) ⊗ C, ϕ ⊗ ψ) is asymptotically complete (cf. Definition
5.10).

(b1) All normal states on B(H) are universally J -preparable (cf. Definition 2.2).
(b2) The universally J -preparable normal states are separating, in the sense that if

a ∈ B(H) satisfies ρ(a) = 0 for all universally J -preparable normal states ρ on
B(H) then a = 0.

(c) J is topologically transitive (cf. Definition 2.2).
(d1) The transition J is irreducible and the map

B(H) � a �→ (
Qn Jn(a)

)
n∈N

is injective.
(d2) The map

B(H) � a �→ (
Qn Jn(a)

)
n∈N

is isometric

Here Qn is the conditional expectation from B(H) ⊗ Cn onto 1l ⊗ Cn � Cn determined
by Qn(a ⊗ c) = ϕ(a) c.

Proof. (a) ⇒ (b1). By Theorem 2.9 it is enough to show that all vector states are J -
preparable by compatible preparing sequences from the faithful normal state ϕ fixed in
Theorem 6.1. Let ξ be a unit vector inH, so ωξ is a vector state with (one-dimensional)
support projection pξ . We start by defining positive linear functionals θ̃n on Cn =⊗n

j=1 C( j) by

θ̃n(cn) := ψn
(
Qn Jn(pξ ) · cn · Qn Jn(pξ )

)
(cn ∈ Cn).

Then by normalization, i.e., θn := θ̃n
‖θ̃n‖ (for all n ∈ N), we obtain a sequence (θn), where

θn is a normal state on Cn . We claim that (θn) is a preparing sequence from ϕ to ωξ .
Starting with the unnormalized case we consider for a ∈ B(H) the sequence

(ϕ ⊗ θ̃n)Jn(a) = (ϕ ⊗ ψn)
(
Qn Jn(pξ ) · Jn(a) · Qn Jn(pξ )

)

= (ϕ ⊗ ψn)
([Qn Jn(pξ ) − Jn(pξ )] · Jn(a) · Qn Jn(pξ )

)

+ (ϕ ⊗ ψn)
(
Jn(pξ ) · Jn(a) · [Qn Jn(pξ ) − Jn(pξ )]

)

+ (ϕ ⊗ ψn)
(
Jn(pξ ) · Jn(a) · Jn(pξ )

)
.

Asymptotic completeness gives us that

lim
n→∞ ‖Qn Jn(pξ ) − Jn(pξ )‖ϕ⊗ψn = 0 ,

hence by using the Cauchy–Schwarz inequality (for the norms ‖ · ‖ϕ⊗ψn ) we see that
the first and the second summand tend to 0 for n → ∞. For the third summand we find

(ϕ ⊗ ψn)
(
Jn(pξ ) · Jn(a) · Jn(pξ )

) = (ϕ ⊗ ψn)
(
Jn(pξapξ )

) = ϕ(pξapξ )

= ωξ (a) ϕ(pξ ),

the last step follows from pξapξ = ωξ (a) pξ for the one-dimensional projection pξ .
Hence

lim
n→∞(ϕ ⊗ θ̃n)Jn(a) = ωξ (a) ϕ(pξ ).
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In particular for a = 1l

‖θ̃n‖ = θ̃n(1l) = (ϕ ⊗ θ̃n)1l ⊗ 1l = (ϕ ⊗ θ̃n)Jn(1l) → ωξ (1l) ϕ(pξ )

= ϕ(pξ ) for n → ∞.

Together we obtain for θn = θ̃n

‖θ̃n‖ (and for all a ∈ B(H))

lim
n→∞(ϕ ⊗ θn)Jn(a) = ωξ (a),

which shows that ωξ is J -preparable from ϕ by the preparing sequence (θn), as claimed.
These preparing sequences (θn) for different ωξ are compatible.

(b1) ⇒ (b2) and (b1) ⇒ (c) are obvious.
(b2) ⇒ (d1) and (c) ⇒ (d1).
We first show that both assumptions imply irreducibility of J . Suppose J is not

irreducible. Then there exists a non-trivial projection p ∈ B(H) with J (p) ≤ p ⊗ 1l
(with 1l ∈ C). Then also Jn(p) ≤ p ⊗ 1l (with 1l ∈ Cn , use the iterative definition of Jn
and note that J as a ∗-homomorphism is completely positive) and for every normal state
σ with support orthogonal to p and every sequence (θk), where θk is a normal state on
Cnk , we have

0 ≤ (σ ⊗ θk)Jnk (p) ≤ (σ ⊗ θk)(p ⊗ 1l) = σ(p) = 0.

Hence (σ ⊗ θk)Jnk (p) = 0 for all k and it follows that all states which are J -preparable
from σ must have support orthogonal to p. This contradicts both (b2) and (c). We
conclude that both (b2) and (c) imply that J is irreducible.

Now let 0 �= a ∈ B(H). If we have (b2) then there is a universally J -preparable
normal state ρ on B(H) such that ρ(a) �= 0. If we have (c) then choose any normal state
ρ such that ρ(a) �= 0. Both (b2) and (c) imply that there exists a normal state ρ with
ρ(a) �= 0 which is J -preparable from ϕ by a preparing sequence (θk). Then for k big
enough |(ϕ ⊗ θk)Jnk (a)− ρ(a)| < |ρ(a)|, hence 0 �= (ϕ ⊗ θk)Jnk (a) = θk(Qnk Jnk (a))

and Qnk Jnk (a) �= 0. This proves that the map B(H) � a �→ (
Qn Jn(a)

)
n∈N is injective.

(d1) ⇒ (a). By Theorem 5.12 it is enough to prove that the stationary vector state
ω1l is absorbing for the dual extended transition operator Z ′. Because by assumption J
is tight and hence all normal states on B(Hϕ) are tight for Z ′ it is enough to prove, by
Proposition 4.12(i), that there exists no other stationary normal state except ω1l. Suppose
there is another stationary normal state. Then its support is not contained in the one-
dimensional support p1l of ω1l. By Proposition 4.10 there exists a stationary normal state
η with support orthogonal to p1l. Because J is irreducible we can represent η as in
Lemma 5.7 and we find a j ∈ B(H) so that

0 = η(p1l) = η ◦ (Z ′)n(p1l) =
∞∑

j=1

〈a j1l, (Z
′)n(p1l) a j1l〉ϕ,

hence 〈a j , (Z ′)n(p1l) a j 〉ϕ = 0, for all n and all j . From Theorem 5.12 we also get

〈a j1l, (Z
′)n(p1l) a j1l〉ϕ = ‖Qn Jn(a j )1l‖2ψn

.

so we have Qn Jn(a j ) = 0 for all n and all j . By injectivity in (d1) we conclude that
a j = 0 for all j . But this implies η = 0 which is a contradiction.

The equivalence of (a) and (d2) is already stated in Lemma 5.11. Property (d2) is
included here to make explicit that in the situation of Theorem 6.1 this strengthening of
(d1) is actually equivalent to it. ��
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Remark 6.2. For finite dimensionalH the implication (d1)⇒ (a) was shown in [KM00],
Theorem4.2. For infinite dimensionalH, however, considerablymore effort is necessary.

The proof of (a) ⇒ (b1), together with Proposition 2.6, shows that we have actually
established the existence of preparing sequences of a specific form.

Corollary 6.3. If the conditions of Theorem 6.1 are satisfied then all normal states on
B(H) are universally J -preparable with compatible universally preparing sequences
(θn), so that θn is always a state on Cn for all n ∈ N. In particular, if σ, ρ are normal
states on B(H) then there always exists a preparing sequence (θn) from σ to ρ where
θn is a normal state on Cn for all n.

While the definition of preparability in [Ha06] was based on this observation we
opted in Definition 2.2 for a more flexible approach.

Remark 6.4. Because, by Corollary 5.13, asymptotic completeness implies tightness of
J : (B(H), ϕ) → (B(H) ⊗ C, ϕ ⊗ ψ) we could have stated Theorem 6.1 also in the
form that asymptotic completeness is equivalent to tightness plus one (and hence all)
of the properties (b1), (b2), (c), (d1), (d2). We did state Theorem 6.1 in the way we did
because in applications tightness is a property which is often automatically satisfied, see
also Proposition 5.9.

We already discussed asymptotic completeness, universal preparability, and topo-
logical transitivity earlier in this paper. Let us add a few comments on condition (d1)
in Theorem 6.1. We can make its meaning more explicit by using some terminology
from system theory and control theory, compare for example [Ba75,Co07]. Roughly, a
system is called controllable if it is always possible to drive any initial state of a system
to a prescribed target state by using a suitable sequence of inputs. In this sense universal
preparability of all normal states as in Theorem 6.1(b1) is a version of controllability.

Dual to the concept of controllability is the concept of observability. Roughly, a
system is called observable if it is possible to determine the initial state of a system from
observations of a suitable sequence of outputs. This may be possible even if the system
itself cannot be observed directly. Observability can often be expressed by the injectivity
of an observability map. The map introduced in Theorem 6.1(d1) looks formally like
an observability map but it has observables as arguments instead of states. The relation
between controllability and observability will be clarified in Theorem 6.8.

Definition 6.5. Let the transition J : A → A ⊗ C be given as J (x) = α(x ⊗ 1l) with a
coupling automorphism α ofA⊗ C. If for the sequence (θk), where θk is a normal state
on Cnk , the observability map

A∗ � σ �→ (
(αnk )∗(σ ⊗ θk) |1l⊗Cnk

)
k∈N

is injective then we say that A∗ is observable by α and (θk).

We have given this definition in such a way that a kind of duality with the characteri-
zation of preparability in Theorem 6.1(d1) becomes visible. Intuitively the observability
ofA∗ means that if for monitoring the state evolution we only have access to observables
in the algebras 1l ⊗ Cnk � Cnk for all k we can nevertheless determine the initial state
σ ∈ A∗ from that.

The following result relates asymptotic completeness with this notion of observabili-
ty. But note that it is the reverse transition Jr associated to the inverseα−1 of the coupling
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automorphism and not J itself which appears here. This should not come as a surprise if
we compare it with the classical result in linear system theory where a system is control-
lable if and only if the dual system is observable, see for example [Ba75], Theorem 4.11,
or [Co07]. There are further discussions of duality in our setting in [Go04] and [Wi07],
let us also mention analogues of Kalman type algebraic controllability and observability
criteria for asymptotic completeness in the language of multivariate operator theory in
[Go09,Go15].

Before stating the theorem let us start with a few preliminary considerations about
transitions and preduals. Let ϕ be a faithful state in the predual A∗. If a ∈ A then we
define the functional ϕa ∈ A∗ by ϕa(x) := ϕ(ax). By the Cauchy–Schwarz inequality
we have ‖ϕa‖ ≤ ‖a‖ϕ , where ‖ · ‖ is the usual norm on the predual A∗. Hence we
can think of a �→ ϕa as a continuous embedding of A into A∗. It is a fact that A is
norm-dense in A∗, see [Tak79], III.2.7(iii).

Let a transition J : A → A ⊗ C be given by J (x) = α(x ⊗ 1l) with a coupling
automorphism α of A ⊗ C such that with faithful normal states ϕ on A and ψ on C the
product state ϕ ⊗ ψ is stationary for α.

Lemma 6.6. The map

Jψ : A∗ → (A ⊗ C)∗, σ �→ (σ ⊗ ψ)α−1

satisfies the following properties:

(1) Jψ is an extension of J in the sense that for all a ∈ A

Jψϕa = (ϕ ⊗ ψ)J (a).

(2) For all σ ∈ A∗ and x ∈ A

(Jψσ)(J (x)) = σ(x).

(3) Jψ is an isometry , i.e., for all σ ∈ A∗

‖Jψσ‖ = ‖σ‖.
Proof. Property (1) is shown by the following computation: For all z ∈ A ⊗ C

Jψϕa(z) = (ϕa ⊗ ψ)(α−1(z)) = (ϕ ⊗ ψ)(a⊗1l α−1(z))

= (ϕ ⊗ ψ)(α(a ⊗ 1l) z) = (ϕ ⊗ ψ)(J (a) z) = (ϕ ⊗ ψ)J (a)(z).

For (2) note that Jψ is continuous, in fact ‖Jψσ‖ ≤ ‖σ‖ is clear from the definition of
Jψ . Hence it is enough to check (2) on the dense subspace of functionals of the form ϕa
with a ∈ A. Indeed, using (1) we get

Jψϕa(J (x)) = (ϕ ⊗ ψ)J (a)(J (x)) = (ϕ ⊗ ψ)(J (ax)) = ϕ(ax) = ϕa(x).

We already noted above that Jψ is contractive, the other direction needed for (3) follows
from

‖Jψσ‖= sup
z∈A⊗C,‖z‖=1

|Jψσ(z)| ≥ sup
x∈A,‖x‖=1

|Jψσ(J (x))|= sup
x∈A,‖x‖=1

|σ(x)|=‖σ‖.

Alternatively, (3) follows directly from the facts that ϕ ⊗ ψ is stationary for α−1 and
that ‖ · ‖ is a cross-norm on tensor products of preduals (see [Tak79], IV.5). ��
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Of course we can similarly extend the iterated transitions Jn : A → A ⊗ Cn given
by Jn(x) = αn(x ⊗ 1l) and we obtain Jψn

n : A∗ → (A ⊗ Cn)∗ where ψn is the product
state formed by copies of ψ on Cn . Further let Qn be the conditional expectation from
A ⊗ Cn onto 1l ⊗ Cn � Cn determined by Qn(a ⊗ c) = ϕ(a) c.

Lemma 6.7. For all a ∈ A and for all σ ∈ A∗ we have

‖Qn Jn(a)‖ψn = sup
c∈Cn ,‖c‖ψn=1

|((α−1)n)∗(ϕa ⊗ ψn) (1l ⊗ c)| ,

‖(Jψn
n σ)|1l⊗Cn‖ = sup

c∈Cn ,‖c‖=1
|((α−1)n)∗(σ ⊗ ψn ) (1l ⊗ c)|.

Proof. For the following computation recall the formula (αn)
−1 = (id⊗Rn) ◦ (α−1)n ◦

(id⊗Rn) from the beginning of Sect. 2 and note that ϕ ⊗ ψn is stationary for the
automorphisms αn and id⊗Rn . Further (Rn)

2 = id. For all a ∈ A and c ∈ Cn we have

((α−1)n)∗(ϕa ⊗ ψn)(1l ⊗ c)

= (ϕa ⊗ ψn)
[
(α−1)n(1l ⊗ c)

] = (ϕ ⊗ ψn)
[
a ⊗ 1l · (α−1)n(1l ⊗ c)

]

= (ϕ ⊗ ψn) ◦ (id⊗Rn)
[
a ⊗ 1l · (α−1)n(id⊗(Rn)

2)(1l ⊗ c)
]

= (ϕ ⊗ ψn)
[
a ⊗ 1l · (id⊗Rn)(α

−1)n(id⊗Rn)(1l ⊗ Rn(c))
]

= (ϕ ⊗ ψn)
[
αn(a ⊗ 1l) · (1l ⊗ Rn(c))

]

= (ϕ ⊗ ψn)
[
Jn(a) · (1l ⊗ Rn(c))

] = ψn
[
Qn Jn(a) · Rn(c)

]
.

Now (as ψn is stationary for the automorphism Rn) we conclude that

sup
c∈Cn ,‖c‖ψn=1

|((α−1)n)∗(ϕa ⊗ ψn)(1l ⊗ c)| = ‖Qn Jn(a)‖ψn ,

which is the first formula in Lemma 6.7.
For the second formula we can proceed similarly:

((α−1)n)∗(σ ⊗ ψn ) (1l ⊗ c) = (σ ⊗ ψn )
[
(id⊗Rn)(αn)

−1(id⊗Rn)(1l ⊗ c)
]

= (σ ⊗ ψn )
[
(αn)

−1(1l ⊗ Rn(c))
] = Jψn

n σ(1l ⊗ Rn(c))

and taking the sup yields the result. ��
We are now ready to state and prove the announced result on observability.

Theorem 6.8. Let the transition J : A → A ⊗ C be given by J (x) = α(x ⊗ 1l) with a
coupling automorphism α of A⊗ C such that with faithful normal states ϕ on A and ψ

on C the product state ϕ ⊗ ψ is stationary for α.

(1) J : (A, ϕ) → (A ⊗ C, ϕ ⊗ ψ) is asymptotically complete if and only if

lim
n→∞ sup

c∈Cn ,‖c‖ψn=1
|((α−1)n)∗(ϕa ⊗ ψn) (1l ⊗ c)| = ‖a‖ϕ for all a ∈ A.
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(2) If J : (A, ϕ) → (A ⊗ C, ϕ ⊗ ψ) is asymptotically complete then

lim
n→∞ sup

c∈Cn ,‖c‖=1
|((α−1)n)∗(σ ⊗ ψn) (1l ⊗ c)| = ‖σ‖ for all σ ∈ A∗

and A∗ is observable by α−1 and the product states (ψn).
(3) Suppose that A = B(H). Then the following are equivalent:

(a) J : (B(H), ϕ) → (B(H) ⊗ C, ϕ ⊗ ψ) is asymptotically complete.
(b) J is irreducible and B(H)∗ is observable by α−1 and (ψn).

The limit formulas given in Theorem 6.8 should be interpreted as uniformity proper-
ties of the observability map, in fact they show that this map is isometric for the norms
indicated. Clearly such uniformity is essential to make practical use of observability in
the design of physical experiments: we need information about the precision needed
in measuring observables in Cn in order to distinguish between states on A. So it is
remarkable that such uniformity is automatic in the case of asymptotic completeness.

Proof. From Lemma 6.7 we have

‖Qn Jn(a)‖ψn = sup
c∈Cn ,‖c‖ψn=1

|((α−1)n)∗(ϕa ⊗ ψn) (1l ⊗ c)|

and by Lemma 5.11 this converges to ‖a‖ϕ for all a ∈ A (for n → ∞) if and only if
J : (A, ϕ) → (A ⊗ C, ϕ ⊗ ψ) is asymptotically complete. This gives (1). For (2) note
that in view of

‖(Jψn
n σ)|1l⊗Cn‖ = sup

c∈Cn ,‖c‖=1
|((α−1)n)∗(σ ⊗ ψn ) (1l ⊗ c)|

from Lemma 6.7 we have to prove that asymptotic completeness implies that for all
σ ∈ A∗

lim
n→∞ ‖(Jψn

n σ)|1l⊗Cn‖ = ‖σ‖.

In fact, because Jψn
n , by Lemma 6.6(3), is an isometry on preduals it is enough to prove

this claim on the dense subspace of functionals σ = ϕa with a ∈ A. Hence it remains
to show that for all a ∈ A

lim
n→∞ ‖(Jψn

n ϕa)|1l⊗Cn‖ = ‖ϕa‖.

First note that for z ∈ A ⊗ Cn we have (with Lemma 6.6(1) and using the fact that Qn
is a conditional expectation)

Jψn
n ϕa(Qn(z)) = ϕ ⊗ ψn(Jn(a) · Qn(z)) = ϕ ⊗ ψn(Qn Jn(a) · z).

Because Qn maps the unit ball of A⊗ Cn onto the unit ball of 1l ⊗ Cn we conclude that

‖(Jψn
n ϕa)|1l⊗Cn‖ = ‖(ϕ ⊗ ψn)Qn Jn(a)‖.

ByCauchy–Schwarzwehave‖ϕa‖ ≤ ‖a‖ϕ and instead foraweapply this forQn Jn(a)−
Jn(a). Now we can use asymptotic completeness in the form of Lemma 5.11 and obtain

‖(ϕ ⊗ ψn)Qn Jn(a) − (ϕ ⊗ ψn)Jn(a)‖ ≤ ‖Qn Jn(a) − Jn(a)‖ϕ⊗ψn → 0 (n → ∞).
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But with Lemma 6.6(1) and (3) we get (for all n)

‖(ϕ ⊗ ψn)Jn(a)‖ = ‖Jψn
n ϕa‖ = ‖ϕa‖ ,

hence also

‖(Jψn
n ϕa)|1l⊗Cn‖ = ‖(ϕ ⊗ ψn)Qn Jn(a)‖ → ‖ϕa‖ (n → ∞) ,

which proves our claim.
It is clear that this implies the observability of A∗ by α−1 and the product states

(ψn), in fact the limit formula valid for all σ ∈ A∗ beyond injectivity even provides an
additional uniformity property of the observability map.

In (3) the implication (a) ⇒ (b) follows from (2) and Lemma 5.11. For the implica-
tion (b) ⇒ (a) suppose now thatA = B(H). Note that J is tight, by Proposition 5.9(4),
so we are in the setting of Theorem 6.1. Consider again the equality

‖Qn Jn(a)‖ψn = sup
c∈Cn ,‖c‖ψn=1

|((α−1)n)∗(ϕa ⊗ ψn) (1l ⊗ c)| for all a ∈ A ,

from Lemma 6.7. If B(H)∗ is observable by α−1 and the product states (ψn) then it
follows that for all 0 �= a ∈ A this expression must be strictly positive for some n. If
J is (by assumption) also irreducible then we have verified (d1) of Theorem 6.1 which
now implies that J : (B(H), ϕ) → (B(H) ⊗ C, ϕ ⊗ ψ) is asymptotically complete. ��

Theorem 6.1 contains further interesting insights about asymptotic completeness if
we combine it with earlier results about tightness in Proposition 5.9. We work out the
most important case, namely transitions on B(H) induced by coupling automorphisms.

Corollary 6.9. Let the transition J : B(H) → B(H) ⊗ C be induced by a coupling
automorphism α of B(H) ⊗ C such that J (a) = α(a ⊗ 1l) for all a ∈ B(H). Suppose
further that ϕ1, ϕ2 onB(H) andψ1, ψ2 on C are faithful normal states such that ϕ1⊗ψ1
and ϕ2 ⊗ ψ2 are stationary for the automorphism α. Then J : (B(H), ϕ1) → (B(H) ⊗
C, ϕ1⊗ψ1) is asymptotically complete if and only if J : (B(H), ϕ2) → (B(H)⊗C, ϕ2⊗
ψ2) is asymptotically complete.

Proof. Both J : (B(H), ϕ1) → (B(H) ⊗ C, ϕ1 ⊗ ψ1) and J : (B(H), ϕ2) → (B(H) ⊗
C, ϕ2 ⊗ ψ2) are tight by Proposition 5.9(4), so we are in the setting of Theorem 6.1.
But some of the assertions equivalent to asymptotic completeness in Theorem 6.1, for
example 6.1(c), do not involve the states ϕ and ψ . ��

This suggests a natural definition of asymptotic completeness for α itself.

Definition 6.10. We call a coupling automorphism α : B(H) ⊗ C → B(H) ⊗ C asymp-
totically complete if there exist faithful normal states ϕ on B(H) and ψ on C such that
ϕ ⊗ ψ is stationary for α and for any choice of such states (and hence for all choices of
such states) the induced transition J : (B(H), ϕ) → (B(H)⊗C, ϕ⊗ψ) is asymptotically
complete.

Based on the other parts of Proposition 5.9we can in a similarwayfindother situations
where asymptotic completeness is preserved under changes in the choice of the faithful
normal states ϕ andψ . For example this follows for transitions of the form J : B(H) →
B(H) ⊗ B(K), with H and K finite dimensional, from Proposition 5.9(1). In the finite
dimensional case this remarkable phenomenon has already been observed in [GKL06],
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Proposition 4.4, where moreover it is shown that in this case the dual extended transition
operators corresponding to different choices of states are similar to each other.

We finish this section with an easy example illustrating some further subtleties in the
relationship between asymptotic completeness and preparability of states.

Example 6.11. The simplest examples of asymptotically complete transitions are tensor
flips, for example J : M2 → M2 ⊗ M2, a �→ 1l ⊗ a. In this case obviously only one
step is needed to prepare any desired state. Let us modify this example and consider the

transition J : M2 → M2 ⊗ M2 determined by J (b) := σx ⊗ b, where b :=
(
0 0
1 0

)

and σx :=
(
0 1
1 0

)
. This means that J (a) = 1l ⊗ a if a is diagonal and J (x) = σx ⊗ a

if a is off-diagonal (i.e., with zero entries on the diagonal). We have Jn(σx ) = σx ⊗⊗n
j=1 σx . Choosing the tracial state we find Qn Jn(σx ) = 0 for all n and condition (d1)

of Theorem 6.1 is not satisfied, hence J is not asymptotically complete. But note that

the vector states ωδ0 and ωδ1 from the canonical basis δ0 =
(
0
1

)
and δ1 =

(
1
0

)
of C2

are both universally J -preparable. In fact, this can still be done in one step by choosing
ωδ0 resp. ωδ1 as the preparing state θ on M2: it is easily checked that for any state ρ on
M2 and a ∈ M2 we have

(ρ ⊗ ωδ j ) J (a) = ωδ j (a) ( j = 0, 1).

This shows that universal preparability of all vector states corresponding to a basis is
not sufficient for asymptotic completeness.

7. A Class of Quantum Birth and Death Chains

In this sectionwe apply our theory to an interesting example, a class of quantum birth and
death chains which appears in quantum optics experiments involving repeated interac-
tions, for example between a micromaser and a stream of atoms. We follow [BGKRSS]
where the setting is described and interpreted in more detail and further results about its
properties can be found.

Consider the Hilbert space H := �2(N0) with canonical orthonormal basis (δn)
∞
n=0

and the Hilbert spaceC2 with canonical orthonormal basis ε0 :=
(
0
1

)
and ε1 :=

(
1
0

)
,

so that with δn,0 := δn ⊗ ε0 and δn,1 := δn ⊗ ε1 the vectors (δn,ε)n∈N0,ε∈{0,1} form an
orthonormal basis ofH⊗C

2. For n ∈ N0 consider the n-particle spaceHn whereH0 is
spanned by δ0 ⊗ ε0 and for n ≥ 1 the subspaceHn is spanned by {δn−1 ⊗ ε1, δn ⊗ ε0}.
Then H ⊗ C

2 = ⊕
n∈N0

Hn .
OnH⊗C

2 we consider a unitary u which leaves the subspacesHn (n ∈ N0) invariant.
Then u on H0 is multiplication by a complex number α0 with |α0| = 1 while on Hn
with n ≥ 1 it is given by a unitary 2 × 2 matrix which we conveniently denote by

un =
(

α+
n β+

n
βn αn

)
,

such that

un δn−1,1 = α+
n δn−1,1 + βn δn,0 ,

un δn,0 = β+
n δn−1,1 + αn δn,0.
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Since un is unitarywe obtain the relations |αn| = |α+
n |, |βn| = |β+

n |, and |αn|2+|βn|2 = 1
for all n ≥ 1.
The unitary u defines a coupling automorphism

α : B(H) ⊗ M2 → B(H) ⊗ M2,

x ⊗ y �→ u∗ x ⊗ y u

which in turn induces a transition J : B(H) → B(H) ⊗ M2 by J (x) := α(x ⊗ 1l). We
call α a generalized micromaser coupling and J a generalized micromaser transition
(cf. the discussion below).

On M2 we consider, for 0 ≤ λ ≤ 1, the state ψλ given by ψλ(·) := Tr(dλ·) with
dλ :=

(
λ 0
0 1 − λ

)
. For 0 ≤ λ < 1

2 we define the state ϕλ on B(H) which is given by

the diagonal density matrix νλ with νλ(δn) = 1−2λ
1−λ

( λ
1−λ

)n δn (n ∈ N0).
Since δn−1,1 and δn,0 are both eigenvectors of νλ ⊗ dλ with the same eigenvalue

1−2λ
1−λ

λn

(1−λ)n−1 , the density matrix νλ ⊗ dλ is constant on the subspaces Hn (n ∈ N) and

thus it commutes with the unitary u. Therefore, for 0 ≤ λ < 1
2 the state ϕλ ⊗ ψλ is

invariant under the coupling automorphism α (for λ ≥ 1
2 it would not define a state at

all). We summarize these considerations as follows.

Proposition 7.1 (cf. [BGKRSS], Proposition 4.4). Let J be a generalized micromaser
transition. Then for all 0 ≤ λ < 1

2 , with the states ϕλ and ψλ defined above, we have

J : (B(H), ϕλ) → (B(H), ϕλ) ⊗ (M2, ψλ).

Clearly, the states ϕ0 and ψ0 are vector states, while for 0 < λ < 1
2 the states ϕλ and

ψλ are faithful.

Remark 7.2. These kinds of couplings occur in dynamics resulting from
Jaynes–Cummings type interactions in quantum optics. Most prominently such an in-
teraction is found in the micromaser system, where one quantum of energy is exchanged
between an incoming two level atom and a mode of the electromagnetic field in a cavity.
Some consequences of asymptotic completeness for this system have been studied in
[WBKM00] and further information on this systemmay be found in [MS91,HR06]. The
same mathematical model also applies to a single ion in a trap or to a neutral atom in a
laser trap (cf. [HR06]).

In order to relate our discussion to these physical models we start with briefly re-
viewing the relevant formulas from [HR06], 3.4: ‘Coupling a spin and a spring: the
Jaynes–Cummings model’, and refer for more explanations and details to this book.

We have an atomicHamiltonian Ha = h̄ ωeg
2 σz and a cavityHamiltonian Hc = h̄ωcN .

Here σz =
(
1 0
0 −1

)
, N is the number operator of the harmonic oscillator, and ωc and

ωeg are frequencies associated to the cavity and to the atom. If the frequencies ωc and
ωeg are close then the rotating wave approximation simplifies the atom-cavity coupling
Hamiltonian to Hac = −i h̄Ω0

2

[
aσ+−a†σ−

]
, where a, a† andσ−, σ+ are annihilation and

creation operators for the cavity and for the atom and Ω0 is the vacuum Rabi frequency.
Thus one arrives at a total Hamiltonian

H = Ha + Hc + Hac = h̄ ωeg

2
σz + h̄ωcN + (−i h̄

Ω0

2
)
[
aσ+ − a†σ−

]
.
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The quantity Δc = ωeg − ωc is called atom-cavity detuning, the special case Δc = 0 is
called resonant while the effects of Δc �= 0 are referred to as results of detuning.

Eigenstates for Ha + Hc are |g, n〉, |e, n〉, where |n〉 is the n-photon state of the
cavity (n ∈ N0) and |g〉, |e〉 are the ground state and the excited state of the atom.
Because H = Ha + Hc + Hac preserves the excitation number the dynamics connects
only states inside the doublets formed by |e, n〉 and |g, n + 1〉 (and leaves the ground
state |g, 0〉 unchanged). More explicitly, with the so called n-photon Rabi frequency
Ωn = Ω0

√
n + 1 and the angle θn given by tan θn = Ωn

Δc
(or θn = π

2 in the resonant
case) the eigenstates of the coupled atom-cavity system (also called dressed states) are
given by

|+, n〉 = cos
θn

2
|e, n〉 + i sin

θn

2
|g, n + 1〉,

|−, n〉 = sin
θn

2
|e, n〉 − i cos

θn

2
|g, n + 1〉.

The corresponding energies are E±
n = n+1

2 h̄ωc ± h̄
2

√
Δ2

c + Ω2
n and the time evolution

of any state, in particular of initial states |e, n〉 and |g, n + 1〉, can now be explicitly
computed.

Consider now the micromaser experiment (for a more detailed discussion of this
system we refer to [WBKM00]): In this experiment single atoms are sent one after the
other through a cavity. Only during their passage through the cavity do they interact
with the field mode inside. Within a good approximation all atoms pass the cavity with
the same velocity and there is only one atom inside the cavity at a time. Therefore, the
effect of the interaction of each of the atoms with the field is described by e−i HT/h̄ for a
fixed effective interaction time T determined by the velocity of the atoms and the size of
the cavity. During this time there is a continuous reversible exchange of energy between
|e, n〉 and |g, n+1〉with a period determined by the correspondingRabi frequency. Itmay
happen, however, that for certain values of the Rabi frequency and the interaction time
T the total effect of the interaction during the atoms passage through the cavity results
in an integer number of Rabi oscillations. In this case no energy has been exchanged at
the moment when the atoms leaves the cavity and the states |e, n〉 and |g, n + 1〉 remain
unaltered. Such a situation is referred to as a trapped state condition.

The micromaser is easily related to our previous discussion: There the vectors |n〉
are denoted by δn (n ∈ N0), |g〉 and |e〉 are called ε0 and ε1, correspondingly |g, n〉
and |e, n〉 become δn,0 and δn,1. The total Hamiltonian H leaves the n-particle spaces
Hn spanned by |g, n〉 and |e, n − 1〉 (n ∈ N) invariant, as well as the one-dimensional
subspace spanned by the vacuum |g, 0〉, and so does the unitary e−i HT/h̄ which corre-
sponds to the unitary u defined above. Thus the parameters |αn|2, |α+

n |2, |βn|2, and |β+
n |2

determine the resulting transition probabilities. In particular, a trapped state condition
occurs exactly if one of the parameters βn , n ≥ 1, vanishes (in this case β+

n = 0, too).
In this case asymptotic completeness is, clearly, impossible because certain transitions
between energy levels are forbidden.

If there is no trapping state, however, then we prove asymptotic completeness for
our model in the following theorem. The above discussion shows that this result can
be applied, in particular, to the Jaynes–Cummings model, both in the resonant and in
the detuned case, as long as the rotating wave approximation is appropriate. We finally
remark that from the discussion in [WBKM00] it is immediate that the iterated transitions
Jn describe (in the Heisenberg picture) the effect of n atoms having passed the cavity.
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For the following discussion it is convenient to have an alternative description of the
unitary u. We identify H ⊗ C

2 with H ⊕ H and u ∈ B(H ⊗ C
2) = B(H) ⊗ M2 =

M2(B(H)) with a 2 × 2 block matrix with entries from B(H). On the Hilbert space
H = �2(N0)we define the diagonal operators a with diagonal (αn)

∞
n=0, a

+ with diagonal
(α+

n+1)
∞
n=0 (note that here the index is shifted by 1), b with diagonal (βn)

∞
n=0, and b+

with diagonal (β+
n )∞n=0, and we may put β0 = 0 = β+

0 . Let s denote the right shift on
H = �2(N0), i.e., s δn = δn+1 for all n. Then u is given by the 2 × 2-block matrix

u =
(
a+ s∗b+
bs a

)
.

The input state ψλ induces on B(H) the transition operator Tψλ = Pψλ J : B(H) →
B(H) which is given by

Tψλ(x) = λ
(
(a+)∗xa+ + s∗b∗ x bs

)
+ (1 − λ)

(
(b+)∗s x s∗b+ + a∗xa

)
.

The analysis of the transition J is simplified by the fact that the transition operator Tψλ

leaves invariant the diagonal algebra D (� �∞(N0)) which is obtained as the weak∗-
closure of the linear span of the one-dimensional projections (pδn )

∞
n=0. The restriction

TD,ψλ
of Tψλ to the diagonal D is the transition matrix of a classical birth and death

chain which is given by

TD,ψλ

=

⎛

⎜⎜⎜⎝

(1 − λ) + λ|α1|2 λ|β1|2 0 0 0 . . .

(1 − λ)|β1|2 (1 − λ)|α1|2 + λ|α2|2 λ|β2|2 0 0 . . .

0 (1 − λ)|β2|2 (1 − λ)|α2|2 + λ|α3|2 λ|β3|2 0 . . .
...

...
...

...
...

. . .

⎞

⎟⎟⎟⎠ .

Here we used the fact that |αn| = |α+
n | and |βn| = |β+

n | for n ≥ 1.
We can now check (cf. [BGKRSS], Proposition 4.4, it also follows from the consid-

erations above) that for 0 ≤ λ < 1
2 there is a stationary probability measure νλ for TD,ψλ

given by νλ(n) = 1−2λ
1−λ

( λ
1−λ

)n (n ∈ N0), i.e. νλ is the density of ϕλ.

We now prove asymptotic completeness. We remark that asymptotic completeness
of a finite dimensional cut-off version of this transition has been proved in [GKL06],
Section 6. For the infinite dimensional version considered hereweneed the tools prepared
in the previous sections.

Theorem 7.3. If in the unitary u we have βn �= 0 for all n ∈ N, i.e., in the absence of
trapping states, the generalized micromaser coupling α is asymptotically complete (in
the sense of Definition 6.10).

Proof. We have already seen in Proposition 7.1 that for all 0 ≤ λ < 1
2 the states ϕλ ⊗ψλ

are stationary for the generalized micromaser coupling α.
Because for 0 < λ < 1

2 the states ϕλ and ψλ are faithful, we conclude in this case,
by Proposition 5.9(4), that the corresponding transition J : (B(H), ϕλ) → (B(H) ⊗
M2, ϕλ ⊗ ψλ) is tight. Hence we are in the setting of Theorem 6.1 and we only need to
check one of the equivalent conditions there to show that J : (B(H), ϕλ) → (B(H) ⊗
M2, ϕλ ⊗ ψλ) is asymptotically complete. In the light of Corollary 6.9 this also proves
the theorem.
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We verify universal preparability of all normal states, condition 6.1(b1), with the help
of the criterion given in Theorem 3.6.

We make use of the vector states ϕ0 = ωξ with ξ = δ0 on B(H) and ψ0 = ωη with

η =
(
0
1

)
on M2, which are obtained for λ = 0.

The intuition from physics behind our arguments is the following: In the physics in-
terpretation these states may be interpreted as ground states occupying the lowest energy
levels of their systems and it is therefore a natural strategy to prepare ϕ0 experimentally
by repeated interactions with the state ψ0 in the environment. This allows quanta to
move out of the system into the environment but not in the other direction. We only have
to verify this intuition mathematically to prove Theorem 7.3.

Claim ϕ0 is universally J -preparable by the preparing sequence (θn) with θn := ψn :=⊗n
j=1 ψ0. First note that for all initial states σ on B(H)

(σ ⊗ θn)Jn(x) = (σ ⊗
n⊗

j=1

ψ0)Jn(x) = σ ◦ T n
ψ0

(cf. the introduction to Sect. 5) andwe see that the claim is equivalent to the assertion that
the vector state ϕ0 is absorbing for Tψ0 . To prove this we can use Proposition 4.12(ii).
In fact, note first that for λ = 0 the classical transition matrix obtained by restriction to
the diagonal algebra D is given by

TD,ψ0 =

⎛

⎜⎜⎜⎜⎜⎝

|α0|2 = 1 0 0 0 0 . . .

|β1|2 |α1|2 0 0 0 . . .

0 |β2|2 |α2|2 0 0 . . .

0 0 |β3|2 |α3|2 0 . . .
...

...
...

...
...

. . .

⎞

⎟⎟⎟⎟⎟⎠
.

This is a pure death process and so for all probability measuresμ onN0 and any N ∈ N0
the sequenceμ◦T n

D,ψ0

({ j ∈ N0 : 0 ≤ j ≤ N }) is increasing with n. Clearly this implies
that all probability measures on N0 are tight with respect to TD,ψ0 . But then all normal
states θ on B(H) are tight for Tψ0 : just use suitable finite dimensional projections p ∈ D
from subsets of the form { j ∈ N0 : 0 ≤ j ≤ N } and the fact that for such projections

θ ◦ T n
ψ0

(p) = θ |D ◦ T n
D,ψ0

(p).

Further, for the support projection pδ0 of the vector state ϕ0 it is easy to check (for
example by induction) from the explicit form of TD,ψ0 (cf. the analogous consideration
in [GKL06], Section 6) that the linear span of T n

ψ0
(pδ0) = T n

D,ψ0
(pδ0) over all n ∈ N0

is equal to the linear span of all the one-dimensional projections pδn over all n ∈ N0,
i.e., to a weak∗-dense subset of the diagonal algebraD (here the absence of the trapping
state condition, i.e., βn �= 0 for all n ≥ 1, is essential). So there does not exist a normal
state θ on B(H) which vanishes on T n

ψ0
(pδ0) for all n. Now it follows from Proposition

4.12(ii) that ωδ0 is absorbing for Tψ0 and hence universally J -preparable. This proves
our claim.

To apply Theorem 3.6 we also have to look at the reverse transition Jr . But an
inspection of the definition of J reveals that Jr has the same form as J , only the phases
in the sequences (αn), (α+

n ), (βn), and (β+
n ) have changed, hence the resulting classical
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transition matrices on the diagonal remain unaltered. Therefore, all arguments used for
J also apply for Jr and we conclude that ωδ0 is also universally Jr -preparable. This
concludes the proof of the theorem. ��
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