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Abstract: The Weyl algebra A of continuous functions and exponentiated fluxes,
introduced by Ashtekar, Lewandowski and others, in quantum geometry is studied.
It is shown that, in the piecewise analytic category, every regular representation of A
having a cyclic and diffeomorphism invariant vector, is already unitarily equivalent to
the fundamental representation. Additional assumptions concern the dimension of the
underlying analytic manifold (at least three), the finite wide triangulizability of surfaces
in it to be used for the fluxes and the naturality of the action of diffeomorphisms – but
neither any domain properties of the represented Weyl operators nor the requirement that
the diffeomorphisms act by pull-backs. For this, the general behaviour of C∗-algebras
generated by continuous functions and pull-backs of homeomorphisms, as well as the
properties of stratified analytic diffeomorphisms are studied. Additionally, the paper
includes also a short and direct proof of the irreducibility of A.

1. Introduction

Every physical theory requires fundamental mathematical assumptions at the very begin-
ning. It is highly desirable to justify them by even more fundamental axioms that are
both mathematically and physically as plausible as possible. In loop quantum gravity,
there are a few of such technical prerequisites. First of all, of course, one assumes that
all objects are constructed out of parallel transports along graphs in a base manifold of
an SU (2) principal fibre bundle (or maybe also using higher dimensional objects like
in spin foam theory). This is reasonable by the fact that classical (canonical) gravity is
an SU (2) gauge field theory with constraints as discovered by Ashtekar in the mid-80s
[1]. Secondly, one needs inputs about the quantization of this classical system. For this,
at least the structure of the configuration space C of all those parallel transports (modulo
gauge transforms) has to be fixed. If one wants to use functional integrals for quanti-
zation, one is forced to study measures on that space. The usage of parallel transports
corresponding to smooth connections only, however, has lead to enormous mathematical
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problems. These could be widely avoided only by including distributional connections as
well [2]. Namely, by the assumption that the reductions of the full theory to finitely many
degrees of freedom (i.e., parallel transports on a finite graph) are continuous, one finds
that the topology of C is a projective limit topology1 making C a compact space. Here,
the compactness is induced by that of the underlying structure group SU (2) comprising
the values of the parallel transports. This strategy can be reused to find natural measures
on C – one simply uses the assumption that the restrictions of the theory to finite graphs
push forward the measure on C to the Haar measures on the finite powers of SU (2).
This leads to the Ashtekar-Lewandowski measure µ0 [6]. Of course, this measure is
“natural”, since the Haar measure on a Lie group is “natural” as well. However, this is
at most a mathematical statement or a statement of beauty. The deeper question behind
is how one can justify this choice by mathematical physics arguments.

1.1. Early attempts. For the first time, this problem has been raised by Sahlmann [32].
He considered the class of measures on C that are absolutely continuous w.r.t. µ0, and
realized [32,33] that (up to some additional technical assumptions) only µ0 allows
for a diffeomorphism invariant measure such that the flux variables are represented as
operators on the corresponding L2 space. Although these results were proven for the
case of a U (1) gauge theory, they have been expected to hold also for the case of a
general compact structure Lie group G. Moreover, it suggests that the diffeomorphism
invariance of gravity together with its full phase space description could be responsible
for the uniqueness ofµ0. The situation is similar to ordinary quantum mechanics. There,
the Stone-von Neumann theorem [11] tells us that there is (up to equivalence) precisely
one irreducible regular representation of the Weyl algebra generated by the exponentiated
position and momentum operators together with their Poisson relations. In the standard
Schrödinger representation on L2(R, dx), these unitary operators are given by

[eiπ x̂ψ](x) = eiπxψ(x) and [eiξ p̂ψ](x) = ψ(x + ξ).

In loop quantum gravity, on the other hand, the connections are the generalized posi-
tions and the densitized dreibein fields are the generalized momenta. Exponentiation here
includes also smearing: Connections are smeared along one-dimensional objects (i.e.,
paths) and exponentiated to give parallel transports – dreibeine along one-codimensional
objects (i.e., hypersurfaces) to give flux variables. Now, one possible (even irredu-
cible and regular) representation for the corresponding Weyl algebra A is given by
multiplication and translation operators, respectively, on L2 functions on C w.r.t. the
Ashtekar-Lewandowski measure. All that suggests that maybe this representation π0
is even uniquely determined as well by certain reasonable assumptions. Sahlmann and
Thiemann [35,34], supported by results of Lewandowski and Okołów [30] (see also [25]
for further discussion), had argued that π0 may be the only irreducible, regular and dif-
feomorphism invariant representation of A. Despite the progress given by these papers,
there had remained many open points, both technically and conceptually. A conceptual
one concerned the domain properties of the represented operators. In fact, all results for
non-abelian structure groups in [35] relied crucially on the fact that the self-adjoint gene-
rators of both the represented and the non-represented unitary operators share a certain,
but not naturally given common dense domain. Another issue regarding the smoothness
properties of the diffeomorphisms will be discussed below.

1 Of course, any refinement of this topology leads to continuous reductions again. However, for simplicity,
one ignores this possibility.
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1.2. Achievements of the present paper. The situation above has described the status
some five years ago. The goal of our present paper is now to give a complete and
rigorous proof of a Stone-von Neumann-like theorem in quantum geometry avoiding
most of these problems. More precisely, we will show that every regular representation
of A that has a cyclic and diffeomorphism invariant vector, is unitarily equivalent to the
fundamental representation π0, provided the action of diffeomorphisms satisfies some
rather mild condition. The main conceptual achievements of our theorem, in comparison
to [35], are the following:

• There are no longer any requirements concerning the domains of the operators in
the game. This will be possible, since we consequently, from the very beginning,
work with the exponentiated fluxes only. At no point, will we use their self-adjoint
generators. There is only one issue, where we use the relation between operators and
their generators. This will concern one-parameter subgroups in a compact Lie group
in order to get some estimate for certain products in it. However, we will completely
leave this infinitesimal arena before going back to the Weyl algebra level.

• The requirements concerning the representations of the diffeomorphisms are drasti-
cally weakened. In [35], it had to be assumed that these are represented via pull-backs
and respect the decomposition of the representation restricted to C(C) into cyclic
generators. In particular, one had to assume that each of these components contains
a diffeomorphism invariant cyclic vector. As to be discussed at the end of the paper,
a priori these requirements drastically reduce the measures allowed in these decom-
positions. We will now be able to show that this assumption can be replaced by a
weaker one. We only require that coinciding addends in the decomposition share the
same representation of diffeomorphisms if at least one addend is diffeomorphism
invariant.

• Moreover, we will be able to clarify the particular class of diffeomorphisms to be used.
Analytic diffeomorphisms are unsatisfactory from two points of view: Physically,
they contradict the notion of locality, i.e., if we transform some set in the space(-time)
manifold locally, then we transform this manifold even globally. Mathematically, they
are not flexible enough as well, i.e., it will often be very difficult, if not impossible,
to locally map objects onto each other under very rigid conditions, as we will see
below. Therefore, we are forced to extend the class of isomorphisms. In fact, it will be
manageable to use stratified analytic diffeomorphisms, slightly modifying the similar
structures in, e.g., [29,21,10]. This, at the same time, leads to a natural extension
of the surfaces used to define the Weyl operators, from analytic submanifolds to
semianalytic sets. However, this is not a severe extension, since every semianalytic
set can be stratified into a locally finite set of analytic submanifolds being mutually
disjoint, i.e., having commuting Weyl operators.

1.3. Idea of the proof. Let us very shortly outline the proof of the uniqueness theorem.
As usual (see, e.g., [35]), the restriction of any representation π of a Weyl-like algebra
to the continuous functions, can be decomposed into (w.r.t. C(C)) cyclic ones. These are
always the canonical representations on some L2(C, µν) with appropriate measures µν
on C. Assuming that π contained a cyclic vector having some invariance property, we
may find such a decomposition, such that one of the constant vectors 1ν ∈ L2(C, µν)
has these properties as well. Then, being the first step where we use the particular
structures of quantum geometry, regularity and diffeomorphism invariance imply that
this µν is the Ashtekar-Lewandowski measure. Now, being the second step relying
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on quantum geometry, we may show that certain Weyl operators are diffeomorphism
conjugate to their adjoints. By general arguments, using the two properties above and
adding invariance and cyclicity of 1ν , we prove that π equals (up to unitary equivalence)
the fundamental representation of A.

1.4. Comparison with LOST paper. While this paper was prepared, Lewandowski,
Okołów, Sahlmann and Thiemann (LOST) were working on a similar problem for the
holonomy-flux ∗-algebra. This algebra is given if the fluxes themselves are considered
together with the continuous functions on C. Some time after the present article had
been sent to the arxiv, the four-men paper [26] has been finished and appeared there
as well. In this subsection, we are going to compare the corresponding results.

As already mentioned, the most striking difference between the two approaches lies
in the algebra: We use both exponentiated positions and momenta, but LOST expo-
nentiate positions only and keep the fluxes non-exponentiated. Consequently, LOST
investigate the holonomy-flux algebra, a ∗-algebra, but we consider the Weyl algebra – a
C∗-algebra. Here the exponentiated fluxes are implemented as unitaries, whereas LOST
study implicitly their self-adjoint generators being, of course, unbounded. The price
to pay is that, in contrast to our case, LOST have to get rid of the persistent domain
problems. This is done very directly using a state, since that –via GNS– guarantees the
existence of a common dense domain for all the operators. By construction, this domain
is spanned by the cylindrical functions on C. On the other hand, we only assume that
the Weyl operators are continuously represented w.r.t. their smearing. This means that
each corresponding one-parameter subgroup has some self-adjoint generator. If this was
not the case, it is expected that then there exist other diffeoinvariant representations of
the Weyl algebra. Nevertheless, note that our regularity assumption for each single one-
parameter subgroup is much weaker than that of the existence of a certain common dense
domain for all generators as in the LOST case. Indeed, our assumption follows from the
LOST requirements: The GNS construction implies that, given a state, the ∗-invariant
fluxes become symmetric operators. As it turns out, they are even self-adjoint. Hence
they generate weakly continuous one-parameter subgroups.

All that seems to show that our result is much stronger than that of LOST. However,
there will be an additional assumption made in our paper only: the diffeomorphisms are
implemented naturally. Until now, by no means, neither the relevance of this requirement
nor its possible counterpart in the LOST paper is clear. However, while, as a matter of
principle, it cannot be expected that the domain assumptions above can be dropped by
LOST, we do hope that the naturality condition can be shown obsolete sometime.

The remaining differences are, from our point of view, secondary. Let us only sketch
a few of them. The technical advantage of the ∗-algebra case is the linearity of the fluxes
w.r.t. the smearing, which enables LOST to use the scalar-product trick by Okołów. At
the same time, LOST have to use compactly supported smearing functions. We, on the
other hand, are confined to (up-to-gauge) constant smearings, although there is some
hope to relax that. Since compactly supported smearings mean that one can restrict
oneself to “nice” parts of the surfaces and forget about near-boundary regions, LOST
–in contrast to us– did not have to assume that the surfaces are (widely) triangulizable.

Rather similar are the general assumptions concerning smoothness. The striking idea
that underlies both investigations is that stratified analytic objects comprise both the
advantages of analyticity and those of locality. Only the implementation somewhat
differs. Both are influenced by the notion of semianalyticity introduced mainly by
Łojasiewicz, but – for simplicity – we mostly study these structures on a given analytic
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Table 1. Comparison between LOST and Fleischhack

LOST Fleischhack

theory gauge field theory gauge field theory
geometric ingredients principal fibre bundle P principal fibre bundle P

· structure group G · structure group G
· base manifold M · base manifold M

smoothness stratified analytic stratified analytic
· C k · C0

· semianalytic · semi- or subanalytic
basic assumptions · G compact connected Lie · G compact connected Lie

· M stratified analytic · M analytic
· dim M ≥ 2 · dim M ≥ 3

diffeomorphisms stratified analytic stratified analytic

positions connections connections
· exponentiated · yes · yes
· smeared along · paths · paths
paths stratified analytic stratified analytic

momenta fluxes fluxes
· exponentiated · no · yes
· smeared along · surfaces · surfaces
surfaces stratified analytic stratified analytic

· open · open
· codimension 1 · codimension 1+
· — · widely triangulizable

smearing functions stratified analytic stratified analytic
compactly supported constant on strata

algebra holonomy-flux algebra Weyl algebra
type ∗-algebra C∗-algebra
generators positions positions

· cylindrical functions on C · continuous functions on C
momenta momenta (unitary)
· weak derivatives of

pull-backs of left/right · pull-backs of left/right
translations on C translations on C

uniqueness state representation
assumed cyclicity cyclic invariant vector cyclic invariant vector
domain assumptions common dense domain: —

cylindrical functions
regularity assumptions — regularity w.r.t. smearing
add’l assumptions — natural diffeo action
required invariance all bundle automorphisms some bundle automorphisms

· diffeomorphisms · some diffeomorphisms
· gauge transformations · —

manifold, whereas LOST define semianalytic structures in a more categorical way.
Nevertheless, essentially all of our considerations should be directly transferable to
the LOST framework and vice versa. There should also be no significant changes if we
required semianalyticity to include not only continuity at the boundaries, but also Ck as
in the LOST regime. Only in the C∞ case, this is not completely clear.

Finally, we summarize our comparison in Table 1. Note that there we slightly modify
the notions used in the respective article to better explain coincidences and differences.

1.5. Further developments. Both the LOST and the present paper originate from the
quest for a quantum gravity theory. Therefore, as said above, its main application
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concerns an SU (2)-gauge field theory over a three-dimensional manifold M (i.e., some
Cauchy surface) with diffeomorphism invariance as a fundamental symmetry. All the
results contain, of course, this case, but go much beyond. Nevertheless, some related
questions are still unsolved. For instance, what about theories with other symmetries
or another field content? First results have been obtained for homeomorphism invariant
scalar field theories [23,24]. Here, it turned out, that there are indeed other states, labelled
by the Euler characteristics, i.e., algebraic-topological properties of the hypersurfaces.
Another approach currently under investigation, has been taken by Bahr and Thiemann
[9] extending the diffeomorphism group symmetry to general automorphisms of the path
groupoid.

1.6. Structure of the article. To finish the introduction, let us briefly outline the present
paper. In Sect. 2 we start with a general investigation of C∗-algebras that are generated by
the continuous functions on a compact Hausdorff space X and by pull-backs of homeo-
morphisms of X . Afterwards, we switch over to quantum geometry. Since we would like
to make the theory applicable to weaker smoothness classes the paths are required to
belong to, we generalize the notion of oriented surfaces introducing quasi-surfaces and
intersection functions in Sect. 3. Then, in Sect. 4, the Weyl algebra of quantum geometry
is defined and the assumed structures regarding paths, hypersurfaces, diffeomorphisms
etc. are fixed. After presenting a pretty short and direct proof for the irreducibility of the
Weyl algebra in Sect. 5, we study the theory of stratified diffeomorphisms in detail in
Sect. 6. The main result on the uniqueness of representations is then contained in Sect. 7,
including a discussion of the assumptions made and the extensions possible.

2. General Setting

Let X be a compact Hausdorff space and Homeo(X) be the set of all homeomorphisms
of X . Given some ξ ∈ Homeo(X), its pull-back to C(X) is denoted by wξ or, as usual,
ξ∗. Correspondingly, for every H ⊆ Homeo(X), the set WH ≡ H∗ ⊆ Homeo∗(X)
contains precisely the pull-backs of all elements in H. The other way round, given some
pull-back w ∈ Homeo∗(X), the corresponding homeomorphism is denoted by ξw, i.e.,
we have ξ∗w = w. Analogously, HW ⊆ Homeo(X) is defined for all W ⊆ Homeo∗(X).
Moreover, we denote by 〈W〉 the (abstract) subgroup of Homeo∗(X) generated by W
and define, analogously, 〈H〉. Obviously, 〈HW 〉 = H〈W〉 and 〈WH〉 =W〈H〉. Next, for
every measure2 µ on X , we denote by H(µ) the set of all homeomorphisms on X leaving
µ invariant. Clearly, 〈H(µ)〉 = H(µ). Moreover, every w ∈ WH(µ) extends naturally
to a unitary operator on L2(X, µ), again denoted by w. By w( fψ) = w( f )w(ψ)
for all f ∈ C(X), ψ ∈ L2(X, µ) and w ∈ WH(µ), we have w ◦ f ◦ w−1 = w( f ) as
operators in B(L2(X, µ)). Sometimes, we will extend the notion to operators:w1(w2) :=
w1 ◦ w2 ◦ w−1

1 for w1, w2 ∈ WH(µ). Finally, let A(W, µ) denote the C∗-subalgebra
in B(L2(X, µ)) generated by C(X) and W ⊆ WH(µ), and let π0 be the identical (or
fundamental) representation of A(W, µ) on L2(X, µ).

Lemma 2.1. For every W ⊆WH(µ), the subalgebra spanned by all products f ◦w with
f ∈ C(X) and w ∈ 〈W〉 is dense in A(W, µ).

2 If not stated otherwise, by a measure we always mean a normalized regular Borel measure.
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Proof. Since w ◦ f = w( f ) ◦ w for all w ∈ 〈W〉 and f ∈ C(X),

f1 ◦ w1 ◦ f2 ◦ w2 ◦ · · · ◦ wk ◦ fk+1

= (

f1 · w1( f2) · · · · · w1(w2(. . . (wk( fk+1)) . . .))
) ◦ (

w1 ◦ · · · ◦ wk
)

is always in C(X) ◦ 〈W〉. Moreover, with f , also f ∗ ≡ f is in C(X), and with w, also
w∗ = w−1 is in 〈W〉. Therefore, the span of C(X) ◦ 〈W〉 equals the ∗-subalgebra of
B(L2(X, µ)) generated by C(X) and W . 
�

Throughout the whole section, let µ be some arbitrary, but fixed measure on X .

2.1. First-step decomposition. Since every representation of a C∗-algebra is the direct
sum of a zero representation and a non-degenerate one, we may restrict ourselves to
non-degenerate representations in the following.

Lemma 2.2. Fix some W ⊆ WH(µ) and let π be a non-degenerate representation of
A(W, µ) on some Hilbert space H.

Then there are measures µν on X with ν running over some (not necessarily coun-
table) index set N, such that π |C(X) is unitarily equivalent to the direct-sum represen-
tation

⊕

ν πµν , where πµν denotes the canonical representation of C(X) on L2(X, µν)
by multiplication operators. Moreover, these measures may be chosen, such that two of
them are equal if they are equivalent (w.r.t. absolute continuity).

Proof. Every non-degenerate representation of a C∗-algebra is (up to unitary equiva-
lence) the direct sum of cyclic representations [12]. The first assertion now follows,
because every cyclic representation of C(X) is equivalent to the canonical representa-
tion on L2(X, µν) by multiplication operators for some regular Borel measure µν [36].
Note that π |C(X) is non-degenerate by 1 ∈ C(X). Since measures on X are equivalent
w.r.t. absolute continuity iff the corresponding canonical representations are equivalent
[36], we get the proof. 
�
Definition 2.1. A decomposition

⊕

ν πµν as given in Lemma 2.2 is called first-step
decomposition of π .

Sometimes we write (µν)ν∈N or shortly µ to characterize such a decomposition. Moreo-
ver, if the particular W is not important, we will consider first-step decompositions
without any reference to some π .

Definition 2.2. A first-step decomposition is called short iff N consists of a single ele-
ment.

Remark. First-step decompositions are not at all unique. In fact, consider a short one
with µν = µ and choose U ⊆ X with 0 < µ(U ) < 1. Decomposing any ψ ∈ H into
ψ = 1Uψ + 1X\Uψ with 1U being the characteristic function on U , we get a first-step
decomposition πµU ⊕ πµX\U . Here, µU is the normalization of 1U 
 µ.

In the following, given some representation π of A(W, µ) on H, we will usually
assume that π |C(X) equals (one of) its first-step decomposition(s). Moreover, we usually
write shortly πν instead of πµν . By ‖ · ‖µν we denote the norm on L2(X, µν) =: Hν
and by Pν the respective orthogonal projector mapping H to Hν . In particular, we have
‖π( f )ψ‖2

H =
∑

ν ‖ f · Pνψ‖2
µν

for all f ∈ C(X) and ψ ∈ H. Next, let Iν : Hν −→ H
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denote the (norm-preserving) canonical embedding of Hν into H and set 1ν := Iν(1),
where 1 is seen not only as an element in C(X), but in Hν as well. Anyway, often we will
simply drop Iν . Analogously, we do not explicitly mark the transition from continuous
functions to their classes in L2, when calculating scalar products. Note, however, that
C(X) is, in general, not embedded into L2(X, µν). Let, e.g., µν be the Dirac measure
at some point in X , then the image of C(X) is isomorphic to C. Therefore, one has
to be careful when operating with pull-backs of homeomorphisms that do not leave
µν invariant. Finally, for µν1 = µν2 we denote the canonical isomorphism mapping
Iν1(Hν1) to Iν2(Hν2) by I ν1

ν2 .

Definition 2.3. Let W be a subset of WH(µ) and let π be some representation of
A(W, µ) on some Hilbert space H.

A vector ψ ∈ H is called W-invariant iff π(w)ψ = ψ for all w ∈W .

Note that we tacitly assume some information about π to be given when we speak on
invariance w.r.t. some W . This will avoid some cumbersome notation when we study
equivalent representations.

Lemma 2.3. Let W and W ′ be subsets of WH(µ), let π ′ be a representation of A(W ∪
W ′, µ) on some Hilbert space H, and let ψ ∈ H be a W ′-invariant vector.

Then there is a first-step decomposition
⊕

ν∈N πµν of π ′ and some ν ∈ N, such that
1ν is a W ′-invariant vector. If, moreover, ψ is cyclic for π ′|A(W,µ), then 1ν may be
chosen cyclic as well.

Proof. Define Hν := π ′(C(X))ψ ⊆ H. Then both Hν and H⊥ν are invariant w.r.t.
π ′(C(X)). Since H⊥ν is non-degenerate (if not zero), the projection of π ′|C(X) to H⊥ν
is (up to equivalence) some direct sum

⊕

ν′∈N′ πµν′ of cyclic representations of C(X).
Since, on the other hand, π ′|C(X) is cyclic on Hν , it is equivalent to the canonical
representation πµν of C(X) on some L2(X, µν), whereas the corresponding intertwiner
maps ψ to 1ν . Now, by construction, πµν ⊕

⊕

ν′∈N′ πµν′ is a first-step decomposition
of π ′. Moreover, the W ′-invariance of ψ translates into that of 1ν and the cyclicity, if
given, as well. 
�

Now, throughout the whole Sect. 2, we let W and W ′ be some arbitrary subsets of
WH(µ), whereasw′(W) ⊆W for allw′ ∈W ′. Note that we do not assume that they are
fixed once and for all, i.e., they may be changed from one statement to the other. Next,
π and π ′ are always non-degenerate representations of A(W, µ) and A(W ∪W ′, µ),
respectively, on some Hilbert space H, where π is the restriction of π ′ to A(W, µ).3 We
let

⊕

ν πµν be a fixed first-step decomposition of π on H = ⊕

ν Hν = ⊕

ν L2(X, µν)
and usually set πν := πµν for simplicity. Note that every first-step decomposition of
π is also some for π ′ and vice versa, since π and π ′ coincide on A(W, µ) containing
C(X). Moreover, if there is some W ′-invariant (and π -cyclic) vector, then we assume
that there is some ν ∈ N, such that 1ν is W ′-invariant (and π -cyclic). Note that this does
not contradict the assumption above that measures in a first-step decomposition are equal
if they are equivalent. Finally, in order to fix a home for the one-parameter subgroups
in W introduced later, we fix some subset R in the set Hom(R,W) of homomorphisms
from R to W .

3 Often, we will not refer to π ′ at all. Then, in general, we tacitly set W ′ = ∅ and π ′ = π .
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2.2. πν-Scalars and πν-Units.

Definition 2.4. An element w ∈W is called

• πν-scalar iff Pνπ(w)1ν = c 1 for some c ∈ C;
• πν-unit iff Pνπ(w)1ν = 1.

Analogously, we define these properties for w′ ∈W ′. Since w is unitary, we have

Lemma 2.4. 1ν is π(w)-invariant⇐⇒ w is a πν-unit⇐⇒ w∗ is a πν-unit.

Corollary 2.5. Any finite product of πν-units is a πν-unit.

Lemma 2.6. If 1ν is π(w)-invariant, then Hν and H⊥ν are π(w)-invariant.

Proof. Fix some ψν ∈ Hν and recall that 1ν is cyclic for πν , i.e., for every ε > 0 there
is some f ∈ C(X) with ‖π( f )1ν − ψν‖ < ε.

Since w is a πν-unit, we have π(w)π( f )1ν = π(w( f ))1ν ∈ Hν . By unitarity of w,
we get ‖π(w)ψν−π(w)π( f )1ν‖ < ε, i.e., dist(π(w)ψν,Hν) < ε for all ε > 0. Hence,
π(w)ψν ∈ Hν .

The invariance of H⊥ν follows from the unitarity of π(w). 
�
Corollary 2.7. If each w ∈W is a πν-unit, then the restriction of π to Hν is cyclic.

Proof. Since every πν-unit leaves Hν invariant, π(A(W, µ)) leaves Hν invariant. Since
1ν is already cyclic on Hν for π restricted to C(X) ⊆ A(W, µ), we get the assertion.


�
Lemma 2.8. Let w ∈ W be a πν-scalar and assume ψ0 := (1 − Iν Pν)π(w)1ν �= 0.
Define ψ to be the normalization of ψ0, and let Hψ be the completion of π(C(X))ψ .
Finally, assume that µν is ξw-invariant, i.e., w ∈WH(µν).

Then the restriction of π |C(X) to its invariant subspace Hψ is equivalent to the
canonical representation of C(X) on L2(X, µν). Moreover, Hν and Hψ are orthogonal.

Proof. Of course, by definition, Hψ is invariant w.r.t. π(C(X)). Let now f1 and f2 be
in C(X). Then, by unitarity of π(w) and ξw-invariance of µν , we have

〈π( f1)ψ0, π( f2)ψ0〉H
= 〈π( f1)(1− Iν Pν)π(w)1ν, π( f2)(1− Iν Pν)π(w)1ν〉H
= 〈(1− Iν Pν)π( f1)π(w)1ν, (1− Iν Pν)π( f2)π(w)1ν〉H
= 〈π( f1)π(w)1ν, π( f2)π(w)1ν〉H− 〈Iν Pνπ( f1)π(w)1ν, Iν Pνπ( f2)π(w)1ν〉H
= 〈π(w)π(w∗( f1))1ν, π(w)π(w∗( f2))1ν〉H− 〈 f1 · Pνπ(w)1ν, f2 · Pνπ(w)1ν〉µν
= 〈w∗( f1), w

∗( f2)〉µν − |c|2 〈 f1, f2〉µν
= (1− |c|2) 〈 f1, f2〉µν ,

where c is given by Pνπ(w)1ν = c1. By the arguments above, ‖ψ0‖2 = 1 − |c|2,
implying

〈π( f1)ψ, π( f2)ψ〉H = 〈 f1, f2〉µν = 〈π( f1)1ν, π( f2)1ν〉H
for all f1, f2 ∈ C(X). The orthogonality of Hν and Hψ follows directly from that of 1ν
and ψ . 
�
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Definition 2.5. π ′ is called W ′-natural iff, for any first-step decomposition
⊕

ν∈N πµν
and for all ν1, ν2 ∈ N with µν1 = µν2 , an appearing π ′(W ′)-invariance of Hν1 implies
that of Hν2 and

I ν1
ν2
◦ Iν1 Pν1

(

π ′|A(W ′,µ)) = Iν2 Pν2

(

π ′|A(W ′,µ)) ◦ I ν1
ν2
.

Obviously,π ′ is W ′-natural, if the respective first-step decomposition is short. Moreover,
if π ′ is W ′-natural and if µν1 = µν2 , then 1ν1 is π ′(w′)-invariant iff 1ν2 is π ′(w′)-
invariant.

Corollary 2.9. Let w ∈W ∩WH(µν) be a πν-scalar. Moreover, let π ′ be W ′-natural.
If 1ν is π ′(w′)-invariant, then π(w)1ν is π ′(w′)-invariant.

Proof. Since w′ is a πν-unit, Hν is π ′(w′)-invariant. Hence,

π ′(w′)Iν Pνπ(w)1ν = π ′(w′) c1ν = c1ν = Iν Pνπ(w)1ν .

If ψ0 := (1− Iν Pν)π(w)1ν = 0, the statement is trivial. Otherwise, we know from the
lemma above and the notations there that Hν and Hψ are orthogonal. Choose a first-step
decomposition of π containing the representation πµν for Hν and for Hψ . In fact, simply
construct a first-step decomposition of the orthogonal complement of Hν ⊕ Hψ in H.
Now, since π ′ is W ′-natural, ψ is π ′(w′)-invariant as well, by the π ′(w′)-invariance of
1ν and the lemma above. The proof follows from π(w)1ν = ψ0 + Iν Pνπ(w)1ν . 
�
Corollary 2.10. Let w ∈ W ∩WH(µν). Additionally, let π ′ be W ′-natural, and let 1ν
be π ′(w′)-invariant for some w′ ∈W ′.

If w is a πν-scalar, then π(w′(w))1ν = π ′(w′)π(w)1ν = π(w)1ν .
This means, in particular,

w is a πν-scalar. ⇐⇒ w′(w) is a πν-scalar.

w is a πν-unit. ⇐⇒ w′(w) is a πν-unit.

Corollary 2.11. Assume that π ′ is W ′-natural and that 1ν is π ′(W ′)-invariant.
Then, for all πν-scalars w ∈W ∩WH(µν) and all w′, w′1, w′2 ∈W ′, we have

w′(w) = w′1(w) ◦ w′2(w) =⇒ w is a πν-unit,

w′(w) = w∗ =⇒ w2 is a πν-unit.

Proof. Using Corollary 2.9 we have in the first case,

π(w)1ν = π ′(w′1)∗π(w)1ν = π ′(w′1)∗π(w′(w))1ν
= π ′(w′1)∗π(w′1(w) ◦ w′2(w))1ν = π ′(w′1)∗π(w′1(w))π(w′2(w))1ν
= π(w)π ′(w′1)∗π ′(w′2)π(w)π ′(w′2)∗1ν = π(w)π(w)1ν

and, in the second one,

π(w)1ν = π(w′(w))1ν = π(w∗)1ν .

�
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Lemma 2.12. If w is a πν-unit and µν equals µ, then Pνπ(w) = π0(w)Pν .

Proof. We have

π(w) f 1ν = π(w)π( f )1ν = π(w( f ))π(w)1ν = π(w( f ))1ν = w( f )1ν,

hence Pνπ(w) f 1ν = π0(w)Pν f 1ν for all f ∈ C(X). By continuity of π0(w) on
L2(X, µ) and by cyclicity of 1ν w.r.t. C(X), we get Pνπ(w) = π0(w)Pν on Hν . Finally,
both Pνπ(w) (by Lemma 2.6) and π0(w)Pν are zero on H⊥ν . 
�
Corollary 2.13. Let w and w0 be commuting elements in W . Moreover, let µν = µ.

If w0 is a πν-unit, then it leaves Pνπ(w)1ν invariant.

Proof.

w0
(

Pνπ(w)1ν
) ≡ π0(w0)

(

Pνπ(w)1ν
)

= Pνπ(w0)π(w)1ν (Lemma 2.12)

= Pνπ(w)π(w0)1ν
= Pνπ(w)1ν .


�

2.3. Continuousµ0-generating systems. Until the end of this subsection, letµ0 be some
measure on X .

Definition 2.6. A subset E of C(X) is called continuous µ0-generating system iff

• 1 ∈ E is orthogonal in L2(X, µ0) to each other element in E and
• span

C
E is dense both in C(X) and in L2(X, µ0).

Lemma 2.14. Let E ⊆ C(X) be a continuous µ0-generating system for some measure
µ0, and let ψ be a vector in L2(X, µ0).

Then 〈 f, ψ〉µ0 = 0 for all 1 �= f ∈ E implies that ψ = c‖ψ‖ 1 for some c ∈ U (1).

Proof. Use L2(X, µ0)=span
C

E=span
C
{1} ⊕ span

C
(E\{1})=C1⊕ span

C
(E\{1}).


�
Lemma 2.15. If E ⊆ C(X) is a continuous generating system w.r.t. two measures µ1
and µ2, then µ1 equals µ2.

Proof. We have
∫

X f dµ1 = 〈1, f 〉µ1 = 0 = 〈1, f 〉µ2 =
∫

X f dµ2 for all 1 �= f ∈ E.
Since span

C
E is dense in C(X), the assertion follows from the regularity of the measures.


�
Lemma 2.16. Continuous µ0-generating systems always exist.

Proof. C(X) always spans a dense subset in L2(X, µ0). Let now E contain 1 and all
f − 〈1, f 〉µ0 1 with f in C(X). 
�
Lemma 2.17. Letw ∈W be some element. Assume that π ′ is W ′-natural and that 1ν is
W ′-invariant. Moreover, let E0 ⊆ C(X) be some subset, such that for every non-constant
f ∈ E0 there are infinitely many elements {w′ι} in 〈W ′〉 commuting with w, such that
{w′ι( f )} ⊆ C(X) forms an orthonormal system in L2(X, µν).

Then Pνπ(w)1ν′ is orthogonal to the span of E0 for all ν′ ∈ N with µν′ = µν . Here,
E0 is seen as a subset in Hν .
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Proof. Let f ∈ E0. Then there are infinitely many {w′ι} in 〈W ′〉 commuting with w and
fulfilling

〈π(w′ι1( f ))1ν, π(w′ι2( f ))1ν〉H = 〈w′ι1( f ), w′ι2( f )〉µν = δι1ι2 .
By naturality, 1ν′ is W ′-invariant as well. Hence,

〈π(w′ι( f ))1ν, π(w)1ν′ 〉H = 〈π ′(w′ι)π( f )π ′(w′ι)∗1ν, π(w)1ν′ 〉H
= 〈π( f )1ν, π ′(w′ι)∗π(w)1ν′ 〉H
= 〈π( f )1ν, π(w)π ′(w′ι)∗1ν′ 〉H
= 〈π( f )1ν, π(w)1ν′ 〉H

for all ι. Consequently,

〈 f, Pνπ(w)1ν′ 〉µν = 〈π( f )1ν, π(w)1ν′ 〉H = 0.


�

2.4. Regularity.

Definition 2.7. Precisely the elements of Hom(R,W) are called one-parameter
subgroups in W , those in R ⊆ Hom(R,W) one-parameter R-subgroups in W .

Definition 2.8. A one-parameter subgroup is called regular iff it is weakly continuous.

Definition 2.9. A representation π of A(W, µ) is called regular w.r.t. R iff π maps
regular one-parameter R-subgroups in W to weakly continuous one-parameter sub-
groups in π(W).

If R is clear from the context, we will simply speak about regular representations.

Definition 2.10. • Two one-parameter subgroups t �−→ w1,t and t �−→ w2,t in W are
called commuting iff w1,t1 and w2,t2 commute for all t1, t2 ∈ R.

• The set given by all finite (pointwise) products of mutually commuting one-parameter
R-subgroups in W is denoted by 〈R〉.

Lemma 2.18. The product of finitely many, mutually commuting one-parameter
R-subgroups in W is a one-parameter 〈R〉-subgroup in 〈W〉. Moreover, if π is regular
w.r.t. R, then π is regular w.r.t. 〈R〉.
Proof. The first part is clear. For the second one use ‖π(wt )‖B(H) ≤ ‖wt‖A(W,µ) = 1
for all t to show

∥

∥

∥

(
∏

i
π(wi,t )

)

ψ − ψ
∥

∥

∥ ≤
∑

j

∥

∥

∥

(
∏

i< j
π(wi,t )

)

(π(w j,t )ψ − ψ)
∥

∥

∥

≤
∑

j
‖π(w j,t )ψ − ψ‖

→ 0

for t → 0. 
�
Therefore, in what follows, we will often assume that R is replaced tacitly by 〈R〉.
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2.5. Splitting.

Lemma 2.19. We have ‖π(w′( f ))‖B(H) ≤ ‖ f ‖∞ for all w′ ∈ WH(µ) and all f ∈
C(X).

Here, the equality holds if π is faithful.

Proof. We get ‖π(w′( f ))‖B(H) ≤ ‖w′( f )‖A(W,µ) = ‖w′( f )‖∞ = ‖ f ‖∞, since w′
is a pull-back of a homeomorphism. If π is faithful, then even ‖π(w′( f ))‖B(H) =
‖w′( f )‖A(W,µ). 
�
Lemma 2.20. We have

sup
w′∈WH(µ)

|〈ψ,π((w − 1)(w′( f )))ψ〉H| ≤ 2 ‖ f ‖∞ ‖ψ‖H ‖(π(w)− 1)ψ‖H

for all ψ ∈ H, w ∈W and f ∈ C(X).

Proof. We have

|〈ψ,π((w − 1)( f ))ψ〉H|
= |〈ψ,π(w( f ))ψ〉H− 〈ψ,π( f )ψ〉H|
= |〈ψ,π(w)π( f )π(w)∗ψ〉H− 〈ψ,π( f )ψ〉H|
= |〈π(w)∗ψ,π( f )π(w)∗ψ〉H− 〈ψ,π( f )ψ〉H|
≤ |〈(π(w)∗ − 1)ψ, π( f )π(w)∗ψ〉H| + |〈ψ,π( f )(π(w)∗ − 1)ψ〉H|
≤ ‖π( f )‖B(H) (‖π(w)∗‖B(H) + 1) ‖ψ‖H ‖(π(w)∗ − 1)ψ‖H
≤ 2 ‖π( f )‖B(H) ‖ψ‖H ‖(π(w)− 1)ψ‖H, (Unitarity of w)

hence, for all w′ ∈WH(µ),

|〈ψ,π((w − 1)(w′( f )))ψ〉H| ≤ 2 ‖π(w′( f ))‖B(H) ‖ψ‖H ‖(π(w)− 1)ψ‖H
≤ 2 ‖ f ‖∞ ‖ψ‖H ‖(π(w)− 1)ψ‖H

with Lemma 2.19. 
�
Definition 2.11. Let ψ ∈ H be some vector.

• Let f ∈ C(X).
We say W ′ splits W at ψ for f iff there is a one-parameter R-subgroup wt in W ,
some ε > 0 and some t0 > 0, such that

sup
w′∈W ′

|〈ψ,π(

(wt − 1)(w′( f ))
)

ψ〉H| ≥ ε

for all 0 �= |t | < t0.
• We say W ′ splits W at ψ iff there is a continuous µ-generating system E, such that

W ′ splits W at ψ for every f ∈ E with f �= 1 and 〈ψ,π( f )ψ〉H �= 0.

In other words, wt is not uniformly weakly continuous on the W ′-span of f . Moreover,
note that the splitting property actually refers to the choice of R. Since, in general, we
will have fixed R, we drop this notion here.

Proposition 2.21. Assume that π ≡ π ′|A(W,µ) is regular (w.r.t. R).
If W ′ splits W at 1ν0 , then µν0 equals µ.



80 Ch. Fleischhack

Proof. Choose a continuous µ-generating system E, such that W ′ splits W at 1ν0 for
every non-constant f ∈ E with 〈1, f 〉ν0 ≡ 〈1ν0 , π( f )1ν0〉H �= 0. Assume there is such
an f with 〈1, f 〉ν0 �= 0. Choose a one-parameter R-subgroupwt in W , some sufficiently
small ε > 0 and some t0 > 0, such that

sup
w′∈W ′

|〈1ν0 , π
(

(wt − 1)(w′( f ))
)

1ν0〉H| ≥ ε

for all non-zero |t | < t0. Hence, using Lemma 2.20,

2 ‖ f ‖∞ ‖π(wt )1ν0 − 1ν0‖H ≥ sup
w′∈W ′

|〈1ν0 , π
(

(wt − 1)(w′( f ))
)

1ν0〉H| ≥ ε

for all non-zero |t | < t0. This, however, is a contradiction to our assumption that π is
regular, i.e., t �−→ π(wt ) is weakly continuous. Hence, 〈1, f 〉ν0 = 0 for all f in E. By
Lemma 2.15, we have µ = µν0 . 
�

2.6. �-Regularity.

Definition 2.12. Let A be any set.

• A set� is called set of A-functions iff its elements are A-valued functions (i.e., there
is no restriction for the domains of these functions).

• A set� of A-functions is called topological (sequential) iff the domain of each λ ∈ �
is a topological (sequential topological) space.

Definition 2.13. Let A be some subset of a C∗-algebra A, and let π be a representation
of A on some Hilbert space H. Moreover, let � be a set of topological A-functions.

Then π is called �-regular iff the mapping

〈ψ1, π(λ( · ))ψ2〉H : dom λ −→ C

is continuous for all ψ1, ψ2 ∈ H and each λ ∈ �.

Remark. The ordinary regularity uses dom λ = R, where λ : t �−→ wt runs over all
one-parameter R-subgroups.

Let us return to the case that π is a representation of A(W, µ) on H.

Proposition 2.22. Letπ be�-regular for some set� of W-functions. Fix for each λ ∈ �
some subset Yλ in dom λ, such that λ(Yλ) consists of πν-units only and

⋃

λ∈� λ(Yλ)
generates W .

Then every w ∈W is a πν-unit.

Proof. For all λ ∈ � and all y ∈ Yλ, we have

〈1ν, π(λ(y))1ν〉H = 〈1ν, 1ν〉H = 1.

Consequently, by �-regularity, we even have 〈1ν, π(λ(y))1ν〉H = 1 for all y ∈ Yλ,
hence π(λ(y))1ν = 1ν , i.e., λ(Yλ) contains πν-units only. Since these sets generate
full W and since, obviously, products and inverses of πν-units are πν-units again, all
elements of W are πν-units. 
�
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3. Quantum Geometric Background

3.1. Quantum geometric Hilbert space. In the remaining sections we will apply the
general framework of Sect. 2 to quantum geometry. First, however, let us briefly recall in
this subsection the basic facts and notations needed in the following. General expositions
can be found in [6,4,3] for the analytic framework. The smooth case is dealt with in
[8,7,27]. The facts on hyphs and the conventions are due to [14,16,19].

Let G be some arbitrary connected compact Lie group and M be some manifold. We
let M be equipped with an arbitrary, but fixed differential structure. Later, we will restrict
ourselves to analytic (or, if so desired, semianalytic) manifolds. A path is a piecewise
differentiable map from [0, 1] to M , whereas differentiability is always understood in
the chosen smoothness class. Moreover, we may restrict ourselves to use piecewise
embedded paths only. A path is trivial iff its image is a single point. Two paths γ1 and γ2
are composable iff the end point γ1(1) of the first one coincides with the starting point
γ2(0) of the second one. If they are composable, their product is given by

(γ1γ2)(t) :=
{

γ1(2t) for t ∈ [0, 1
2 ]

γ2(2t − 1) for t ∈ [ 1
2 , 1] .

An edge e is a path having no self-intersections, i.e., e(t1) = e(t2) implies that |t1 − t2|
either equals 0 or 1. Two paths γ1 and γ2 coincide up to the parametrization iff there is
some orientation preserving piecewise diffeomorphism φ : [0, 1] −→ [0, 1], such that
γ1 = γ2 ◦φ. A path is called finite iff it equals up to the parametrization a finite product
of edges and trivial paths. In what follows, every path will be assumed to be finite. Next,
two paths are equivalent iff there is a finite sequence of paths, such that two subsequent
paths coincide up to the parametrization or up to insertion or deletion of retracings δδ−1.
Finally, we denote the set of all paths by Pgen, that of all equivalence classes of paths
by P . The multiplication of paths naturally turns P into a groupoid. Usually (but not in
Subsects. 3.2 and 3.3), paths are understood to be equivalence classes of paths.

Initial and final segments of paths are naturally defined. We will write γ1 ↑↑ γ2 iff
there is some path γ being (possibly up to the parametrization) an initial path of both
γ1 and γ2. A hyph υ is some finite collection (γ1, . . . , γn) of edges each having a “free”
point. This means, for at least one direction none of the segments of γi starting in that
point in this direction, is a full segment of some of the γ j with j < i . Graphs and webs
are special hyphs. The subgroupoid generated (freely) by the paths in a hyph υ will be
denoted by Pυ . Hyphs are ordered in the natural way. In particular, υ ′ ≤ υ ′′ implies
Pυ ′ ⊆ Pυ ′′ .

The set A of generalized connections A is now defined by

A := lim←−υ Aυ
∼= Hom(P,G),

with Aγ := Hom(Pγ ,G) ⊆ G#γ given the topology which is induced by that of
G, for all finite tuples γ of paths. Moreover, we define the (always continuous) map
πγ : A −→ G#γ by πγ (A) := A(γ ) ≡ h A(γ ). Note that πγ is surjective, if γ is
a hyph. Finally, for compact G, the Ashtekar-Lewandowski measure µ0 is the unique
regular Borel measure on A whose push-forward (πυ)∗µ0 to Aυ

∼= G#υ coincides with
the Haar measure there for every hyph υ. It is used to span the auxiliary Hilbert space
Haux := L2(A, µ0) of quantum geometry with scalar product 〈·, ·〉.
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If we included (generalized) gauge transforms into our considerations and studied the
analytic category only, we could use the spin-network states to get a basis of Haux,inv =
L2(A/G, µ0)with G being the group of generalized gauge transforms. Here, however, we
want to include gauge-variant functions as well and, moreover, do not want to restrict the
smoothness class at the beginning. Therefore, we will consider now generating systems
for Haux. For this, first of all, let us fix a representative in each equivalence class of
irreducible representations of G, which we will refer to below. When considering matrix
indices for matrices on some Euclidean space V , we assume that the underlying vectors
are normalized. This means that for all A ∈ End V we have |Ai

j | ≤ ‖A‖, where ‖ · ‖
denotes the standard operator norm.

Definition 3.1. • For each non-trivial irreducible representation of G, we define Mφ

to be the set

Mφ :=
⋃

m,n

{
√

dim φ φm
n

}

,

of normalized matrix functions, where m, n run over the set of matrix indices for φ.
• We define M to be the set

M :=
⋃

φ
Mφ =

⋃

φ,m,n

{
√

dim φ φm
n

}

,

of normalized matrix functions, where φ runs over the set of all (equivalence classes
of) non-trivial irreducible representations of G.

• For every hyph υ with edges γ1, . . . , γI we define the set Mυ of gauge-variant spin
network states (gSN) of υ by

Mυ :=
⊗

i
M ◦ πγi .

If υ is the empty hyph, we have Mυ := {1}. The set of all gauge-variant spin network
states will be denoted by MSN.

• More compactly, we set (Tφ,γ )mn :=
√

dim φ φm
n ◦ πγ and

(Tφ,γ )
m
n :=

√

dim φ φm
n ◦ πγ ≡

⊗

k

√

dim φk (φk)
mk
nk
◦ πγk .

Observe that we get the same gauge-variant spin network state again if we simultaneously
revert the orientations of an arbitrary number of edges and dualize the corresponding
representations. This trivial overcompleteness will be ignored in the following, i.e., we
will always identify graphs and hyphs differing in the ordering or the orientation of the
edges only.

Let us now recall

Lemma 3.1. For every hyph υ, the set Mυ of gauge-variant spin networks on υ is an
orthonormal set in L2(A, µ0).

Note that (even after admitting only one edge orientation per hyph)
⋃

υ Mυ is a gene-
rating system for, but not an orthonormal set in L2(A, µ0). This would still be the case,
if we were in the (semi)analytic category and use graphs only (see below). In particular,
we have
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Lemma 3.2. • We have Mυ ′ ⊆ span Mυ for all υ ≥ υ ′.
• We have Mφ

γ ⊆ span Mφ
υ for all υ = {γ1, . . . , γn} ≥ γ with

∏

i γi = γ .

Here, Mφ
υ := ⊗

i Mφ ◦ πγi .

Lemma 3.3. MSN is a continuous µ-generating system in L2(A, µ0).

Nevertheless, we will be looking for orthogonal decompositions of L2(A, µ0). For
that purpose, we will have to single out orthogonal subsets of gauge-variant spin network
functions: Until the end of this subsection we will now consider piecewise analytic paths
only.

In contrast to the standard, i.e., gauge-invariant spin network states, the gauge-variant
ones do not form an orthonormal basis for L2(A, µ0) even after dropping some subset of
them. The problem are the states arising in the decomposition of an edge into a product
of subedges, i.e., having two-valent vertices. In the gauge-invariant case they can be
dropped since, by invariance, they reproduce the original state. Here, however, in the
gauge-variant case, we get a sum like

(Tγ1γ2,φ)
m
n =

1√
dim φ

∑

r
(Tγ1,φ)

m
r ⊗ (Tγ2,φ)

r
n,

where the (dim φ) gauge-variant spin network states together with that at the left-hand
side span a (dim φ)-dimensional subspace of L2(A, µ0). We might simply drop the one
at the left-hand side, but this would lead to consistency troubles since we could want
to decompose those at the right-hand side again. A possible solution for this dilemma
is given by the extended spin network states as defined by Ashtekar and Lewandowski
in [5]. We do not want to introduce that notion here, but only study the “most dange-
rous” cases in our framework – namely, those gSN with “matching” indices4 at each
two-valent vertex. In the decomposition of the γ1γ2-state above, this concerns the vector
at γ1(1) = γ2(0).

Lemma 3.4. Let two gauge-variant spin networks states T := (Tφ,γ )
m
n and T ′ :=

(Tφ′,γ ′)
m′
n′ with graphs γ and γ ′ be given.

Then T and T ′ are orthogonal in L2(A, µ0) if

• im γ �= im γ ′;
• there is a point m ∈ int γ ∩ int γ ′, such that the representations for the edges in γ

and γ ′ running through m do not coincide;
• there is some m ∈ M being a two-valent vertex with non-matching indices for one

and being interior for the other graph; or
• there is some m ∈ M being a two-valent vertex for both graphs, whereas both

“incoming” or both “outgoing” indices are different.

Note that matrix indices are regarded as different if they belong to different representa-
tions.

Proof. The first two cases are obvious. The third one is clear observing our example
above. Namely, decompose one of the graphs, say γ ′, by inserting m as a vertex. In the
decomposition of T ′ into a sum of gauge-variant spin network states of the enlarged

4 Recall that a gSN is said to have “matching” indices at a two-valent vertex m iff the lower index, assigned
to the incoming edge at m, and the upper index for the outgoing one are equal. Note that we possibly have to
invert orientations before, in order to have an incoming and an outgoing edge at a two-valent vertex.
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graph, the indices of every addend are matching. By the orthogonality properties of
matrix functions w.r.t. the Haar measure, we get the assertion. The last case is now clear
as well. 
�
Definition 3.2. Let γ be an edge and φ be a non-trivial irreducible representation of G
and let T := (Tφ,γ )

m
n be a gauge-variant spin network state.

1. If γ is non-closed, then T is called (γ, φ)-based iff
• γ = γ1 ◦ · · · ◦ γ#γ ;
• φk = φ for all k; and
• all indices at two-valent vertices are matching, i.e., mk+1 = nk for all k.

2. If γ is closed, then T is called (γ, φ)-based iff
• γ1 ◦ · · · ◦ γ#γ equals γ or equals γ |[τ,1] ◦ γ |[0,τ ] for some τ ∈ (0, 1);
• φk = φ for all k; and
• all indices at two-valent vertices are matching, i.e., mk+1 = nk for all k and

m1 = n#γ .

The set of all (γ, φ)-based gauge-variant spin network states will be denoted by Bγ,φ .
Moreover, we set Bγ := {1} ∪ ⋃

φ Bγ,φ , where the union runs over all non-trivial
irreducible representations of G. It contains precisely the γ -based gauge-variant spin
network states.

Note again that T is (γ, φ)-based if for some orientation and some ordering of γ , the
conditions above are met.

Lemma 3.5. Bγ,φ is orthogonal to its complement in the set of all gauge-variant spin
network states, for every edge γ and every irreducible representation φ of G.

Proof. Let T = (Tφ,γ )
m
n be a gSN not contained in Bγ,φ . If im γ �= im γ , the situation

is clear. The same is true for φk �= φ for some k. Let now im γ = im γ and φk = φ for
all k. Then, possibly after modifying ordering or orientations, we have γ = γ1 · · · γn .
Moreover, every vertex of γ is at most two-valent. Thus, the proof follows from Lemma
3.4. 
�
Corollary 3.6. For every edge γ , the Hilbert space L2(A, µ0) is the closure of

(
⊕

φ
span Bγ,φ

)

⊕ C 1 ⊕ span
(MSN\Bγ

)

.

3.2. Decomposition of paths. In the following we will study the intersection behaviour
between paths and (generalized) surfaces. For this, we first consider how paths can be
decomposed. Most of the relevant definitions and assertions are given in [13]. We will
quote where appropriate and will simplify some assumptions and, therefore, proofs.
Note that in this subsection we will often distinguish between P and Pgen; paths here
are genuine maps from [0, 1] to M , not equivalence classes.

3.2.1. Completeness.

Definition 3.3. Let γ be some path.
Then a finite sequence γ := (γ1, . . . , γn) in Pgen is called decomposition of γ iff

γ1 · · · γn equals γ up to the parametrization.
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This definition is well defined, since γ1(γ2γ3) equals (γ1γ2)γ3 up to the parametrization.
Moreover, observe that every reparametrization of γ gives a decomposition of γ .

If confusion is unlikely, we identify γ1 · · · γn , {γ1, . . . , γn}, and (γ1, . . . , γn).

Definition 3.4. Let γ := γ1 · · · γI and δ := δ1 · · · δJ be decompositions of some path γ .
Then γ is a refinement of δ iff there are 0 = I0 < I1 < · · · < IJ = I , such that

γI j−1+1 · · · γI j is a decomposition of δ j for all j = 1, . . . , J . We write5 γ ≥ δ iff γ is a
refinement of δ.

It can easily be shown [13] that the set of all decompositions of a path γ is directed
w.r.t. ≥.

Definition 3.5. • A subset Q of Pgen is called hereditary iff for each γ ∈ Q
1. the inverse of γ is in Q again, and
2. every decomposition of γ consists of paths in Q.

• A subset Q of Pgen is called complete iff it is hereditary and every path in Pgen has
a decomposition into paths in Q.

A decomposition consisting of paths in Q only, will be called Q-decomposition.

Lemma 3.7. Let Q ⊆ Pgen be complete.
Then for every hyph υ there is a hyph υ ′ ≥ υ with υ ′ ⊆ Q.

Proof. First decompose each γ ∈ υ into paths in Q. Collect all these paths in a set
γ ′ ≥ υ. Since γ ′ may be not a hyph again, refine, if necessary, the paths in γ ′ further to
get a hyph υ ′ ≥ γ ′ ≥ υ [14]. By completeness, υ ′ contains only paths in Q. 
�
Lemma 3.8. The set of all edges and trivial paths in Pgen is complete.

3.2.2. Main construction.

Definition 3.6. Let Q be some hereditary subset of Pgen.
Then a map ρ : Q −→ G is called Q-germ iff for all γ ∈ Q

1. ρ(γ−1) = ρ(γ )−1, and
2. ρ(γ ) = ρ(γ1)ρ(γ2) for all decompositions γ1γ2 of γ .

The set of all Q-germs from Q to G is denoted by Germ(Q,G).

Observe that ρ(γ ) and ρ(δ) coincide if γ and δ coincide up to the parametrization. In
fact, since every decomposition γ1γ2 of γ is also some for δ, we may apply Property 2
above.

Note that we will shortly speak about germs instead of Q-germs, provided the domain
Q is clear from the context.

Proposition 3.9. Let Q be some complete subset of Pgen, and let ρ : Q −→ G be a
germ.

Then we have:

• There is a unique germ ρ̂ : Pgen −→ G extending ρ.

5 By a little misuse of notation we denote both graphs and decompositions by γ , δ, etc., and denote both
the relation on the set of hyphs (or graphs) and that of refinement by ≥. Confusion should be unlikely.
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• The map ρ̂ is given by

ρ̂(γ ) =
∏I

i=1
ρ(γi )

for each γ ∈ Pgen, where γ1 · · · γn is any6 Q-decomposition of γ .
• The map ρ̂ is constant on equivalence classes in Pgen.
• The induced map [ρ̂] : P −→ G is a homomorphism, i.e., it is an element of A.

Proof. Let us first define the desired map ρ̂ as given in the proposition above and now
check its properties.

1. ρ̂ does not depend on the choice of the Q-decomposition.
Let γ and δ be two Q-decompositions of γ . Since, by assumption, every path in
Q has Q-decompositions only, and since the set of decompositions of a path is
directed w.r.t. ≥, we may assume γ ≥ δ. But, in this case the well-definedness
follows directly from the definitions and germ property 2 of ρ.

2. ρ̂ is constant on equivalence classes in Pgen.
Let γ and δ in Pgen be equivalent. By definition, it is sufficient to check the following
two cases:
• γ and δ coincide up to the parametrization.

This case is trivial, since every Q-decomposition of γ is also one of δ. Hence,
ρ(γ ) = ρ(δ).

• There is some ε in Pgen and some decomposition γ1γ2 of γ , such that δ equals
the product of γ1, ε, ε−1 and γ2.
Now, in this case, choose some Q-decompositions ε1 · · · εK of ε and γs1 · · · γs Is

of γs with s = 1, 2. Then γ11 · · · γ1I1 γ21 · · · γ2I2 is a Q-decomposition of γ and
γ11 · · · γ1I1 ε1 · · · εK ε

−1
K · · · ε−1

1 γ21 · · · γ2I2 one of δ. Hence, we have

ρ̂(δ) = ρ(γ11) · · · ρ(γ1I1) ρ(ε1) · · · ρ(εK )

ρ(ε−1
K ) · · · ρ(ε−1

1 ) ρ(γ21) · · · ρ(γ2I2) (Definition of ρ̂ )

= ρ(γ11) · · · ρ(γ1I1) ρ(γ21) · · · ρ(γ2I2) (Property 1 of ρ)

= ρ̂(γ ). (Definition of ρ̂ )

3. ρ̂ is a germ extending ρ, and [ρ̂] is a homomorphism.
This is proven as the statements above.

4. ρ̂ is the only germ extending ρ.
If ρ̂′ is some other germ extending ρ different from ρ̂, then there is some
γ ∈ Pgen with ρ̂′(γ ) �= ρ̂(γ ). Now, choose a Q-decomposition γ1 · · · γI of γ .
By the properties of a germ, there is some i with ρ̂′(γi ) �= ρ̂(γi ). However, since
both ρ̂′ and ρ̂ extend ρ, both sides are equal to ρ(γi ). Contradiction. 
�

Proposition 3.10. Let Q be some complete subset of Pgen. Let X be some topological
space, and let λ : X −→ Germ(Q,G) be some map. Finally, assume that the map
(

λ(·))(γ ) : X −→ G is continuous for all γ ∈ Q.
Then

�λ : X −→ A
x �−→ [λ̂(x)]

is continuous, where ·̂ is given as in Proposition 3.9.

6 Recall that, by completeness of Q, such a decomposition exists always.
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Proof. It is sufficient [19] to prove that πγ ◦�λ : X −→ G is continuous for all edges
γ . Since the multiplication in G is continuous and Q is complete, we even may restrict
ourselves to the cases of γ ∈ Q. Here, however, the assertion follows immediately from

(πγ ◦�λ)(x) ≡ πγ ([λ̂(x)]) = [λ̂(x)]([γ ]) = λ̂(x)(γ ) ≡ λ(x)(γ ),
i.e., πγ ◦�λ =

(

λ(·))(γ ) for all γ ∈ Q. 
�
Lemma 3.11. Two generalized connections coincide iff they coincide for all (equiva-
lence classes of) paths of a complete subset of Pgen.

3.2.3. Application to Weyl-type operators.

Definition 3.7. Let Q be some hereditary subset of Pgen.
Then a map κ : Q −→ G is called admissible iff

• κ(δ1) = κ(δ2) for all δ1, δ2 ∈ Q with δ1 ↑↑ δ2, and
• κ(γ−1

1 ) = κ(γ2) for all γ ∈ Q and all decompositions γ1γ2 of γ .

Most relevant for the well-definedness of the Weyl operators to be introduced below,
will be

Theorem 3.12. Let Q be a complete subset of Pgen and κ : Q −→ G an admissible
map.

Then there is a unique map � : A −→ A, such that, for all γ ∈ Q,

h�(A)([γ ]) = κ(γ )−1 h A([γ ]) κ(γ−1).

Moreover, � is a homeomorphism preserving the Ashtekar-Lewandowski measure µ0.
Hence, the pull-back�∗ : C(A) −→ C(A) is an isometry and the induced operator on
B(L2(A, µ0)) is well defined and unitary.

A more general version is proven in [13]. We replay the corresponding proof.

Proof. • Define λ : A −→ Maps(Q,G) by7

(

λ(A)
)

(γ ) = κ(γ )−1 h A(γ ) κ(γ
−1).

• First we show that λ(A) is indeed in Germ(Q,G) for all A ∈ A.
In fact, for all γ ∈ Q and all decompositions γ1γ2 of γ , we have

(

λ(A)
)

(γ−1) = κ(γ−1)−1 h A(γ
−1) κ(γ )

= (

κ(γ )−1 h A(γ ) κ(γ
−1)

)−1 = (

λ(A)(γ )
)−1

and
(

λ(A)
)

(γ ) = κ(γ )−1 h A(γ ) κ(γ
−1)

= κ(γ1γ2)
−1 h A(γ1) h A(γ2) κ(γ

−1
2 γ−1

1 )

= κ(γ1)
−1 h A(γ1) κ(γ

−1
1 ) κ(γ2)

−1 h A(γ2) κ(γ
−1
2 )

= (

λ(A)
)

(γ1)
(

λ(A)
)

(γ2).

Here, we used the admissibility of κ with γ1 ↑↑ γ1γ2 and γ−1
2 γ−1

1 ↑↑ γ−1
2 .

7 From now on, we will drop the square brackets in all h A([. . .]).
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• Next, observe that, for every fixed γ ∈ Q,
(

λ(A)
)

(γ ) = κ(γ )−1 h A(γ ) κ(γ
−1) ≡ κ(γ )−1 πγ (A) κ(γ

−1)

depends continuously on A, by definition of the projective-limit topology on A.
• Now, by Proposition 3.10,� := [̂λ(·)] : A −→ A is continuous, whereas for γ ∈ Q,

h�(A)(γ ) ≡
(

�(A)
)

([γ ]) = [̂λ(A)]([γ ]) = κ(γ )−1 h A(γ ) κ(γ
−1).

The uniqueness of � follows from the completeness of Q.
• To prove that� is a homeomorphism, we explicitly describe the inverse of�. Define
κ ′ : Q −→ G by κ ′(γ ) := κ(γ )−1. It is easy to check that κ ′ is admissible. As already
proven above, there is a unique continuous map �′ : A −→ A with

h�′(A)(γ ) = κ ′(γ )−1 h A(γ ) κ
′(γ−1)

for all γ ∈ Q. Altogether, this gives

h�′(�(A))(γ ) = κ ′(γ )−1 h�(A)(γ ) κ
′(γ−1)

= κ ′(γ )−1 κ(γ )−1 h A(γ ) κ(γ
−1) κ ′(γ−1)

= h A(γ )

for all γ ∈ Q. The completeness of Q and Lemma 3.11 prove �′ ◦ � = idA.
Analogously, one shows � ◦�′ = idA.

• � even preserves the Ashtekar-Lewandowski measure.
In fact, let υ be an arbitrary, but fixed hyph. By completeness, there is some hyph
υ ′ ≥ υ with Y ′ edges and υ ′ ⊆ Q. By construction, we have

πυ ′ ◦� = (�γ1 × · · · ×�γY ′ ) ◦ πυ ′
with �γ (g) := κ(γ )−1 g κ(γ−1) for γ ∈ Q. In other words, each �γ consists of
a left and a right translation, whence the Haar measure on G is �γ -invariant. Since
πυ

′
υ ◦πυ ′ = πυ with continuous πυ

′
υ : Aυ ′ −→ Aυ and since (πυ ′)∗µ0 is the Y ′-fold

product of the Haar measure on G, we get

(πυ)∗(�∗µ0) = (πυ
′

υ )∗(πυ ′ ◦�)∗µ0

= (πυ
′

υ )∗(�γ1 × · · · ×�γY ′ )∗(πυ ′)∗µ0

= (πυ
′

υ )∗(�γ1 × · · · ×�γY ′ )∗µ
Y ′
Haar

= (πυ
′

υ )∗µY ′
Haar

= (πυ
′

υ )∗(πυ ′)∗µ0

= (πυ)∗µ0.

Since finite regular Borel measures on A coincide iff their push-forwards w.r.t. all
πυ coincide, we get the assertion. 
�
We get immediately

Corollary 3.13. Let Q be some complete subset of Pgen. Moreover, let Y be some
topological space and let κ : Q× Y −→ G be some map, such that
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• κ(·, y) : Q −→ G is admissible for all y ∈ Y , and
• κ(γ, ·) : Y −→ G is continuous for all γ ∈ Q.

Then there is a unique map � : A× Y −→ A with

h�(A,y)(γ ) = κ(γ, y)−1 h A(γ ) κ(γ
−1, y)

for all γ ∈ Q. Moreover, � is continuous.

3.3. Surfaces and fluxes. Originally (see, e.g., [32]), the action of flux operators on
cylindrical functions has been given by self-adjoint differential operators. Since these
operators are unbounded, one has to study their domains very carefully. To avoid this
problem, one usually considers them as generators of unitary, i.e., bounded operators.
Now, the flux operators turn into some sort of translation operators. In this section, we
are going to shift this action to a still deeper level. We will see that it can be regarded as
the pull-back of some continuous action of translations on A itself.

3.3.1. Quasi-surfaces. Before we can define this action we study how paths are decom-
posed by surfaces.

Definition 3.8. Let S be a subset of M.

• A path γ ∈ Pgen is called S-external iff (int γ ) ∩ S = ∅.
• A path γ ∈ Pgen is called S-internal iff int γ ⊆ S.

Observe that the end points of an S-external path may be contained in S. It is only
required for the “interior part” of the path, i.e., for all γ (t) with 0 < t < 1 to be outside
of S. If S is clear from the context, we simply speak about external and internal edges.

Definition 3.9. Let S be some subset of M.
Then QS denotes the set of all paths that are S-external or S-internal.

Definition 3.10. Let S be a subset of M and γ ∈ Pgen be an edge.
Then a decomposition γ of γ is called S-admissible iff γ ⊆ QS.

In other words, γ = (γ1, . . . , γI ) is S-admissible iff γ equals γ1 · · · γI up to the para-
metrization and each γi is S-internal or S-external.

Lemma 3.14. Let S be a subset of M.
Then QS is complete, if every edge has an S-admissible decomposition.

Proof. Heredity is clear. The completeness follows since any (finite) path can be decom-
posed into a product of edges and trivial paths, hence, by assumption, into a product of
S-external or S-internal paths. 
�

Definition 3.11. A subset S of M is called quasi-surface iff every edge γ ∈ Pgen has
an S-admissible decomposition.
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Examples for quasi-surfaces, in case we are in the (semi)analytic category for the paths,
are embedded analytic submanifolds that are even semianalytic.8 Note that these sub-
manifolds may have any dimension. Therefore, any collection of points having no accu-
mulation point is a quasi-surface. This even remains true in the category of piecewise
smooth paths.

On the other hand, there are indeed non-semianalytic submanifolds that are quasi-
surfaces. Consider, e.g., the smooth function f on R with f (x) := e−1/x2

for x �= 0
and f (0) := 0. Of course, it is analytic everywhere except for x = 0. But, its graph
S does not form a semianalytic submanifold in, for simplicity, R

2. Nevertheless, it is
a quasi-surface. In fact, let γ be a piecewise analytic path in R

2. If it does not run
through the origin, the statement is trivial. Assume now that γ runs through the origin.
Decomposing γ appropriately, if necessary, we may restrict ourselves to the case of an
analytic γ starting at the origin without returning there at any other parameter time.
Assume next that γ has infinitely many intersection points with S, and let the origin 0
be an accumulation point for int γ ∩ S. W.l.o.g.,9 we may consider, finally, γ to be the
graph of an analytic function on R, again denoted by γ . Use now the fact that two C∞
functions f1, f2 have identical Taylor coefficients at 0 if 0 is an accumulation point of
f1 = f2, to derive that γ has only zero Taylor coefficients, just because f does. Now,
analyticity implies that γ is a straight edge along the x-axis never intersecting S again.
Using this contradiction, the statement is now trivial.

If we would like to take even more quasi-surfaces into account, we may reduce the set
of paths under consideration. This might be relevant, e.g., in the case of piecewise linear
paths, although there usually also the set of manifolds is restricted to that of piecewise
linear submanifolds a priori.

The punctures leading to an S-admissible decomposition will be relevant for the
definition of Weyl operators. In particular, these operators depend on the transversality
properties between the path and the (oriented) hypersurface. Therefore, we need to
introduce a general notion for the properties an orientation should encode.

Definition 3.12. Let S be a quasi-surface of M.

• A function σS : Pgen −→ Z is called
– outgoing intersection function for S iff we have

1. σS(γ ) = 0 if γ (0) �∈ S and
2. σS(γ ) = σS(γ

′)
for all γ, γ ′ ∈ Pgen with γ ↑↑ γ ′;

– incoming intersection function for S iff we have
1. σS(γ ) = 0 if γ (1) �∈ S and
2. σS(γ ) = σS(γ

′)
for all γ, γ ′ ∈ Pgen with γ ↓↓ γ ′.

• An outgoing intersection function σ−S and an incoming intersection function σ +
S are

called compatible iff σ−S (γ ) + σ +
S (γ

−1) = 0 for all γ ∈ Pgen.

8 This, however, is no longer true if we drop the semianalyticity (for its definition see Subsect. 6.3). In fact,
consider R

2 and a smooth path γ in the closed half-plane y ≤ 0, such that γ connects (−1, 0) and (+1, 0)
and intersects the straight line δ between these two points infinitely often without sharing a full segment.
(See similar constructions, e.g., in [7,17].). Now define S to be the upper one of the two open sets in R

2

bounded by γ , by x = −1 and by x = +1. Of course, S is an embedded analytic manifold, although it is
not semianalytic in R

2. Nevertheless, δ leaves S and returns into it infinitely often. Therefore, there is no
S-admissible decomposition of δ, whence S is not a quasi-surface.

9 Otherwise, restrict the domain of γ , such that the x-component of γ̇ is non-zero everywhere. If this is not
possible, the x-component of γ̇ vanishes at t = 0. But, then γ is S-external anyway, at least locally.
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For brevity, we will denote a compatible pair (σ−S , σ +
S ) of an outgoing and an incoming

intersection function by σS and call it intersection function for S. Even more, we use
σS and σ−S synonymously. Sometimes, we write σ(S, γ ) instead of σS(γ ) to emphasize
that the intersection function may depend on quasi-surface and path as well.

Definition 3.13. Let S be a quasi-surface of M, and let σS : Pgen −→ Z be some
intersection function for S.

Then the intersection function −σS is called inverse to σS.

Definition 3.14. Let S be a quasi-surface with intersection function σS, and let γ ∈ Pgen
be some path. Assume, moreover, that there are only finitely many τi ∈ [0, 1] with
γ (τi ) ∈ S.

We say that the orientation of S coincides with the direction of γ iffσ−S (γ |[τi ,1]) = 1
for all τi �= 1 and σ +

S (γ |[0,τi ]) = 1 for all τi �= 0.

In our applications, we will, e.g., define σS(γ ) for an S-external path γ to be ±1
(depending on the direction of γ ), if its initial path intersects S transversally, and equal
to 0, otherwise:

Definition 3.15. Let S be an oriented (embedded) hypersurface in M being a quasi-
surface of M. Then we have:

1. The natural intersection function σS : Pgen −→ Z is defined by:
• σS(γ ) = 0 if γ (0) �∈ S or γ̇ (0) is tangent to S;
• σS(γ ) = ±1 if γ (0) ∈ S and γ̇ (0) is not tangent to S and some initial path of γ

lies (except γ (0)) above (below) S.
2. The topological intersection function σ top

S : Pgen −→ Z is defined as follows:

• σ
top
S (γ ) = 0 if γ (0) �∈ S or some initial path of γ is contained in S;

• σ
top
S (γ ) = ±1 if γ (0) ∈ S and no initial path of γ is contained in S and some

initial path of γ lies (except γ (0)) above (below) S.

Here, “above” and “below” refer to the orientation of S. Moreover, initial paths w.r.t.
a trivial interval are not taken into consideration. It is easy to check that this definition
is well defined. Moreover, obviously, for every orientable S there are precisely two
natural (and two topological) intersection functions corresponding to the two choices of
orientations. They coincide up to the sign.

If S is a submanifold of codimension larger than 1, there is no longer just a pair of
natural orientations. Nevertheless, in view of the applications we aim at, we may define
“natural” orientations:

Definition 3.16. Let S be some embedded submanifold of M being a quasi-surface of
M and having codimension 2 or higher.

Then an intersection function σS : Pgen −→ Z is called natural (topological) iff
there is some oriented embedded hypersurface S′ in M being a quasi-surface and having
σS as its natural (topological) intersection function.

One sees immediately that the number of natural intersection functions of such quasi-
surfaces with higher codimension may be rather large. For instance, let S be (a bounded
part of) a line in R

3. Then we may take all the full circles in R
3 having S as its diameter.

Of course, there is a continuum of such circles each having another pair of natural or
topological intersection functions.
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Definition 3.17. • A quasi-surface S′ is called quasi-subsurface of some quasi-surface
S iff S′ is contained in S.

• Let S′ be a quasi-subsurface of a quasi-surface S having intersection function σS.
Then an intersection function σS′ is called induced by σS iff σS(γ ) = σS′(γ ) for all
γ with γ (0) ∈ S′.

Definition 3.16 gives an example for the induction of intersection functions.

Lemma 3.15. The complement of a quasi-surface is a quasi-surface.

Proof. An S-admissible decomposition of an edge is also (M\S)-admissible. 
�
Lemma 3.16. If S1 and S2 are quasi-surfaces, then S1∪S2 and S1∩S2 are quasi-surfaces.

Proof. If γ is some edge, decompose each path of some S1-admissible decomposition
w.r.t. S2. It is easy to check that this leads to an S-admissible decomposition of γ with
S being S1 ∪ S2 or S1 ∩ S2. 
�
Corollary 3.17. Let S1 and S2 be quasi-surfaces with intersection functions σS1 and σS2 ,
respectively. Then σS1 +σS2 is an intersection function for S := S1 ∪ S2. If, additionally,
σS1 and σS2 coincide for all paths starting at S1 ∩ S2, then the function σS1 S2 defined by

σS1 S2(γ ) :=

⎧

⎪

⎨

⎪

⎩

σS1(γ ) if γ (0) ∈ S1,
0 if γ (0) �∈ S1 ∪ S2,
σS2(γ ) if γ (0) ∈ S2,

is an intersection function for S. It is called joint intersection function.

Obviously, the joint intersection function equals σS1 + σS2 if S1 and S2 are disjoint.
Sometimes, it is convenient to use some sort of standard decomposition of edges.

Indeed, there is a minimal decomposition.

Definition 3.18. Let S be a subset of M and γ ∈ Pgen be an edge.
An S-admissible decomposition γ of γ is called minimal iff γ ′ ≥ γ for any other

S-admissible decomposition γ ′ of γ .

In other words, γ = (γ1, . . . , γI ) is minimal iff every other S-admissible decomposition
γ ′ = (γ ′1, . . . , γ ′J ) is a refinement of γ , i.e., there are 0 = j0 < j1 < · · · < jI = J ,
such that γi equals γ ′ji−1+1 · · · γ ′ji up to the parametrization.

Lemma 3.18. If an edge γ has any S-admissible decomposition, it has also a minimal
S-admissible decomposition. Moreover, this minimal decomposition is unique up to the
parametrization of its components.

Proof. Let δ be an S-admissible decomposition of γ . Since γ equals δ1 · · · δK up to
the parametrization, the parameter domain [0, 1] of γ may be decomposed into nontri-
vial closed intervals Rk = [tk−1, tk] ⊆ [0, 1], such that each γ |Rk corresponds to δk .
Cancel now in T ′ := {t0, t1, . . . , tK } each tk �= 0, 1 with int γ |[tk−1,tk+1] ∩ S = ∅ or
int γ |[tk−1,tk+1] ⊆ S. The remaining set T = {τ0, . . . , τI } ⊆ T ′ naturally defines another
S-admissible decomposition γ = (γ1, . . . , γI ) of γ and a corresponding decomposition
of [0, 1] into intervals Pi .

Let now γ ′ = (γ ′1, . . . , γ ′J ) be any S-admissible decomposition of γ . Then each γ ′i
corresponds to some interval Q j ⊆ [0, 1] with γ |Q j = γ ′j . Assume that Q j overlaps
two different intervals Pi and Pi+1, i.e., γ (τi ) ∈ int γ ′j .
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• Let γ (τi ) ∈ S. Then int γ ′j = int γ |Q j ⊆ S, hence int γ |Pi ⊆ S and int γ |Pi+1 ⊆ S,
by admissibility. Consequently, int γ |Pi∪Pi+1 = int γ |Pi ∪ {γ (τi )} ∪ int γ |Pi+1 ⊆ S.
This implies τi �∈ T , in contradiction to the minimality of γ .

• Let γ (τi ) �∈ S. Then, analogously, we get a contradiction.

Consequently, Q j can overlap nontrivially only either Pi or Pi+1. 
�
Definition 3.19. Let S be a quasi-surface with intersection function σS, let γ be an edge
and let γ = {γi }ni=0 be its minimal S-admissible decomposition.

Then a point x ∈ M is called

• γ -puncture in S iff there is an i ∈ [1, n] with

γi−1(1) = x = γi (0) and σ +
S (γi−1)σ

−
S (γi ) > 0;

• γ -half-puncture in S iff there is an i ∈ [0, n] with

x = γi (0) and σ−S (γi ) �= 0

or

x = γi (1) and σ +
S (γi ) �= 0.

We say that γ intersects S completely transversally iff there are no S-internal edges
in the minimal S-admissible decomposition of γ and each γ -half-puncture is also a
γ -puncture.

Roughly speaking, x is a γ -puncture iff γ intersects S (w.r.t. σS) transversally at x .

3.3.2. Quasi-flux action. In this subsection, S is some quasi-surface and σS some inter-
section function for S.

Proposition 3.19. There is a unique map �S,σS : A×Maps(M,G) −→ A, such that

h�S,σS (A,d)(γ ) =
{

d(γ (0))σ
−
S (γ ) h A(γ ) d(γ (1))σ

+
S (γ ) for S-external γ

h A(γ ) for S-internal γ
.

If Maps(M,G) ∼= GM is given the product topology, then � is continuous. Moreover,
the map

�
S,σS
d : A −→ A,

given by �S,σS
d (A) := �S,σS (A, d), is a homeomorphism and preserves the Ashtekar-

Lewandowski measure for each d ∈ Maps(M,G). Finally, the inverse of�S,σS
d is given

by �S,σS
d−1 .
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Proof. • �S,σS exists uniquely and is continuous for the product topology on
Maps(M,G).
First note that QS is complete by Lemma 3.14. Let now Y := Maps(M,G) and
define

κ(γ, d) :=
{

d(γ (0))−σ
−
S (γ ) if γ is S-external

eG if γ is S-internal
.

The only nontrivial property of κ in Corollary 3.13 to be checked is κ(γ−1
1 , d) =

κ(γ2, d) for decompositions γ1γ2 of S-external γ . Observe, however, that here
γ−1

1 (0) ≡ γ1(1) ≡ γ2(0) is not contained in S, hence κ(γ−1
1 , d) = eG = κ(γ2, d).

The claim now follows from σ−S (γ ) + σ +
S (γ

−1) = 0 and Corollary 3.13.

• �
S,σS
d is a homeomorphism and leaves µ0 invariant.

This now follows from Theorem 3.12. 
�
Definition 3.20. �S,σS : A×Maps(M,G) −→ A is called quasi-flux action.

Remark. Note that �S,σS is, in general, not a group action of Maps(M,G).

But, we have

Lemma 3.20. Let S1 and S2 be two quasi-surfaces, and let d1, d2 : M −→ G be
functions commuting on S1 ∩ S2. Let d : M −→ G be any function with

d :=

⎧

⎪

⎨

⎪

⎩

d1 on S1\S2

d1d2 on S1 ∩ S2

d2 on S2\S1

If σS1 and σS2 coincide for all paths starting in S1 ∩ S2 and vanish both for S1- and
S2-internal paths, then

�
S1,σS1
d1

◦�S2,σS2
d2

= �
S1∪S2,σS1 S2
d = �S2,σS2

d2
◦�S1,σS1

d1
.

Proof. By direct calculation. 
�
Corollary 3.21. Let d1, d2 : M −→ G be two functions.

If d1 and d2 commute pointwise, we have �S,σS
d1

◦�S,σS
d2

= �S,σS
d1d2

.

Proof. Straightforward. 
�

3.4. Weyl operators. Recall that every continuous map ψ : X −→ X on a topological
space X defines a continuous pull-back map ψ∗ : C(X) −→ C(X). This map is an
isometry if ψ is surjective. If X is even a compact Hausdorff space, ψ is surjective and
µ a (finite) regular Borel measure on X with ψ∗µ = µ, then ψ∗ is a unitary operator on
L2(X, µ). This motivates

Definition 3.21. The operators

w
S,σS
d := (�S,σS

d )∗

with S being a quasi-surface, σS an intersection function and d : M −→ G being any
function are called Weyl operators.

Note that each Weyl operator is both a map on C(A) and L2(A, µ0). In fact, Proposi-
tion 3.19 gives
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Proposition 3.22. • Every Weyl operator is an isometry on C(A).
• Every Weyl operator is a unitary operator on L2(A, µ0).

Note, however, that measures, in general, lead to Weyl operators that are ill defined on the
L2-functions: For instance, let us work in the analytic category, fix some hypersurface
S and some intersection function σS . Assume now that, g running over G, we have all
Weyl operators at our disposal that are given by

wS,σS
g := wS,σS

dg
,

where dg is the constant function on M with value g ∈ G. To make all these Weyl
operators well defined as operators on L2(A, µ) for some µ, we have at least to demand
that, for each S-external edge γ (having only one end attached to S), the support of the
push-forward measure (πγ )∗µ equals G. Of course, there are many measures without
this property.

Let us now collect some additional properties of Weyl operators, again following
directly from the properties of � and the definition of Weyl operators by pull-backs.

Lemma 3.23. Let S be a quasi-surface and let d, d1, d2 : M −→ G be some functions.
Then we have (dropping always the upper indices S, σS in wS,σS

d ):

1. wd( f1 f2) = wd( f1)wd( f2) for all functions f1, f2 on A.
2. wd1wd2 = wd1d2 , if d1d2 = d2d1.

Corollary 3.24. For all quasi-surfaces S, all intersection functions σS and all functions
d : M −→ G, we have

w
S,−σS
d = wS,σS

d−1 = (wS,σS
d )−1 ≡ (wS,σS

d )∗.

The preceding corollary implies that the inversion of the orientation of a quasi-surface
leads to the adjoint Weyl operator. The uniqueness proof in Sect. 7 will heavily use this
fact.

Corollary 3.25. Let υ = {γ1, . . . , γn} be a hyph. Then

w
S,σS
d (T1 ⊗ · · · ⊗ Tn) = w

S,σS
d (T1)⊗ · · · ⊗ wS,σS

d (Tn)

for all Ti ∈Mγi and all functions d : M −→ G.

Corollary 3.17 implies

Lemma 3.26. Let S1 and S2 be disjoint quasi-surfaces with intersection functions σS1

and σS2 , respectively. Let, moreover, d1, d2 : M −→ G be some functions.
Then we have

w
S1,σS1
d1

◦ wS2,σS2
d2

= wS2,σS2
d2

◦ wS1,σS1
d1

.

Lemma 3.27. Let υ be a hyph and w be a Weyl operator for some quasi-surface S.
Then there is a hyph υ ′ ≥ υ with w(Mυ) ⊆ span Mυ ′ . If, moreover, υ contains

S-external and S-internal edges only, then w(Mυ) ⊆ span Mυ .

Proof. Choose a hyph υ ′ ≥ υ containing S-external and S-internal edges only. One
checks immediately, that w(Mυ ′) ⊆ span Mυ ′ . Using Mυ ⊆ span Mυ ′ (Lemma 3.2),
we get the assertion. 
�
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3.5. Regularity.

Proposition 3.28. Fix some quasi-surface S and some intersection function for σS. Next,
let �0 be a set of sequential Maps(M,G)-functions, such that10

prx ◦ λ0 : dom λ0 −→ G

is sequentially continuous for every x ∈ M and each λ0 ∈ �0. Finally, assign to each
λ0 some

λ : dom λ0 −→ W,

y �−→ w
S,σS
λ0(y)W being the set of Weyl operators, and collect all such λ into �.

Then

λ( · )ψ : dom λ0 −→ Haux ≡ L2(A, µ0)

is continuous for all ψ ∈ Haux and each λ ∈ �.

Proof. Fix someλ ∈ �with correspondingλ0 ∈ �0 and recall that sequential continuity
equals continuity, if the domain is sequential. To avoid cumbersome notation, we write
shortly wy instead of wS,σS

λ0(y)
.

• Of course, wy(1) = 1 for all y.
• Let γ be an edge and T ∈Mγ some gauge-variant spin network state over γ .

– If γ is internal, then wy(T ) = T for all y, hence y �−→ wy(T ) is continuous.
– If γ is external, then with T = √dim φφk

l and after a straightforward calculation,
we have

‖wy(T )− wy′(T )‖2
Haux

= 2− 2 Re φk
k

([λ0(y
′)](γ (0))σ−S (γ ) [λ0(y)](γ (0))−σ−S (γ )

) ·
· φl

l

([λ0(y)](γ (1))−σ+
S (γ ) [λ0(y

′)](γ (1))σ+
S (γ )

)

≡ 2− 2 Re φk
k

([prγ (0) ◦ λ0](y′)σ−S (γ ) [prγ (0) ◦ λ0](y)−σ−S (γ )
) ·

· φl
l

([prγ (1) ◦ λ0](y)−σ+
S (γ ) [prγ (1) ◦ λ0](y′)σ+

S (γ )
)

.

(There is no summation over k and l.) Since, by assumption each prx ◦ λ0 is a
continuous mapping from dom λ0 to G, we get ‖wy(T )−wy′(T )‖Haux → 0 for
y → y′, implying the desired continuity of y �−→ wy(T ).

• Let υ contain external and internal edges only. Let, moreover, T = T1 ⊗ · · · ⊗ TY
be in Mυ . Then we have

‖wy(T )− wy′(T )‖2
Haux

= 2− 2 Re 〈wy T, wy′T 〉Haux

= 2− 2 Re 〈wy T1 ⊗ · · · ⊗ wy TY , wy′T1 ⊗ · · · ⊗ wy′TY 〉Haux

= 2− 2 Re
∏

i
〈wy Ti , wy′Ti 〉Haux

→ 2− 2 Re
∏

i
〈wy′Ti , wy′Ti 〉Haux (wy Ti → wy′Ti by the preceding step)

= 0
10 Here, prx : Maps(M,G) −→ G assigns to each function from M to G its value in x .
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for y → y′. The factorization of the scalar products was possible, becausewy leaves
the span of (non-trivial) matrix functions over γi invariant and because such spans
are orthogonal w.r.t. µ0 for paths in a hyph.

• Let now T ∈ MSN be an arbitrary gauge-variant spin network function, i.e., there
is a hyph υ with T ∈Mυ . Then there is some hyph υ ′ ≥ υ containing external and
internal edges only. Since Mυ ⊆ span Mυ ′ by Lemma 3.2, wy(T ) → wy′T for
y → y′.

• Now, Lemma A.1 gives the proof: The span of MSN = ⋃

υ Mυ is dense in
L2(A, µ0), and ‖wy‖ = 1 for all y by unitarity. 
�

A typical example is given by the continuous (or differentiable) functions w.r.t. the
supremum norm:

Definition 3.22. Let S be some quasi-surface and σS some intersection function for S.
Now let �p,S,σS for p ∈ N ∪ {∞, ω} contain precisely all mappings

w
S,σS· : C p(M,G) −→ W,

d �−→ w
S,σS
d

where C p(M,G) is equipped with the supremum norm on S.

We now may transfer this result to one-parameter subgroups. Using the one-parameter
subgroups on G induced by the elements of the Lie algebra g, we have

Corollary 3.29. Let d : M −→ g be a (not necessarily continuous) function, and define
Ed : R −→ Maps(M,G).

t �−→ (etd(x))x∈M
Then we have:

1. Ed(t1)Ed(t2) = Ed(t1 + t2) for all t1, t2 ∈ R.
2. prx ◦ Ed is continuous for every x ∈ M.
3. The one-parameter subgroup

t �−→ w
S,σS
Ed (t)

is strongly continuous w.r.t. to L2(A, µ0) for each quasi-surface S with intersection
function σS.

Proof. The first two assertions are trivial. To see the strong continuity, apply Proposi-
tion 3.28 to the case �0 := {Ed : R −→ Maps(M,G)}. 
�

3.6. Graphomorphisms. One of the particular features of quantum geometry is its inva-
riance w.r.t. diffeomorphisms of M . More precisely, diffeomorphisms act naturally on
the paths inducing a µ0-invariant action on A and, consequently, a unitary action on
Haux. The question remains, what kind of diffeomorphisms are to be admitted: analytic,
piecewise analytic, smooth or something else? Anyway, we will postpone this discussion
to Sect. 4 and consider here only some sort of minimal requirements. For this, let us
again fix some smoothness class for the manifold and the paths in it.

Definition 3.23. A map ϕ : M −→ M is called graphomorphism iff ϕ is bijective and
induces a groupoid isomorphism on P . [13]
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Here, ϕ(γ ) := ϕ ◦ γ . Graphomorphisms have a convenient characterization [13]:

Lemma 3.30. A bijection ϕ on M is a graphomorphism iff ϕ and ϕ−1 map edges to
Pgen.

The action of graphomorphisms on P can be lifted to an action on A. In fact, each
graphomorphism ϕ defines via

[ϕ(A)](γ ) := h A(ϕ
−1 ◦ γ ) for all γ ∈ P

a map from A to Maps(P,G), again denoted by ϕ. We have

Proposition 3.31. Every graphomorphism ϕ maps A homeomorphically to A.

Proof. Of course, ϕ maps A to A. Moreover, πγ ◦ ϕ = πϕ−1◦γ is continuous for all
γ ∈ P . Hence, ϕ is continuous. The proof now follows, since ϕ ◦ ϕ−1 is the identity on
A. 
�
Proposition 3.32. The Ashtekar-Lewandowski measure µ0 is ϕ-invariant for all gra-
phomorphisms ϕ.

Proof. This follows, because for all hyphs υ,

(πυ)∗(ϕ∗µ0) = (πϕ−1◦υ)∗µ0 = µ#(ϕ−1◦υ)
Haar = µ#υ

Haar = (πυ)∗µ0.


�
Definition 3.24. For each graphomorphism ϕ define αϕ to be the pull-back of ϕ−1.

Proposition 3.33. For every graphomorphism ϕ,
• αϕ is an isometry on C(A);
• αϕ is a unitary operator on L2(A, µ0).

The map ϕ �−→ αϕ is even a representation of the group of graphomorphisms on
L2(A, µ0), because αϕ1◦ϕ2 = αϕ1 ◦ αϕ2 and αϕ−1 = α−1

ϕ .11

Graphomorphisms do not only act on graphs, but also on quasi-surfaces, intersection
and other functions.

Definition 3.25. Let ϕ be a graphomorphism. Then we set:
• ϕ(S) := ϕ ◦ S for every quasi-surface S;
• ϕ(d) := d ◦ ϕ−1 for every function d : M −→ G;
• [ϕ(σ)](S, γ ) := σ(ϕ−1(S), ϕ−1(γ )) for every intersection function σ .

We, therefore, will have to guarantee that admissible homeomorphisms do not only
preserve the set of paths under consideration, but also that of quasi-surfaces, and have
to avoid ill-defined intersection functions – in particular, if we aim at an “intrinsic”
assignment of intersection functions to quasi-surfaces. All that will be provided by
using stratified analytic isomorphisms as to be discussed below.

Directly from the definitions, we get finally

Proposition 3.34. Let ϕ : M −→ M be a graphomorphism, S a quasi-surface, σ an
intersection function and d : M −→ G a function. Then we have

w
ϕ(S),ϕ(σ )
ϕ(d) = αϕ(w

S,σ
d ) ≡ αϕ ◦ wS,σ

d ◦ α−1
ϕ .

11 Note that we did not care about the corresponding covariance property for the Weyl operators. In fact,
there w is given by the pull-back of �, not of �−1. Since, however, the �-transforms do not form a group,
that does not matter.
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3.7. Generalized gauge transforms. Any gauge theory incorporates gauge invariance.
Therefore, we close this section with a few remarks on gauge transformations and, more
general, bundle automorphisms.

Definition 3.26. The elements of G := Maps(M,G) are called generalized gauge
transforms.12 G is given the product topology inherited from the canonical isomor-
phism Maps(M,G) ∼= GM and its group structure is given by pointwise multiplication.

Proposition 3.35. G is a topological group and acts continuously on A via

h A◦ g(γ ) := g(γ (0))−1 h A(γ ) g(γ (1)) for all γ ∈ P .

Proposition 3.36. The Ashtekar-Lewandowski measure µ0 is invariant w.r.t. all gene-
ralized gauge transforms.

Definition 3.27. For each generalized gauge transform g define β g on functions on A
by

(β g f )(A) := f (A ◦ g).

Observe that β g1◦ g2
= β g1

◦ β g2
and β g−1 = β−1

g .

Proposition 3.37. • g �−→ β g is a representation of G on C(A) by isometries.
• g �−→ β g is a representation of G on L2(A, µ0) by unitaries.

Generalized gauge transforms do also act on the G-valued functions labelling the
quasi-surfaces.

Definition 3.28. Let g be a generalized gauge transform. Then we set:

• g(d) := g · d · g−1 for every function d : M −→ G.

Again, directly from the definitions, we get

Proposition 3.38. Let g : M −→ M be a generalized gauge transform, S a quasi-
surface, σ an intersection function and d : M −→ G a function. Then we have

w
S,σ
g(d) = β g(w

S,σ
d ) ≡ β g ◦ wS,σ

d ◦ β−1
g .

3.8. Bundle automorphisms. Up to now, we have widely ignored the bundle structure
of the gauge theory. Without a real need, we tacitly assumed to deal with a trivialized
bundle, as we focused on the manifold M and the structure group G only. Of course,
it made the notations simpler and can, moreover, be justified a posteriori: A contains
the C p connections of any G-principal bundle over M , independently from the bundle
we started from. Similarly, G contains all C p gauge transforms in any such bundle. But,
conceptually, it is much more desirable to include the full bundle structure. Then we
would also like to include the full group of bundle automorphisms. Note, here, that given
any bundle automorphism θ : P −→ P of the G-bundle P over M , we may extract
from it a diffeomorphism ϕθ : M −→ M via

ϕθ ◦ prM = prM ◦ θ,
12 Starting from Sect. 4, we will usually drop the word “generalized” for simplicity.
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where prM denotes the canonical projection prM : P −→ M . Moreover, the (smooth)
gauge transforms correspond to vertical automorphisms; these are the bundle automor-
phisms with ϕθ = idM .

Nevertheless, the full information on any (possibly stratified) C p bundle automor-
phism can be encoded in a (again, possibly stratified) C p diffeomorphism and a genera-
lized gauge transform (even of any other bundle). The only danger arising from taking all
the generalized gauge transforms of Subsect. 3.7 is to take too many gauge transforms.
However, observe that, at least for the piecewise analytic category, the set of gauge orbits
A/G is densely embedded into A/G and no two piecewise analytic connections fall into
the same equivalence class by moding out the group of gauge transforms [18].

Finally, as it will turn out, the diffeomorphisms and the gauge transforms will play
different rôles in the following proofs. Therefore, to make the basic ideas clearer and to
sometimes allow for relaxed assumptions in the assertions, we will refrain from conside-
ring the fully automorphism invariant treatment of the Weyl algebra. Thus, w.l.o.g., we
may pragmatically consider the bundle-automorphism invariance given by implemen-
ting both diffeomorphism and gauge invariance. The translation into the fully invariant
language has to be left to the interested reader.

4. Weyl Algebra of Quantum Geometry

4.1. Structure data. In what follows, we are going to apply the above definitions and
results to quantum geometry. Usually, this means to use piecewise analytic paths γ and
oriented hypersurfaces S in M , whereas the intersection functions encode whether γ
intersects S transversally or not and how its direction is related to the orientation of S.
Moreover, (piecewise) analytic diffeomorphisms act on these objects. However, is it
obvious that we should consider precisely these ingredients?

Before we discuss this question, let us collect these assumptions to avoid cumbersome
notation.

Definition 4.1. The structure data of the theory under consideration contain:

• a manifold M ;
• a Lie group G;
• a smoothness class used for the definition of the set P of paths in M,
• a subset S of the set of quasi-surfaces in M,
• for each S ∈ S a subset �(S) of the set of intersection functions for S,
• for each S ∈ S a subset �(S) of the set of functions from M to G,
• a subset E of the set G of gauge transforms acting covariantly on �;
• a subset D of the set of graphomorphisms on M that leave S invariant and act

covariantly on � and �;

Indeed, at first glance, there seems to be an enormous freedom in choosing structure
data of a theory. However, there are several antagonists in the game. For instance, if we
would enlarge P , we might have to reduce S, simply because we have to guarantee that
there are at most finitely many (genuine) intersections of paths and quasi-surfaces. In fact,
this practically excludes the choice of the smooth category for the paths: There are even
analytic submanifolds having an infinite number of isolated transversal intersections
with smooth paths. Therefore, we are – from the mathematical, technical point of view
– quite forced to admit at most (piecewise) analytic paths. This however reduces the
number of graphomorphisms inϕ. Namely, they have to map analytic paths to (piecewise)
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analytic ones. This would lead directly into conflicts, if general smooth diffeomorphisms
were allowed. They have to be “analyticity preserving” – at least for one-dimensional
submanifolds. There are indeed classes of homeomorphisms having this property: At
first, of course, analytic diffeomorphisms fulfill this requirement. However, this will not
be sufficient for two reasons: On the one hand, analyticity usually implies high non-
locality – a feature not desired in gravity for physical reasons. On the other hand, in the
sequel, the proofs will, in general, crucially depend on the locality for technical reasons
as we will see later. Thus, some sort of piecewise analytic diffeomorphisms are to be
admitted. In a natural way, this leads to stratified diffeomorphisms, because they map
semianalytic sets (disjoint unions of analytic submanifolds forming stratifications) into
semianalytic sets.

Next, we have to take care of the intersection functions. Given some oriented subma-
nifold, say, a hypersurface, we would like to use this orientation to define such a function.
However, this might lead to problems again: Using piecewise analytic diffeomorphisms,
it may happen that a surface (including its orientation) is kept invariant, but an originally
transversally intersecting path may now be mapped to a tangential one.13 This would
contradict the concept that the intersection function encodes the transversality properties
of a surface and its orientation, i.e., is assigned naturally and uniquely to an oriented
surface. Of course, in contrast to the previous arguments, this rather is a conceptual
demand and not a technical one. Moreover, it can be overcome using a slightly more
special kind of piecewise analytic diffeomorphisms, as we will see later.

Third, the selection of functions is to be discussed. Since we have argued that mostly
analytic (or piecewise analytic) objects are to be used, we could restrict ourselves again
to (piecewise) analytic functions (at least for the restrictions to the respective surface).
However, although this is possible, we may consider more general classes. In particular,
after decomposing a surface into several submanifolds, we may admit functions that are
analytic only on these submanifolds, but do not satisfy any continuity condition at their
“boundaries”. In fact, assume, e.g., that we are given a 2-surface S and divide it by a
line S0 into two pieces S1 and S2 plus S0 (like the interior of a circle is divided by a
diameter). We now want to label S on each Si by some analytic function di . We may
take the Weyl operator w0 for S and d0, then w j0 for S j with (d0)

−1, and, finally, w j
for S j and d j ( j = 1, 2). Now, w ◦ w10 ◦ w20 ◦ w1 ◦ w2 is the Weyl operator for S
with a function whose restriction on each Si is di . We should remark that this way one
may even define submanifolds with codimension 2 or larger to be (quasi-)surfaces. This,
however, brings back the problem that the intersection function is not necessarily given
directly by the orientation of the submanifold itself: the transversality between paths
and such lower-dimensional submanifolds would, in general, be destroyed already by
analytic diffeomorphisms. Thus, one should restrict oneself to hypersurfaces (or at least
semianalytic sets of pure codimension 1) and control lower-dimensional surfaces by
including labellings of hypersurfaces with functions d that are nontrivial only on these
“sub”-surfaces. Or, equivalently, one may give lower-dimensional surfaces orientations
that are induced by hypersurfaces containing them. We will exploit this idea. Anyway,
after all, it does not seem necessary to impose very strong smoothness restrictions on
�(S) from the conceptual point of view. Nevertheless, as we will see, there will be some
technical difficulties that lead to restrictions.

13 Let M be R
2 and divide M by the two lines x = ±1 into three open parts and the two lines. Now define ϕ

on the open strip between these two lines by ϕ(x, y) := (x, y+
√

1− x2) and let ϕ be the identity otherwise. Of
course, ϕ is continuous everywhere and an analytic diffeomorphism on each of these five parts. Nevertheless,
the path γ with γ (t) = (t, 0) is transversal w.r.t. x = 1, but ϕ(γ ) is tangent to it.
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To summarize, in what follows we will always assume to work with “nice” structure
data having the following minimal properties:

Definition 4.2. The structure data are called nice iff

• M is an at least two-dimensional analytic manifold;
• G is a nontrivial, connected compact Lie group;
• P consists of all piecewise analytic paths in M;
• S contains at most the stratified analytic sets in M;
• �(S) contains at least the natural14 intersection functions of S;
• �(S) contains at least the constant functions on M;
• E contains at least the trivial gauge transform;
• D contains at most the stratified analytic diffeomorphisms in M.

The requirements regarding regularity will be discussed in Subsect. 4.3. The precise
definitions of stratified objects will be given in Sect. 6. Note, that whether we consider
closed manifolds only or include open ones, is not decided here. The remaining “fine-
tuning” will be made if needed.

4.2. Weyl algebra. Assume we are working with some arbitrary, but fixed “consistent”
structure data. We define

W :=
〈
⋃

S∈S
⋃

σS∈�(S)
⋃

d∈�(S){w
S,σS
d }

〉

and set

W ′ :=
〈
⋃

ϕ∈D{αϕ}
〉

and

W ′′ :=
〈
⋃

g∈E {β g}
〉

.

Definition 4.3. The C∗-subalgebra A := A(W, µ0) of B(L2(A, µ0)), generated by
C(A) and W , is called Weyl algebra of quantum geometry.

Definition 4.4. • ADiff := A(W∪W ′, µ0)denotes the C∗-subalgebra of B(L2(A, µ0))

generated by A and W ′.
• AAuto := A(W ∪W ′ ∪W ′′, µ0) denotes the C∗-subalgebra of B(L2(A, µ0)) gene-

rated by A, W ′ and W ′′.

Definition 4.5. Let π ′ be a representation of ADiff on some Hilbert space H.

14 In contrast to Definition 3.16, we consider an intersection function on S with codimM S ≥ 2 to be natural
iff it is induced by an embedded hypersurface S′ that is contained in S, not just in M . Moreover, one can directly
extend the definition of natural intersection functions to stratified sets, e.g., using triangulations. However,
since, at the end, we are interested mostly in the orientation of genuine submanifolds (possibly with boundary)
only, we do not consider this issue in this paper in detail. Thus, at the moment, the statement “�(S) contains
at least the natural intersection functions of S” only refers to such submanifolds S.
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• ψ ∈ H is called diffeomorphism invariant (w.r.t.π ′) iffπ ′(αϕ)ψ = ψ for all ϕ ∈ D.
• π ′ is called diffeomorphism invariant iff it has a diffeomorphism invariant vector.

Often we write “D-invariant” instead of “diffeomorphism invariant”.

Analogously, we speak about D-natural representations meaning W ′-natural represen-
tations.

Definition 4.6. Let π ′′ be a representation of AAuto on some Hilbert space H.

• ψ ∈ H is called automorphism invariant (w.r.t. π ′′) iff π ′′|ADiff is diffeomorphism
invariant and π ′′(β g)ψ = ψ for all g ∈ E .

• π ′′ is called automorphism invariant iff it has an automorphism invariant vector.

Usually we write “D-E-invariant” instead of “automorphism invariant”.

Definition 4.7. π0 denotes the fundamental (i.e., identical) representation of A on
L2(A, µ0) (and, analogously, that of ADiff and AAuto, respectively).

Since 1 ∈ L2(A, µ0) is already cyclic for C(X) ⊆ A, and αϕ(1) equals 1 for all ϕ ∈ D
as well as β g(1) does for all g ∈ E , we have

Proposition 4.1. 1 is a cyclic, diffeomorphism and automorphism invariant vector for
π0.

The irreducibility of π0 will be proven separately in Sect. 5.

4.3. Regularity. One of our goals in this paper is a uniqueness proof for certain repre-
sentations of A. However, we will only be able to do this for certain regularity conditions.
It is now reasonable to presuppose as little of them as possible. In other words, R which
encodes the one-parameter subgroups to be mapped to weakly continuous ones, should
be chosen as small as possible. As we will see, it will be sufficient to include that all
t �−→ wt = w

S,σS
d(t) with d(t) := etd ∈ �(S) for constant d : M −→ g. Of course,

more regularity, hence larger R, will not reduce uniqueness, but may even lead to the
case that there is no such regular representation at all. Therefore, we are faced with some
maximality conditions as well. First of all, we may at most allow for those one-parameter
subgroups that map to the Weyl operators given by the structure data. Typically such
restrictions are induced by the functions d at our disposal. For instance, let G, M and
S be not simply connected, allow �(S) to contain continuous functions only, and let
d : M −→ G have nontrivial mapping degree. Then, in general, it is not possible to
deform d in�(S) continuously into the trivial function on G. This shows that it need not
be possible to connect any Weyl operator to the identity within the limits of the structure
data. Of course, using non-continuous d, it is always possible: Choose at every point x
in M some d(x) ∈ g with ed(x) = d(x) and definewt := wS,σS

Ed (t)
for all t . But, moreover,

even if we might find for each t some allowed d(t) with d(t1 + t2) = d(t1)d(t2), the
corresponding maps t �−→ (d(t))(x) need not be continuous at all. The reason behind
this is that the functional equation f (x + y) = f (x)+ f (y) has non-continuous, “cloudy”
solutions. Then the corresponding one-parameter subgroups of Weyl operators are no
longer weakly continuous, as one immediately checks. Therefore, we should restrict
ourselves indeed to the functions generated by the Lie algebra functions. We summarize
these considerations in
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Definition 4.8. Let S contain some quasi-surfaces in M and, for each S ∈ S, let �(S)
contain intersection functions for S and �(S) contain functions from M to G.

A set R of one-parameter subgroups in the set of Weyl operators is called
full-consistent with S, {�(S)} and {�(S)} iff for every element t �−→ wt in R there
is some function d : M −→ g and some quasi-surface S ∈ S with intersection function
σS ∈ �(S), such that d(t) := etd ∈ �(S) and wt = wS,σS

d(t) for all t .
R is called consistent with S, {�(S)} and {�(S)} iff R equals 〈R0〉 for some R0

being full-consistent with S, {�(S)} and {�(S)}.
After all, we enlarge the structure data above by some subset R of the set of one-

parameter subgroups in W .

Definition 4.9. The enlarged structure data are called nice iff the structure data are nice
and

• R contains at most the one-parameter subgroups of Weyl operators consistent with
S, {�(S)}, {�(S)} and at least those consistent with S, {�(S)} and the constant
functions.

Using Corollary 3.29 and Proposition 3.28, we have for nice enlarged structure data

Proposition 4.2. 1. π0 is regular w.r.t. R.
2. π0 is �-regular with � given in Proposition 3.28.

In particular, π0 is �p,S,σS -regular for all p ∈ N ∪ {∞, ω}, S ∈ S and σS ∈ �(S).

5. Irreducibility

In this section we are going to prove the irreducibility of A for nice structure data. [15]
Additionally, we assume that S contains at least the closed, oriented hypersurfaces of
M . Since we do not need diffeomorphisms, there will be no restrictions for D. Note
that given the irreducibility of the Weyl algebra of quantum geometry for these structure
data, we get it immediately for all larger structure data. In fact, since the Weyl algebra
cannot shrink if the structure data get larger, the commutant of the Weyl algebra cannot
get larger in this case. Since, however, we will see it is already trivial for the assumptions
above, the enlarged Weyl algebra is again irreducible.

5.1. Nice intersections. In this subsection, properties of intersections between graphs
and surfaces, together with their implications for certain scalar products are studied.

Definition 5.1. Let γ be an edge and let γ be a (possibly trivial) graph.
A surface S is called (γ, γ )-nice iff

1. S is naturally oriented;
2. S and (the image of) γ are disjoint; and
3. γ intersects S in precisely one interior point x of γ transversally, such that the

orientation of S coincides with the direction of γ .

In this case, x is called puncture of S and (γ, γ ).

Lemma 5.1. Let γ be an edge and γ be a (possibly empty) graph, such that γ and (the
edges in) γ intersect at most at their end points.

Then for every interior point x of γ , there is a (γ, γ )-nice hypersurface S with
corresponding puncture x.
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Note that it does not matter whether we restrict ourselves to the case of closed surfaces
or to that of open ones.

Proof. If we admit open surfaces S, then the assertion is trivial, since we may always
find some neighbourhood of x disjoint to γ , where γ is a straight line. Take for S some
sufficiently small hyperplane “orthogonal” to γ and that contains x .

Let us, therefore, consider the case of closed surfaces. Roughly speaking, the problem
here is that if γ “enters” S at some point, it has to “leave” it somewhere else. Thus, we
have to ensure that at only one point this intersection is transversal. For that purpose,
we consider some (real) analytic curve c in R

2 that has an inflection point, such that
the corresponding tangent t intersects c in precisely one other point y transversally.
Such curves exist – take, e.g., an appropriate Cassini curve [39]. As in the case of open
surfaces, consider now some neighbourhood of x isomorphic to R

n ⊇ R
2 and disjoint

with γ , such that x is mapped to y and such that (the image of) γ coincides with t in
some sufficiently large neighbourhood of y. Let now S be the rotational surface given
by c and, e.g., the x1-axis in R

2 ⊆ R
n . By construction, S has the required properties.

(If the direction of γ and the orientation of S at the puncture do not coincide, simply
mirror S at the hyperplane “orthogonal” to γ .) 
�
Lemma 5.2. Let γ be an edge and let γ be some (possibly trivial) graph, such that γ
and the edges in γ intersect each other at most at their end points. Moreover, let S,
S1 and S2 be (γ, γ )-nice surfaces, such that the corresponding punctures are different.
Finally, let T be a gauge-variant spin network function of the form T = (Tφ,γ )mn ⊗ T ′
with T ′ ∈Mγ .

Then we have

〈wS1
g1
(T ), wS2

g2
(T )〉 = χφ(g2

1) χφ(g
2
2)

(dim φ)2

for all g1, g2 ∈ G. Moreover, if φ is abelian15, we have

wS
g (T ) = φ(g2) T = χφ(g2) T

for all g ∈ G.

Here, wS
g is a shorter notation for wS,σS

dg
with σS given by the natural orientation of S

and with dg being the function on M constantly equal g ∈ G.

Proof. First of all, note that wS
g (T ) = wS

g ((Tφ,γ )
m
n ) ⊗ T ′ for all g ∈ G and for all

(γ, γ )-nice S. Assume now that t1 < t2, where γ (t j ) is the intersection point of S j
and γ . Decompose γ into the three segments γ1, γ0 and γ2 according to the parameter
intervals [0, t1], [t1, t2] and [t2, 1], respectively. Then we have

(Tφ,γ )
m
n = (Tφ,γ1γ0γ2)

m
n =

1

dim φ
(Tφ,γ1)

m
p ⊗ (Tφ,γ0)

p
q ⊗ (Tφ,γ2)

q
n .

15 Recall that a representation is called abelian (or linear) iff its character χφ : G −→ C is multiplicative,
i.e., χφ(g1)χφ(g2)=χφ(g1g2) for all g1, g2 ∈ G. An irreducible abelian representation of a connected
compact group is necessarily one-dimensional, i.e., φ(g) = χφ(g)1 with |χφ(g)| = 1 for all g ∈ G. Moreover,
every compact connected G equals (Gss × Gab)/N for some semisimple Gss, some torus Gab and some
discrete N being central in Gss×Gab. Hence, for every irreducible representation φ of G there are irreducible
representationsφss andφab of Gss and Gab, respectively, such thatφ◦π = φss⊗φab withπ : Gss×Gab −→ G
being the canonical projection. Then φ is abelian iff φss is trivial.
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Consequently,

wS1
g1
((Tφ,γ )

m
n ) =

1

dim φ
(Tφ,γ1)

m
r1
φ(g1)

r1
p ⊗ φ(g1)

p
s1(Tφ,γ0)

s1
q ⊗ (Tφ,γ2)

q
n

= 1

dim φ
φ(g2

1)
r1
s1
(Tφ,γ1)

m
r1
⊗ (Tφ,γ0)

s1
q ⊗ (Tφ,γ2)

q
n

and, analogously,

wS2
g2
((Tφ,γ )

m
n ) =

1

dim φ
φ(g2

2)
r2
s2
(Tφ,γ1)

m
p ⊗ (Tφ,γ0)

p
r2 ⊗ (Tφ,γ2)

s2
n .

Since γ1, γ0, γ2 and γ are independent, we get

〈wS1
g1

T, wS2
g2

T 〉
= 〈wS1

g1
((Tφ,γ )

m
n ), w

S2
g2
((Tφ,γ )

m
n )〉 · 〈T ′, T ′〉

= 1

(dim φ)2
φ(g2

1)
r1
s1 φ(g

2
2)

r2
s2
·

· 〈(Tφ,γ1)
m
r1
, (Tφ,γ1)

m
p 〉 〈(Tφ,γ0)

s1
q , (Tφ,γ0)

p
r2〉 〈(Tφ,γ2)

q
n , (Tφ,γ2)

s2
n 〉

= 1

(dim φ)2
φ(g2

1)
r1
s1 φ(g

2
2)

r2
s2
δr1 p δ

s1 pδqr2 δ
qs2

= 1

(dim φ)2
trφ(g2

1) trφ(g2
2).

If t1 > t2, the calculation is completely analogous.
The assertion wS

g (T ) = φ(g2) T for abelian φ follows directly from the definition
ofwS

g . Recall that every abelian representation is one-dimensional and maps G to U (1)1.

�

5.2. Irreducibility proof.

Theorem 5.3. The Weyl algebra A of quantum geometry is irreducible on L2(A, µ0).

Before proving the theorem, we set L∞ := L∞(A, µ0) and L2 := L2(A, µ0).

Proof. We are now going to prove the irreducibility of A by verifying that the commutant
of A consists of scalars only [12].

Since C(A) ⊆ A, we have A′ ⊆ C(A)′ = L∞ for the commutants [36]. Next, one
checks immediately that w( f )w(ψ) = w( fψ) for all w ∈ W , f ∈ L∞ and ψ ∈ L2.
In other words, w( f ) ◦ w = w ◦ f in B(L2).

Let now f ∈ A′ ⊆ L∞. Then we have f ◦ w = w ◦ f = w( f ) ◦ w for all w ∈ W ,
hence w( f ) = f in L∞ ⊆ L2 by invertibility of w. Consider additionally some non-
trivial gauge-variant spin network function T . It can be written as T = (Tφ,γ )mn ⊗ T ′
with nontrivial φ, where T ′ ∈Mγ is a (possibly trivial) spin network function, such that
γ and the edges in γ intersect at most at their end points. By w( f ) = f and w∗ ∈ W
for all w ∈W , we have 〈T, f 〉 = 〈T, w∗( f )〉 = 〈w(T ), f 〉 and, therefore,

〈w(T ), f 〉 = 〈T, f 〉 = 〈w′(T ), f 〉
for all w,w′ ∈W .
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1. Let φ be abelian.
Choose some (γ, γ )-nice surface S by Lemma 5.1. Then we havewS

g (T ) = φ(g2)T
for all g ∈ G, by Lemma 5.2. Consequently,

〈T, f 〉 = 〈wS
g (T ), f 〉 = φ(g2) 〈T, f 〉.

Since φ is nontrivial, there is some g ∈ G with φ(g2) �= 1. Hence, 〈T, f 〉 = 0.
2. Let φ be nonabelian.

Since G is compact and connected, there is a square root for each element of G.
Moreover, by [20], each nonabelian irreducible character has a zero. Hence, there
is a g ∈ G with χφ(g2) = 0.
Choose now, by Lemma 5.1, infinitely many (γ, γ )-nice surfaces Si , whose punc-
tures with γ are mutually different. Then, by Lemma 5.2, we have

〈wSi
g (T ), w

S j
g (T )〉 = χφ(g2) χφ(g2)

(dim φ)2
= 0

for i �= j , due to the choice of g. Since wSi
g is unitary, {wSi

g (T )} is an orthonormal
system. Using

〈wSi
g (T ), f 〉 = 〈wS j

g (T ), f 〉

for all i, j , this implies 〈wSi
g (T ), f 〉 = 0 and thus 〈T, f 〉 = 0.

Altogether, we have proven 〈T, f 〉 = 0 for all nontrivial gauge-variant spin network
functions T . Therefore, f ∈ C 1, hence A′ = C 1. 
�
Corollary 5.4. ADiff and AAuto are irreducible.

6. Stratified Diffeomorphisms

As we have mentioned in Sect. 4 and we will see in the proofs, analytic graphomorphisms
will not always be sufficient for studying representations of A. A natural extension
is stratified analytic isomorphisms. The theory of stratifications we will use here is
motivated by [21]. The first definition will be quoted almost literally, however, that of
stratified maps is slightly sharpened. Although we will later apply the whole framework
to the analytic category, we assume at this point only that we have fixed some smoothness
category C p with p ∈ N or p = ∞ or p = ω.

Let M and N be C p manifolds.

Definition 6.1. Let A be some subset in M.

• A stratification M of M is a locally finite, disjoint decomposition of M into connected
embedded C p submanifolds Mi of M (the so-called strata), such that

Mi ∩ ∂M j �= ∅ =⇒ Mi ⊆ ∂M j and dim Mi < dim M j

for all Mi ,M j ∈M.
• A stratification M of M is called stratification of A in M iff A is the union of certain

elements in M.
• A is a stratified set (w.r.t. M) iff there is a stratification of A in M.
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Definition 6.2. Let M1 and M2 be two stratifications of some subset of A.
Then M1 is called finer than M2 iff each stratum in M2 is a union of strata in M1.

Definition 6.3. A map f : M −→ N is called

• stratified map iff f is continuous and there are stratifications M and N of M and N,
respectively, such that for every Mi ∈ M there is an open Ui ⊆ M and a C p

differentiable map fi : Mi ⊆ Ui −→ N with

Mi ⊆ Ui , fi |Mi = f |Mi , fi (Mi ) ∈ N , rank f |Mi = dim f (Mi );

• stratified monomorphism iff, additionally, f |Mi is injective;
• stratified isomorphism16 iff, additionally, f is a homeomorphism and each fi :

Ui −→ fi (Ui ) is a C p diffeomorphism.

If we drop the above conditions that Ui is open and that Mi is contained in Ui , we speak
about weakly stratified maps.

Definition 6.4. A stratified map f : M −→ M is called localized iff f is the identity
outside some compact subset of M.

Definition 6.5. Two stratified sets S1 and S2 in M are called (weakly) strata equivalent
iff there is a product of localized (weakly) stratified isomorphisms mapping S1 onto S2.
They are called oriented-strata equivalent iff there is such a product mapping additio-
nally the orientation of S1 to that of S2.

6.1. Localized Stratified Diffeomorphisms in Linear Spaces. In the sections below, we
will have to study the local transformation behaviour of geometric objects in manifolds.
To get prepared for this, we will now investigate first the corresponding problems in
linear spaces. In particular, we will be able to rotate, scale and translate these objects
locally, i.e., by transformations that are the identity outside some bounded region. This
guarantees that we may lift the corresponding operations to manifolds.

We recall that a q-simplex S in R
k with q ≤ k is the closed convex hull of q +1 points

in general position. The corresponding interior of S is called open simplex. Moreover,
the (open) faces of S are the (open) simplices spanned by subsets of these q + 1 points.
Additionally, we denote by Bq

r (x), or shortly Br (x), some closed q-dimensional ball in
R

k with radius r around x . If x is the origin, we simply write Br . We remark that, in
this subsection, nice orientations of some simplex or ball S will always mean an orien-
tation induced by that of some hyperplane (i.e., not by some more general hypersurface
as for natural orientations) containing S. This implies, e.g., that the nice orientation
of a q-simplex S is always induced by some (k − 1)-simplex having S as one of its
faces.

Finally, let us remark that in most of the statements of this subsection we will use
0 as a base point. It should be clear that all these statements hold analogously if 0 is
replaced by any point in R

k.

16 Sometimes we will use “stratified diffeomorphism” synonymously.
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6.1.1. Strata equivalence of star-shaped regions.

Lemma 6.1. Let k be a positive integer and let U be an open subset of R
k not

containing 0. Next, let a, b, p : U −→ R be C p-functions, such that both a, p and
pa + b are positive on U. Moreover, for every λ > 0, let

p(λx) = λp(x),

a(λx) = a(x),

b(λx) = b(x),

whenever both λx and x are contained in U. Finally define ρ, ρinv : U −→ R by

ρ := a +
b

p
and ρinv := 1

a

(

1− b

p

)

.

Then ρ̂ : U −→ R
k defined by

ρ̂(x) := ρ(x) x

is a C p diffeomorphism between U and ρ̂(U ) and maps (subintervals of) each half-ray
R+x into (subintervals of) the same half-ray. Moreover, its inverse is given by

ρ̂−1(x) = ρinv(x) x .

Proof. ρ̂ is indeed C p, since p never vanishes. Since ρ̂ at a single x is just a positive
scalar multiplication, it maps (subintervals of) each half-ray R+x into (subintervals of)
the same half-ray. Moreover, ρ is injective and the image of ρ is an open subset of
R

k . Finally, one checks immediately that ρ̂−1 is C p and that it is the inverse of ρ by
pa + b > 0. 
�
Lemma 6.2. Let k be a positive integer. Let S0 and S1 be the boundaries of two bounded
open regions R0 and R1 in R

k both containing 0. Assume, moreover, that each Ri is
star-shaped, that the corresponding Minkowski functional pi for Ri is C p and that each
Si is an embedded C p submanifold of R

k .
Then, for all real λ± and λ0,± with

0 < λ− < inf
Rk\{0}

p1

p0
≤ λ0,− and λ0,+ ≤ sup

Rk\{0}
p1

p0
< λ+,

there are C p mappings ρ̂+ and ρ̂− with the following properties:

1. ρ̂± is a C p diffeomorphism from some open neighbourhood of V± onto some neigh-
bourhood of W±. Here,

V− = {x ∈ R
k | λ− ≤ p1(x) and p0(x) ≤ 1},

V+ = {x ∈ R
k | 1 ≤ p0(x) and p1(x) ≤ λ+},

W− = {x ∈ R
k | λ− ≤ p1(x) ≤ λ0,−},

W+ = {x ∈ R
k | λ0,+ ≤ p1(x) ≤ λ+}

are compact sets with nonempty interior.
2. ρ̂± maps S0 to λ0,±S1;
3. ρ̂+ and ρ̂− coincide on S0 if λ0,− = λ0,+;
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4. ρ̂± is the identity on λ±S1;
5. ρ̂± maps subintervals of half-rays to subintervals of the same half-ray.
6. The restrictions of ρ̂± to (an appropriate open subset of) any linear subspace of R

k

are diffeomorphisms into that linear subspace.

Corollary 6.3. Given the assumptions of Lemma 6.2, there is a stratified C p diffeomor-
phism ϕ mapping S0 to λ0S1 and R0 to λ0 R1 for some λ− ≤ λ0 ≤ λ+, such that ϕ
is the identity inside λ−R1 and outside λ+ R1. Moreover, ϕ can be chosen, such that
it preserves half-rays and its restrictions to linear subspaces of R

k are stratified C p

diffeomorphisms again.

Proof. Simply define ϕ to equal ρ̂± on V± and to be the identity otherwise. Since
these mappings coincide on the corresponding overlaps λ−S1, S0 and λ+S1, we get the
assertion. 
�
Note that λ± does only depend on the relative shape of S0 and S1. In particular, λ± need
not be changed if both S0 and S1 are scaled by the same factor.

Proof of Lemma 6.2. Denote R± := λ±R1 and, correspondingly, S± := ∂R± ≡ λ±S1.
By choice of λ±, we have R− ⊆ R0 ⊆ R0 ⊆ R+. Furthermore, let us define q := p1

p0
on

V := R
k \{0} and let

a± := λ± − λ0,±
λ± − q

and b± := λ± λ0,± − q

λ± − q

define functions a±, b± : V −→ R. Of course, a± is positive. Since Minkowski func-
tionals are semilinear17, we see immediately that q, and so a and b as well, are constant
on each half-ray R+x . Observe that a and b are well defined by choice of λ± and λ0,±.
Finally, we define ρ̂±(x) := ρ±(x) x on V by

ρ± := a± +
b±
p1
= λ± (p1 + λ0,± − q)− λ0,± p1

p1 (λ± − q)
.

We have

(q − λ±)(p1a± + b±) = p1(λ0,± − λ±) + λ±(q − λ0,±)
= p1(λ±( 1

p0
− 1) + λ0,±)− λ±λ0,±

= (p1 − λ±)λ0,± + p1λ±( 1
p0
− 1).

Let us check the properties of ρ̂±:

• ρ̂± is obviously a C p function mapping subintervals of half-rays to subintervals of
the same half-ray.

• Let x ∈ S0, i.e., p0(x) = 1, hence q(x) = p1(x). Then p1(ρ±(x)x) = ρ±(x)p1(x) =
λ0,±, i.e., ρ̂±(x) ∈ λ0,±S1. In particular, ρ̂−(x) = ρ̂+(x) if λ0,− = λ0,+.

• Let x ∈ λ±S1, i.e., p1(x) = λ±. Then ρ±(x) = 1, hence ρ̂(x) = x .

17 This means p(λx) = λp(x) for all λ > 0.
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• Let x ∈ V−, i.e., p0(x) ≤ 1 and p1(x) ≥ λ−. From the lines above, we see that this
implies (p1a− + b−)(x) ≥ 0, the equality holding iff p0(x) = 1 and p1(x) = λ−.
This, however, is impossible, since q(x) would be equal λ− < infV q. Therefore,
p1a− + b− > 0 on V−. Since, by construction, V− is compact, there is some open
neighbourhood of V− where p1a− + b− > 0. Lemma 6.1 now shows that ρ̂± is
a C p diffeomorphism on that neighbourhood. By the previous items we see that
ρ̂−(V−) = W−.

• The corresponding properties of ρ̂+ are proven completely analogously.
• By intersecting Ri and Si with linear subspaces we get C p boundaries with C p

Minkowski functionals again. The remaining statements are now clear. 
�

6.1.2. Scaling. To study geometric objects in charts, it may be necessary to first shrink
them to have enough “space”. That this is (almost) always possible using stratified
diffeomorphisms, guarantees the following

Lemma 6.4. Let k be a positive integer and let R be a bounded star-shaped open region
in R

k containing 0 and having a C p differentiable Minkowski functional p. Moreover,
assume that the boundary S of R is an embedded C p submanifold of R

k .
Then for all λ > 0 and all ε > 0, there is a stratified C p isomorphism ϕ preserving

half-rays, such that ϕ = λ id on R and ϕ = id outside (1 + ε)max(λ, 1)R.

Proof. • Assume first λ ≥ 1.
Choosing λ0,+ :=

√
λ and λ+ := (1 + ε)

√
λ, we may apply Lemma 6.2 to R0 := R

and R1 :=
√
λ R with p = p0 =

√
λ p1. For this, define

ϕ(x) :=

⎧

⎪

⎨

⎪

⎩

λ id on p−1
([0, 1])

ρ̂+ on p−1
([1, (1 + ε)λ])

id on p−1
([(1 + ε)λ,∞))

.

Now, let x ∈ S, i.e., p(x) = 1. Then, by construction, p1(ρ̂+(x)) = λ0,+ =
√
λ,

hence p0(ρ̂+(x)) = λ = p0(λx). For x ∈ (1 + ε)λS, we have p(x) = (1 + ε)λ,
hence p1(x) = (1 + ε)

√
λ = λ+. By definition, we get ρ̂+(x) = x . Altogether, ρ̂+

equals λ id on S = ∂R and id on (1 + ε)λS = (1 + ε)λ ∂R. Therefore, ϕ is a stratified
diffeomorphism having the desired properties.

• Assume now λ ≤ 1.
Define λ+ :=

√
1 + ε and λ0,+ := λ(

√
1 + ε)−1, and apply Lemma 6.2 to R0 := R

and R1 :=
√

1 + ε R with p = p0 =
√

1 + ε p1: Define

ϕ(x) :=

⎧

⎪

⎨

⎪

⎩

λ id on p−1
([0, 1])

ρ̂+ on p−1
([1, 1 + ε])

id on p−1
([1 + ε,∞))

.

For x ∈ S, i.e., p(x) = 1, we have p1(ρ̂+(x)) = λ0,+ = λ(
√

1 + ε)−1. Therefore,
we get p0(ρ̂+(x)) = λ = p0(λx). If, on the other hand, x ∈ (1 + ε)S, we have
p(x) = 1 + ε and p1(x) =

√
1 + ε = λ+, implying ρ̂+(x) = x . Consequently, ρ̂+

equals λ id on S = ∂R and id on (1 + ε)S = (1 + ε) ∂R. Now, ϕ is a stratified
diffeomorphism having the desired properties. 
�
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6.1.3. Rotation.

Lemma 6.5. Let k be a positive integer and let r1 > r2 > 0 be real. Let X ∈ so(k),
define A := eX ∈ SO(k) and denote the orthogonal projection from R

k to (ker X)⊥
by P.

Then there is a stratified diffeomorphism ϕ of R
k , such that

• ϕ coincides with A on Br2 ;
• ϕ is the identity outside of Br1 ;
• ϕ is norm preserving;
• ϕ is homotopic to the identity;
• P ϕ = P.

Proof. We stratify R
k into

int Br2 ∪ ∂Br2 ∪ (int Br1 \Br2) ∪ ∂Br1 ∪ (Rk \Br1)

and define three auxiliary C p functions ai : R −→ R with

a12(r) := 1, a234(r) := r1 − r

r1 − r2
and a45(r) := 0.

One now immediately checks that

ϕ(x) :=

⎧

⎪

⎨

⎪

⎩

ea12(‖x‖)X x if x ∈ int Br2 ∪ ∂Br2

ea234(‖x‖)X x if x ∈ ∂Br2 ∪ (int Br1 \Br2) ∪ ∂Br1

ea45(‖x‖)X x if x ∈ ∂Br1 ∪ (Rk \Br1)

gives the desired map.18 For the homotopy property define ϕt as above with t X instead
of X . Then ϕ1 = ϕ and ϕ0 = id. 
�

Immediately from the proof, we get with the above assumptions:

Corollary 6.6. Let k be a nonnegative integer and let ε > 0. Moreover, let γα be the
straight line in R

2 connecting (− cosα,− sin α) and (cosα, sin α).
Then for each α ∈ R there is a stratified isomorphism ϕα of R

2 ⊕ R
k , such that

• ϕα is the identity outside B1+ε ⊆ R
k+2;

• ϕα is norm preserving;
• ϕα is homotopic19 to the identity;
• Pϕα = P, where P is the canonical projection from R

2 ⊕ R
k to R

k ;
• ϕα maps γ0 to γα .

Proof. Choose X = α
(

0 1
−1 0

)

∈ so(2) ⊆ so(2)× so(k) ⊆ so(2 + k). 
�

18 Moreover, note that the three functions used to define ϕ are defined on full R
k (possibly, up to the origin).

19 The mapping is given by t �−→ ϕtα .
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6.1.4. Translation.

Lemma 6.7. Let k be some positive integer. Let γ be some edge in R
k and U be some

neighbourhood of γ . Choose r > 0, such that the balls with radius r centered at γ (0)
and γ (1), respectively, are contained in U.

Then there is a finite product of stratified C p diffeomorphisms of R
k being the identity

outside U and the translation by γ (1)− γ (0) on Br (γ (0)).

Proof. We only give the idea of the proof. The technical details are similar to that for the
preceding statements. Moreover, in Lemma C.1 we will give a proof for a more specific
type of translation.

Here, we cover γ by (non-trivial) balls. By compactness, there is some r ′, such that
finitely many balls with radius r ′ centered at points of γ will cover γ and such that
the convex hull of “neighbouring” balls is contained in U . The idea now is to first
shrink Br (γ (0)) to Br ′(γ (0)), then move parallelly this ball through the convex hulls
of neighbouring balls and finally blow it up to its original size. All these operations are
possible by the statements above without moving any point outside U . 
�

6.1.5. Strata equivalence of simplices and balls. Let us now show that all q-simplices
are not only isomorphic as simplices themselves, but can also be mapped into each
other by localized stratified C p diffeomorphisms. Moreover, they are equivalent to
q-dimensional balls.

Proposition 6.8. Let q ≤ k be two positive integers.
Then all q-simplices and all q-dimensional balls in R

k are strata equivalent.

For this, we first show that each q-simplex can be mapped to a q-dimensional ball.

Lemma 6.9. Let q ≤ k be two positive integers. Moreover, let V := {v0, . . . , vq} ⊆ R
k

contain q + 1 points in general position, such that 0 is contained in the interior of the
q-simplex RV spanned by V . Finally, fix some ε > 0 and some r > 0, such that RV is
contained completely in the interior of Br .

Then there is a stratified C p diffeomorphism ϕ, being the identity outside of B(1+ε)r ,
such that RV is mapped to Br ∩ span

R
V .

Proof. Choose some set V ′ = {v′0, . . . , v′k−q} ⊆ R
k of k − q + 1 points in general

position, such that its span is complementary to that of V and such that the (k − q)-
simplex spanned by W contains 0 in its interior and is contained in int Br . Define for
every 0 ≤ i ≤ q and 0 ≤ j ≤ k − q the set

Vi j := {0} ∪ (V \{vi }) ∪ (V \{v′j })
now containing k + 1 points in general position, hence each defining a k-simplex Ri j .
These simplices form a complex, i.e., in particular, they share at most lower-dimensional
faces. Let R0 be the union of all these (k − q + 1)(q + 1) simplices. Its boundary is the
union of the simplices V 0

i j spanned by Vi j \{0}.
Let us now invoke Corollary 6.3. First of all, observe that the statement there can

be extended directly to the case that R0 is formed by a finite number of cones each
having tip at 0 and each defined by k-simplices, such that these cones fill R

k com-
pletely and share at most the boundaries with each other. Of course, the requirements
for S0 have to be relaxed accordingly. We refrained from explicitly giving this form of
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Corollary 6.3 (and Lemma 6.2, respectively), since it would have made the proof even
more technical without introducing new ideas. One simply has to construct the stratified
diffeomorphism in the more general case for every cone (more precisely, some open
appropriate neighbourhood of it) and then use that these mappings fit together at the
boundaries. This however, follows from the coincidence of the Minkowski functionals
at these boundaries, the construction of the maps in the proofs above and the invariance
of half-rays.

Coming back to the present proof, define R1 to be Br . Then, by R0 ⊆ Br , the
corresponding Minkowski functionals fulfill p1 ≤ p0, and we may choose λ+ = 1+ε >
1. This means that, by Corollary 6.3, there is a stratified C p diffeomorphism ϕ being the
identity outside λ+ Br , mapping R0 to R1 and ∂R0 to ∂R1. Now the assertion follows,
since ϕ preserves linear subspaces. Therefore, RV (being the intersection of R0 with
span

R
V ) is mapped to Br ∩ span

R
V being a q-dimensional ball. 
�

Proof of Proposition 6.8. Let two q-simplices be given. Using Lemma 6.7, translate
both, such that they contain 0 in their interior. Then each of them is strata equivalent to
some q-dimensional sphere in R

k , by Lemma 6.9. Shrinking these balls, if necessary, we
make them of identical radius. Finally, by Lemma 6.5, we may find some localized stra-
tified C p diffeomorphism rotating one ball into the other. Hence, these two q-simplices
are strata equivalent to a (hence, any) q-dimensional ball. 
�

Now we are going to mirror simplices and balls into each other.

Proposition 6.10. Let q < k be two non-negative integers.
Then every q-simplex and every q-dimensional ball in R

k having a nice orientation,
is strata equivalent to itself having inverse orientation.

Proof. First assume that q = k − 1 and consider some q-dimensional ball B around
the origin. Choose X ∈ so(k), such that X is zero on some (k − 2)-dimensional linear
subspace V of span

R
B and generates a rotation in the two-dimensional complement

in R
k spanned by the normal of V in span

R
B and the normal of span

R
B in R

k . In
particular, it generates some map A := et X ∈ SO(k), being minus the identity on this
two-dimensional space for some t . Since only one of its “dimensions” belongs to B,
the rotation A inverts the orientation of B. Now, Lemma 6.5 guarantees the existence of
some stratified diffeomorphism inverting the orientation of B.

To prove the statement for q = k − 1 and a given q-simplex S, we map it to some
q-dimensional ball B, invert its rotation and take the inverse of the first mapping to get
S back. Of course, the orientation of S has been flipped.

Next, let q be arbitrary and consider a q-simplex S. Since we work with nice orien-
tations only, there is some (k − 1)-simplex S′ in M having S as one of its faces and
inducing its orientation. Since we may invert the orientation of S′, we also may invert
that of S by localized stratified diffeomorphisms.

To prove the remaining case of q-balls for arbitrary q, reuse the argumentation above
for q = k − 1 and reduce to the case of q-simplices. 
�
Corollary 6.11. Let q < k be two non-negative integers.

Then all q-simplices and all q-balls in R
k are oriented-strata equivalent, provided

they have nice orientations.

Proof. Assume, first of all, that S is a q-simplex or a q-ball containing the origin, and
let S be given two nice orientations. This means there are linear subspaces T1 and T2
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inducing these orientations by their own nice ones. There is now some A ∈ SO(k)
leaving the q-plane spanned by S invariant and mapping T1 onto T2. Hence A maps the
one orientation of S to either the other one or the inverse of it. Hence, by Lemma 6.5,
there is some localized stratified isomorphism mapping S onto itself and transforming
the orientations by A. By adding, if necessary, some localized stratified isomorphism
inverting the orientation as given by Proposition 6.10, we get such a transformation
mapping the two orientations of S onto each other.

Let now Si be a q-simplex or a q-ball for i = 1, 2. Then we may map them by
localized stratified diffeomorphisms to some q-simplex S containing the origin. Since,
as one checks immediately, these mappings can be chosen, such that the corresponding
orientations of S are nice20, there is a localized stratified diffeomorphism mapping one
orientation of S to the other, by the arguments above. 
�
Without explicitly stating the proof, we have by arguments as in the proposition above:

Corollary 6.12. For every nicely oriented 1-dimensional ball S in R
k with k ≥ 3, there

are finitely many localized stratified isomorphisms, whose product is the identity on S,
but inverts the orientation of S.

Finally, we are looking for objects that can be divided into two parts, such that the
original one is, on the one hand, strata equivalent to both of them and, on the other
hand, is the disjoint union of them. Moreover, the orientation should be preserved. For
example, consider an open 2-simplex, i.e., a full open triangle. Intersecting it by a line
through one corner and some point of the opposite edge, we get two triangles. If we
take their interiors, then they are strata equivalent to the original triangle, however not a
decomposition of it – simply the border line is missing. One the other hand, if we were
taking it to just one of the subtriangles, then they are no longer strata equivalent. The
solution of this problem is to consider at the beginning an open triangle plus be one
of its open edges. Then, as above, we may divide the triangle by a line, now through
some boundary point of the added edge. Now it is clear that the triangle plus edge is
divided into twice a triangle plus edge and all three objects are strata equivalent. The
generalization to higher dimensions is straightforward, but more technical:

Proposition 6.13. Let q < k be two positive integers. Let S be some open q-simplex
in R

k , and let F, one of its open (q − 1)-faces. Finally, give R := S ∪ F the orientation
induced by one of the nice orientations of S ⊇ R.

Then there are products ϕ0 and ϕ1 of localized stratified isomorphisms, such that
R is the disjoint union of ϕ0 R and ϕ1 R and the intersection function of R is the joint
intersection function of ϕ0 R and ϕ1 R.

Proof. First of all, choose some open (k − 1)-simplex ̂S, such that its orientation is
induced by one of the nice orientations of its closure which, on the other hand, induces
the orientations of S and R. Let V be the set of k points {v0, . . . , vk−1} in R

k , such that

̂S is the interior of the simplex spanned by {v0, . . . , vk−1},
̂F is the interior of the simplex spanned by {v1, . . . , vk−1},
S is the interior of the simplex spanned by {v0, . . . , vq},
F is the interior of the simplex spanned by {v1, . . . , vq}.

20 One sees that all necessary transformations are locally “affine”.
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Define ̂R := ̂S ∪ ̂F ∪ S ∪ F . Now choose some v in the open 1-face connecting v0
and v1, and cut ̂R by the plane spanned by {v, v2, . . . , vk−1} into two parts ̂R0 and ̂R1,
whereas the intersection of this plane with ̂R is added to ̂R0, and ̂R1 is that “half” whose
closure contains v1. We now may decompose each ̂Ri into ̂Si ∪ ̂Fi ∪ Si ∪ Fi , where

̂Si is the interior of the simplex spanned by {v, vi , v2, . . . , vk−1},
̂Fi is the interior of the simplex spanned by {xi , v2, . . . , vk−1},
Si is the interior of the simplex spanned by {v, vi , v2, . . . , vq},
Fi is the interior of the simplex spanned by {xi , v2, . . . , vq}

with x0 = v and x1 = v1. Obviously, S ∪ F = S0 ∪ F0 ∪ S1 ∪ F1.
Let now ϕi be products of localized stratified isomorphisms that leave v j with j ≥ 2

and vi invariant, map v1−i to v and map the simplex spanned by {v0, . . . , vk−1} onto that
spanned by {ϕi (v0), ϕi (v1), v2, . . . , vk−1}. It is easy to check that ϕi (S ∪ F) = Si ∪ Fi
and that ϕi may be chosen to have the desired orientation properties. 
�

6.2. Localized stratified diffeomorphisms in manifolds. We are now going to transfer
the results of the previous subsection to the case of general C p manifolds M .

Definition 6.6. A subset S in M is called (nicely oriented) q-simplex in the chart
(U, κ) iff S ⊆ U is mapped by κ to a q-simplex in R

dim M (and the orientation of S is
induced by one of the natural orientations of some hyperplane in κ(U )).

Analogously, we may define q-balls. The definition of faces of q-simplices should be
clear as well. We will speak about q-simplices and q-balls in general iff there is a chart
of M , in which they are q-simplices or q-balls. Note that, at least locally, every simplex
or ball S having a natural orientation is nicely oriented, i.e., it is induced by some
hypersurface being (an open set of) a hyperplane in some chart. In fact, let N be some
embedded submanifold in M containing S as an embedded submanifold and inducing
its orientation. Then we may find some chart mapping N locally into some hyperplane
in the local chart image of M and mapping S locally into some plane in the local image
of N .

Proposition 6.14. The statements of Propositions 6.8, 6.10 and 6.13 as well as of
Corollaries 6.11 and 6.12 remain valid if we replace R

k by M and assume all q-simplices
and q-balls to be in one and the same connected chart and, moreover, nicely oriented
there.

Proof. The only point to be shown is the case that the localized stratified isomorphism
ϕ needs more space in R

dim M than provided by the chart denoted by (U, κ). If this is
the case, first shrink any occurring object S (being a ball or a simplex) to a sufficiently
small size. Indeed, since simplices and balls are assumed to be closed and the chart is
open, S – magnified (in the chart) by 1 + ε w.r.t. some interior point – is again in U for
small ε. Therefore, the scaling lemma (Lemma 6.4) is applicable in order to shrink S by
any factor λ ≤ 1. Now it may be necessary to move S to some other place in U inside
this chart. To do this, we choose some path that S is moved along. By compactness
and continuity reasons, there is a finite number of open k-balls in U covering this path.
We now assume that λ is chosen small enough that the accordingly shrunk S can be
transferred between any non-disjoint two of these balls by means of Lemma 6.7. This
way it can be (parallelly) shifted between any two points in the chart. Using these
ingredients of shrinking and shifting, it is now easy to generate the desired localized
stratified isomorphisms by means of their counterparts in R

dim M . 
�
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6.3. Application to the analytic category. Let us now come back to the analytic case,
i.e., p = ω. Recall [21] that a subset A of an analytic manifold M is called semianalytic
iff M can be covered by some open sets Uι, such that each Uι∩ A is a union of connected
components of a set f −1

1 (0)\ f −1
2 (0), for f1 and f2 belonging to some finite family of

real-valued functions analytic in Uι. Complements, finite intersections and finite unions
of semianalytic sets are semianalytic again [10]. Moreover, it can be shown [21,28] that
every semianalytic set admits a semianalytic stratification, i.e., a stratification consisting
of semianalytic strata only.21

Lemma 6.15. Let M1 and M2 be two stratifications of M.
Then there is a stratification M of M being finer than M1 and M2.

Proof. For every semianalytic, hence stratifiable set A in M and every nonnegative
integer k, we choose some semianalytic stratification N (A) of A and let Nk(A) contain
precisely the k-dimensional strata in N (A) contained in A. Moreover, let n be the
dimension of M .

Since the intersection of any two semianalytic sets is semianalytic, we may define

Nn,k :=
⋃

M1∈M1,M2∈M2
Nk(M1 ∩ M2),

N ′
n :=

⋃

k<n
Nn,k,

Nn := Nn,n .

This means, Nn,k contains the k-dimensional strata given by all the intersections of
elements in M1 and M2. Since the boundary of every semianalytic set is semianalytic
again [29], hence stratifiable, we may define successively for decreasing i :

N ∂
i :=

⋃

N1,N2∈Ni+1

⋃

k
Nk(∂N1 ∩ ∂N2),

Ni,k :=
⋃

N∈N ∂
i

⋃

N ′∈N ′
i+1

Nk(N ∩ N ′),

N ′
i :=

⋃

k<i
Ni,k,

Ni := Ni,i .

Finally, we set

M :=
⋃n

i=0
Ni .

One immediately checks that M is a stratification. Moreover, by construction, it is finer
than M1 and M2. 
�
Corollary 6.16. Every (weakly) stratified isomorphism is a graphomorphism.

Proof. Let ϕ be a weakly stratified isomorphism on M mapping M1 to M2. Moreover,
let γ be some analytic edge. Since im γ is a semianalytic set, there is some stratification
M3 of im γ . Choosing some stratification M finer than M1 and M3, the image of γ
is a union of strata in M; even a finite one, since im γ is compact. Refining M2 w.r.t.

21 When speaking about semianalytic sets in the following, we will tacitly assume that the corresponding
stratifications are semianalytic.
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ϕ and w.r.t. the refinement of M1 to M, we see that ϕ maps im γ into a finite union
of strata. This means that ϕ(γ ) is piecewise analytic. The assertion now follows from
Lemma 3.30. 
�
Corollary 6.17. The (weakly) stratified isomorphisms of M form a subgroup of the group
of homeomorphisms of M.

Proof. Of course, the inverse of a (weakly) stratified isomorphism is a (weakly) stratified
isomorphism. Therefore, consider two (weakly) stratified isomorphisms f1 and f2, and
choose some stratifications M11, M12, M21 and M22 of M , where fi maps Mi1 to
Mi2. By the previous lemma, we may find some M refining M12 and M21. Using the
isomorphy property of f −1

1 and f2, we refine M11 and M22 accordingly as well. With
respect to these refined stratifications, f1 ◦ f2 is a (weakly) stratified isomorphism. 
�
Corollary 6.18. The localized (weakly) stratified isomorphisms of M form a subgroup
of the group of homeomorphisms of M.

The deeper reason behind the investigation of simplices above is the fact that every
manifold can be triangulized; this means, roughly speaking, it is isomorphic to some
union of (open) simplices. Originally known for nonanalytic manifolds (see, e.g.,
[37,38]), this result has been extended later to semianalytic sets in analytic manifolds
(see, e.g., [29]). Here, however, we need a notion somewhat stronger than the usual
one. In fact, recall that all the results above on (closed) simplices require that they are
contained in some chart in M . Therefore we first quote the definition of a triangulation
from [29] (dropping, however, some condition) and then extend this notion to the case
we need.

Definition 6.7. Let {Mi } be a locally finite collection of semianalytic subsets of M.

• A triangulation of {Mi } is a simplicial complex22 K together with a homeomorphism
f : |K | −→ M, such that for every σ ∈ K ,
1. f (σ ) is an embedded analytic submanifold of M ;
2. fσ := f |σ : σ −→ f (σ ) is an analytic diffeomorphism;
3. f (σ ) ⊆ Mi or f (σ ) ⊆ M\Mi for all Mi .

• A triangulation (K , f ) of {Mi } is called wide iff for every σ ∈ K there is some open
chart in M containing the closure of f (σ ) and mapping it to a simplex in that chart.
If each Mi is given a natural orientation, then we additionally require f to map this
orientation to a nice one on each of these simplices.

• {Mi } is called (widely) triangulizable iff there is a (wide) triangulation of {Mi }.
Proposition 6.19. Every semianalytic set is triangulizable [29].

One immediately checks that (nicely oriented) q-balls and q-simplices are widely trian-
gulizable. What remains unsolved is

Question 1. Is every semianalytic set widely triangulizable?

Until now, we did not find any proof for either answer in the literature23 nor are we able
to decide it ourselves. There may be some hints for this answer to be affirmative. In

22 A simplicial complex is a locally finite collection K of disjoint open simplices in some finite-dimensional
linear space, such that each face of any simplex belongs to K again. Moreover, |K | denotes the union of all
these simplices.

23 Nor were we able to find our definition in the literature.
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fact, as proven by Ferrarotti (cf. [31]), there is a so-called strong triangulation (K , f )
of any analytic submanifold M of R

n . This means that, firstly, for any σ ∈ K there is
some neighbourhood U of σ in the Euclidean space containing K , and some analytic
Fσ : U −→ R

n with Fσ = fσ and, secondly, for every vertex v in K , the derivative
d fv : St(v, K ) −→ R

n is injective. But, nevertheless, our case remains open.

6.4. Two types of localized stratified diffeomorphisms. In this subsection24 we will
investigate in detail the types of stratified diffeomorphisms to be used for quantum
geometry.

Firstly, we present a more elaborate version of winding diffeomorphisms introduced
originally by Sahlmann [33]. The aim is to produce stratified diffeomorphisms that wind
an edge such that it has a certain number of punctures at some given surface. This would
be possible even in the analytic category if only the pure number of punctures would
count and the precise parameter values of the edge at the punctures would not matter.
In fact, then one can use the approximation theorems for smooth mappings by analytic
ones [22]. If, however, the precise location of the punctures becomes relevant, then
probably this is no longer sufficient. Therefore—nevertheless reusing the main idea by
Sahlmann—we present here a more general statement in the stratified analytic category.

Secondly, we study how one can transform a given graph into a very large set of
independent graphs, but minimally modifying other geometric objects. There will be
two cases depending on whether a graph is contained in (the closure of) some surface or
not. If not, we may leave the surface invariant pointwise. If, on the other hand, the graph is
(partially) contained in the interior of the surface, then we may, at least, slightly transform
the surface into itself getting an infinite number of different graphs. This, of course, is
possible, only if this surface provided enough space, i.e., is at least two-dimensional.

6.4.1. Winding diffeomorphisms.

Proposition 6.20. Let dim M ≥ 3. Let γ be a graph, let γ ∈ γ be one of its edges and
set γ ′ := γ \{γ }. Moreover, let G be a finite subset in G.

Then there is

• some subinterval I ⊆ [0, 1],
• some nicely oriented, open, embedded, analytic hypersurface S, disjoint to im γ , such

that S and ∂S have a finite wide triangulation;
• some analytic function d : S −→ G and
• some s ∈ Z,

such that for any sequences (g j ) ⊆ G and (τ j ) ⊆ I (with τ j < τ j ′ for j < j ′)
having even length, there is a stratified (analytic) diffeomorphism ϕ with the following
properties:

1. S and im ϕ(γ ′) are disjoint;
2. d(ϕ(γ (τ j ))) = g j for all j ;
3. ϕ(γ ) intersects S completely transversally;

24 Note that all results of this subsection remain true in arbitrary smoothness categories, provided one
enlarges the definition of intersection functions a little bit. Actually, they are defined only for quasi-surfaces;
but only in the analytic category, hypersurfaces are always quasi-surfaces. The reason for that was that not
every γ can be S-admissibly decomposed. Here, however, we might study the intersection behaviour of certain
paths with S. This, of course, is possible in the general case of smoothness as well.



120 Ch. Fleischhack

4. {ϕ(γ (τ j ))} j is the set of ϕ(γ )-punctures of S;
5. σ +(S, ϕ(γ )|[τ j−1,τ j ]) = (−1) j+s = σ−(S, ϕ(γ )|[τ j ,τ j+1]) for all j .

Proof. First of all, since γ is embedded into M , there is some neighbourhood of some
subpath γ |I of γ and some cubic chart, such that γ (I ) is exactly the part of im γ in
that chart. Any diffeomorphism constructed below will be constant outside this chart.
Therefore, to simplify notation, we may restrict ourselves to the case that M is R

n

coordinatized by x ∈ R, y ∈ R and !z ∈ R
n−2 (where z is the first coordinate of !z)

and that γ (I ) is the intersection of the chart and the x-axis. Next, for the surface S we
will choose some hypersurface y = a parallel to the x-axis for some a > 0. Here, a is
selected under the assumption that y = 2a + 2ε0 and y = −2ε0 are still hypersurfaces
in the chart for some ε0 > 0 (of course, only that part of the hypersurfaces whose
x- and !z-values are admitted in the chosen cubic chart). Finally, choose some analytic
d : S −→ G depending on z only, such that every element of G occurs somewhere (in
a sufficiently close) neighbourhood of z = 0.25

Let now finitely many (mutually different) points τ j ∈ I be given. The γ -images
of these points will turn into the intersection points of the transformed γ with S. Fix,
additionally, some small ε < ε0, such that the distance of any two of the marked points
in I is greater than 2ε (and that, if necessary, each of the ε-neighbourhoods of the τk are
both in I and in the fixed chart).

Now, in the first step we move γ the following way inside the x-y-plane: On the
one hand, each segment of γ outside the ε-neighbourhoods of the marked points is
again parallel to the x-axis; now, however, alternately with y = 0 and y = 2a. The
ε-neighbourhoods, on the other hand, are the straight lines connecting these alternatingly
lifted and unlifted segments. This way, the center of these neighbourhoods, i.e., the
marked points themselves are mapped to half-way between the levels y = 0 and y = 2a.
In other words, precisely the marked points are the intersection points of the transformed
γ with S. Note, in particular, that this transformation of γ can be done by a stratified
isomorphism that does only change the y-coordinates of any point in M , but neither the
x- nor the !z-values (see Lemma C.1). Moreover, note that we have tacitly used that there
is an even number of τk to end up at level y = 0 again after moving the largest τk . This
finishes the first step.

We are now left with the problem to find the intersection points having the correct
values of d in the second step. Nicely, the idea of the first step can be used again. To
see this, assume that n = 3 and look at the scene from above the (x, z)-plane. Since
we only changed the y-values of γ , no change can be seen from this perspective. Using
our assignment of d to S, we move the ε-neighbourhoods of the marked points of
(the transformed) γ . Slightly more generally than in the first step, however, we let the
“bumps” that these neighbourhoods are mapped to, return to the original line before this
neighbourhood ends. More precisely, the segments outside these neighbourhoods are
not shifted again, and the “bumps” map each τk to the correct “level” (i.e., z-coordinate)
in order to get mapped to the point with the correct value gk of d. Note that here we only
need to change the z-coordinates, but leave, in particular, the y-coordinates unchanged.
This implies that the parameter values where γ intersects S after having been transformed
by both steps, are precisely those of the γ after the first transformation. If n > 3, this
step is completely analogous.

25 Such a function indeed exists: Choose some b > 0, such that the surfaces defined by y = a and z = ib
are contained in the chosen chart for all i = 1, . . . , #G. Choose, additionally, for each i , some polynomial

pi with pi (l) = δil and some Xi ∈ g with gi = eXi . Now, define d(x, y, !z) := ∏

i epi (
z
b )Xi . This function

fulfills d(x, y, ib) = gi for all i .
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Fig. 1. Stratified Diffeomorphism in Lemma C.1

To summarize: It is clear that the constructed isomorphism has all the desired proper-
ties and that s can be chosen obviously. Originally, we looked for a stratified isomorphism
mapping γ , such that its transform intersects S precisely for the parameter values τk and
at points having the desired values of d. By the arguments above, we reduced this pro-
blem to the existence of a diffeomorphism in R

n as indicated in Fig. 1 that, in particular,
does not move any point outside the given square (times some ε-ball in the remaining
n − 2 dimensions not drawn there). The existence of such a diffeomorphism, however,
is guaranteed by Lemma C.1. This furnishes the present proof. 
�

The crucial idea in the proof of Proposition 6.20 was to define for each element in
G some domain on the surface S, such that for a given sequence in G, the transformed
graph punctures S at the correct points and in the correct ordering, i.e., leading to the
correct sequence of values for d. We constructed above a single surface with an analytic
d on it. However, we even might use constant d, if we admit S to consist of more than
one connected component. In other words, for any finite number we may find such a
number of hypersurfaces Si , such that γ may always be transformed to puncture these
different surfaces in an arbitrarily given ordering. More precisely, choose for Si some
open (cubic) subspace in S, and let the only restriction to Si be that its z-coordinate is in
some sufficiently small interval Ii . We may assume that the closures of these intervals
are disjoint. Moreover, each Si is a hypersurface of M . Reusing the argumentation of
the proof of Proposition 6.20, we have shown

Proposition 6.21. Let dim M ≥ 3. Let γ be a graph, let γ ∈ γ be one of its edges and
set γ ′ := γ \{γ }. Moreover, let K be a positive integer.

Then there is

• some subinterval I ⊆ [0, 1],
• some nicely oriented, open, embedded analytic hypersurfaces Si with i = 1, . . . , K ,

such that each Si and each ∂Si has a finite wide triangulation, each Si is disjoint to
im γ , and all Si are mutually disjoint; and

• some s ∈ Z,

such that for any even integer J > 0, any function l : [1, J ] −→ [1, K ] and any sequence
(τ j )⊆ I (with τ j >τ j ′ for j > j ′) having length J , there is a stratified analytic isomor-
phism ϕ with the following properties:

1.
⋃

i Si and im ϕ(γ ′) are disjoint ;
2. ϕ(γ (τ j )) ∈ Sl( j) for all j ;
3. ϕ(γ ) intersects each Si completely transversally;
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4. {ϕ(γ (τ j ))} j is the set of ϕ(γ )-punctures of
⋃

i Si ;
5. σ +(Sl( j), ϕ(γ )|[τ j−1,τ j ]) = (−1) j+s = σ−(Sl( j), ϕ(γ )|[τ j ,τ j+1]) for all j .

6.4.2. Generation of independent paths. Transferred to the case of manifolds, Corol-
lary 6.6 yields

Proposition 6.22. Let M be some n-dimensional manifold with n ≥ 2 and let S ⊆ M.
Assume that S and ∂S are connected embedded submanifolds in M (without boundary)
and that S is an embedded submanifold in M having boundary ∂S. Moreover, let γ be
some nontrivial graph in M, such that the image of γ is neither equal to S, ∂S nor S.

Then there is a nontrivial path γ , a neighbourhood U of some m ∈ im γ in M and
infinitely many stratified diffeomorphisms ϕi of M, such that

• γ is the only edge in γ not disjoint to U ;
• ϕi is the identity outside U ;
• ϕi leaves the set S invariant;
• {ϕi (γ )}i is a hyph.26

If we additionally assume, that S has one of its natural orientations, then each ϕi may
be chosen such that, additionally, it leaves the orientation of S invariant.

Proof. 1. im γ is not contained in S.
Let γ be an edge of γ not contained in S. Choose some interior point m of γ outside
S, and let U be some open neighbourhood of m disjoint to S and disjoint to all other
edges in γ except for γ . Choose some chart whose closure is contained in U and
whose intersection with (the image of) γ is mapped to a straight line with m mapped
to the origin. Corollary 6.6 now gives a collection ϕα of stratified diffeomorphisms
being the identity outside the chart that, therefore, may be extended to stratified
diffeomorphisms of M that are the identity outside, at least, U . Since each ϕα(γ )
with α ∈ [0, π) has some interior point not passed by any other ϕα′(γ ), these paths
are independent. The invariance of S is trivial as well as the fact that the orientation
of S is preserved and that {ϕα(γ )}α is a hyph.

2. im γ is contained in ∂S.
In particular, this implies that ∂S is at least one-dimensional. In fact, otherwise
∂S would be a point and γ trivial. In the case that dim S < n − 1 and that we
consider orientations, let, moreover, S′ ⊇ S be some (n−1)-dimensional embedded
submanifold of M inducing the orientation of S.
a) dim ∂S ≥ 2.

Choose some interior point m of some edge γ in γ and some open neighbou-
rhood U of m whose closure is disjoint to all edges in γ except for γ . By
assumption, there is some chart whose closure is contained in U , such that the
intersection of the chart

• with S′ (if applicable) is some open subset of R
n−1,

• with S is some open subset of R
dim S (if applicable, in R

n−1),
• with ∂S is some open subset of R

dim S−1 ⊆ R
dim S ,

• with im γ is a straight line in R ⊆ R
dim S−1, and

• with m is mapped to the origin.

26 Here, we extended the notion of a hyph naturally to the case of infinitely many paths.
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Since dim S > dim ∂S ≥ 2, Corollary 6.6 provides us, analogously to the first
case, with stratified diffeomorphisms having the desired properties. In particular,
observe that, although they are not the identity neither on S nor on ∂S, they leave
both S and ∂S (and, if applicable, S′) invariant.

The orientation of S is obviously preserved for dim S=n. For dim S=n− 1,
use the fact that t �−→ ϕtα is a homotopy over diffeomorphisms having the
properties above, whence the natural orientation of S is preserved by each dif-
feomorphism. If dim S < n−1, then the natural orientations of S′ are preserved
as above, whence the induced orientations on S are so as well.

b) dim ∂S = 1.
Since ∂S is one-dimensional, it is isomorphic to either a line or a circle. Moreo-
ver, ∂∂S = ∅. Since the compact set im γ does not equal ∂S, there is some
point m ∈ ∂(im γ ) ⊆ ∂S. Moreover, there is a (unique) edge, say γ , having
m as one of its endpoints. We may assume γ (0) = m and choose some open
neighbourhood U of m whose closure is disjoint to all edges in γ except for
γ . Now, we select some chart whose closure is contained in U , such that the
intersection of the chart

• with S′ is (if applicable) some open subset of R
n−1,

• with S is some open subset of R
2 (if applicable, in R

n−1),
• with ∂S is some open subset of R ⊆ R

2,
• with im γ equals [0, τ ) ⊆ R, and
• with m is mapped to the origin,

and such that Bτ ⊆ U for some τ > 0. By Lemma 6.4, for α ∈ [0, 1
3τ), there

are now stratified diffeomorphisms ϕα , taking − 1
3τ ∈ R ⊆ R

n as the origin,
such that (−τ,+τ) is mapped onto itself, such that ϕα

([0, τ ]) = [α, τ ] and such
that ϕα is the identity outside U . In particular, each ϕα leaves both S, ∂S and S′
invariant. Choosing some monotonously decreasing, infinite sequence αi → 0,
we get a hyph {ϕαi (γ )}i∈N, since (αi , αi−1) is passed by no ϕα j (γ ) with j < i .
The preservation of orientation by ϕαi is shown analogously to the case above.

3. im γ is contained in S, but not in ∂S.
As above, this implies that S is at least one-dimensional. Again, for dim S < n−1 and
if we consider orientations, we let S′ ⊇ S be some (n − 1)-dimensional embedded
submanifold of M inducing the orientation of S.
a) dim S ≥ 2.

Choose in γ some edge γ not fully contained in ∂S. We now may find some
interior point m of γ being in the interior of S and fix some open neighbourhood
U of m, whose closure is disjoint to ∂S and disjoint to all edges in γ except for
γ . By assumption, there is some chart whose closure is contained in U , such
that the intersection of the chart

• with S′ is (if applicable) some open subset of R
n−1,

• with S is some open subset of R
dim S (if applicable, in R

n−1),
• with im γ is a straight line in R ⊆ R

dim S, and
• with m is mapped to the origin.

As above, we may find stratified diffeomorphisms of the desired type, by
Corollary 6.6.
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b) dim S = 1.
Since S is one-dimensional, it is isomorphic to either a line or a circle. Hence ∂S
consists of at most two points. Consequently, S is isomorphic either to a circle,
a line, a ray or a closed interval. Since im γ ⊂ S is compact, there is some point
m ∈ ∂(im γ )∩ S. Picking, as above, the (unique) edge γ having m as one of its
endpoints, we now may find some open neighbourhood U of m whose closure
is disjoint to ∂S and to all edges in γ except for γ . Again, we select some chart
whose closure is contained in U , such that the intersection of the chart

• with S′ is (if applicable) some open subset of R
n−1,

• with S is some open subset of R (if applicable, in R
n−1),

• with im γ equals [0, τ ) ⊆ R, and
• with m is mapped to the origin,

and such that Bτ ⊆ U for some τ > 0. Again, as in the case im γ ⊆ ∂S and
dim ∂S = 1, we find the desired stratified diffeomorphisms by Lemma 6.4. 
�

Proposition 6.23. Let M be some n-dimensional manifold with n ≥ 2 and let S ⊆ M.
Assume that S and ∂S are connected embedded submanifolds in M (without boundary)
and that S is an embedded submanifold in M having boundary ∂S. Moreover, let either
S or ∂S be an embedded 1-circle S1. Finally, let γ be a graph whose image is this S1

and let m be some vertex of γ .
Then there is a neighbourhood U of m in M, infinitely many different mi in S1 ∩U

and for each i a stratified diffeomorphism ϕi of M with the following properties:

• ϕi is the identity outside U ;
• ϕi leaves the set S invariant;
• ϕi maps m to mi ;
• ϕi is the identity on all edges of γ not adjacent to m.

If we additionally assume that S has one of its natural orientations, then each ϕm′ may
be chosen such that, additionally, it leaves the orientation of S invariant.

Proof. This proof is very analogous to that of Proposition 6.23. Therefore, we only
present its main idea.

First choose some U , small enough to intersect im γ only at its edges adjacent to
m and such that U ∩ S is a domain of a straight line (if im γ = S) or of a half plane
(if im γ = ∂S). Now choose some point near m as the origin for a local scaling as in
Lemma 6.4. This way, we may move m to every other sufficiently near-by point, leaving
∂S or S, respectively, invariant, without moving any point outside U . 
�

7. Representations of the Weyl Algebra

Now we are prepared to give a rigorous proof of (a stronger version of the) uniqueness
theorem claimed by Sahlmann and Thiemann [35]. As well, we will proceed in two
steps: First we use regularity and diffeomorphism invariance to show that the first-step
decomposition contains the Ashtekar-Lewandowski measure. This will follow from the
fact that the diffeomorphisms split the Weyl operators, i.e., the weak convergence of
Weyl operators is not uniformly on states related by diffeomorphisms. Second, using
diffeomorphism invariance again, we show that each Weyl operator is a scalar at this
component. This enables us to use the naturality of the action of diffeomorphisms in
order to prove that each Weyl operator is even a unit there. Cyclicity will give the proof.
At the end, we discuss the technical assumptions made in the proofs.
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7.1. Splitting property. As before, we assume to be given some nice enlarged structure
data. Moreover, we restrict ourselves to the case that S and D contain at least those hyper-
surfaces and stratified isomorphisms, respectively, that are necessary to keep Proposition
6.21 valid. In other words, one possibility is to choose S to contain at least all of these
“cubic” hypersurfaces and D to contain at least the stratified isomorphisms described in
Subsubsect. 6.4.1. Throughout the whole subsection, let π ′ be some representation of
ADiff on H and denote byπ := π ′|A the corresponding representation of A. Additionally,
we require M to have at least dimension 3.

Proposition 7.1. Assume π to be regular. Moreover, let 1ν0 be D-invariant for some ν0.
Then µν0 is the Ashtekar-Lewandowski measure µ0.

Recall that regularity always means regularity w.r.t. R, whereas R is taken from the nice
enlarged structure data.

Corollary 7.2. Let π be regular, and let there exist a (cyclic) D-invariant vector in H.
Then there is a first-step decomposition of π ′, such that µν0 is the Ashtekar-

Lewandowski measure µ0 for some ν0 and 1ν0 is (cyclic and) D-invariant.

Proof. According to Lemma 2.3 and the agreements thereafter, we may find some ν0,
such that 1ν0 is D-invariant (and cyclic). Now use the proposition above. 
�
Note that, as mentioned earlier, we do not distinguish between the D-invariances on
equivalent representations. More precisely, we should say in the corollary above: There
is an isomorphism U : H −→ H′ with H′ = ⊕

ν∈N L2(A, µν) for certain measures µν
on A, such that U ◦ π ′|C(X) ◦ U−1 is cyclic on each L2(A, µν) with cyclic vector 1ν ;
moreover, µν0 equals µ0 for some ν0 ∈ N and Uπ ′(αϕ)U−11ν0 = 1ν0 for all ϕ ∈ D.

Before we will be able to prove the proposition above, we have to provide two
estimates.

Lemma 7.3. Let T ∈ Mγ be a gauge-variant spin network state, and let φ be some
representation occurring in T . Denote the Casimir eigenvalue w.r.t. φ by λφ and set
n := dim g. Finally, define η : R+ −→ R+ according to Lemma B.2.

Then there is a one-parameter groupwt of Weyl operators, such that, for each t0 > 0
and each even J ∈ N+, there are (2n)J diffeomorphisms ϕ�, such that

∥

∥

∥

1

(2n)J

∑

�

(

α−1
ϕ�
(wt )− e−

1
2λφ J t2

1
)

T
∥

∥

∥∞ ≤ ‖T ‖∞ (eη(t0)J t4 − 1)

for all |t | < t0.

Proof. Fix some edge γ ∈ γ , such that φ is the representation carried by γ in T .
Let, according to Lemma B.2, {Xi }ni=1 be a basis of the Lie algebra g of G, such that
− 1

n

∑

i φ(Xi )φ(Xi ) is (up to the prefactor) the Casimir operator φ. Define

cφ,g(t) := 1

2n

n
∑

i=1

(

φ(et Xi ) + φ(e−t Xi )
) ≡ 1

2n

2n
∑

i=1

φ(et Xi ) ≡ 1

2n

2n
∑

i=1

φ(e−t Xi )

with Xi+n := −Xi . According to Proposition 6.21, choose some interval I ⊆ [0, 1],
for each i = 1, . . . , 2n some appropriate surface Si disjoint to im γ and some s ∈ Z.
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Moreover, let di : M −→ g be the constant function of value 1
2 Xi , and fix some strictly

increasing sequence (τ j ) j∈N+ ⊆ I .
We are now going to consider the one-parameter group

wt :=
2n
∏

i=1

wi,t ≡
2n
∏

i=1

w
Si ,σSi
Edi (t)

.

In fact, this is a one-parameter group: All the Si are disjoint, whence wi,t and wi ′,t ′
commute by Lemma 3.26.27

Fix now some positive even integer J and some positive t0. By the choice of Si
and of (τ j ), for each � : [1, J ] −→ [1, 2n] there is a diffeomorphism ϕ� ∈ D with the
properties described in Proposition 6.21. In particular, since ϕ�(γ ) intersects S := ⋃

i Si
completely transversally, the minimal S-admissible decomposition of ϕ�(γ ) contains
S-external edges only. More explicitly, it equals ϕ�(γ0) · · ·ϕ�(γJ ) with γ0 = γ |[0,τ1],
γ j = γ |[τ j ,τ j+1] and γJ = γ |[τJ ,1]. By ϕ�(γ (τ j )) ∈ S�( j) for all j , we see that ϕ�(γ j )

starts in S�( j) and ends in S�( j+1) (with the obvious exceptions for j = 0 and j = J ).
Since, moreover, by construction, σ +(S�( j), ϕ�(γ j−1)) = (−1) j+s = σ−(S�( j), ϕ�(γ j ))

for j = 1, . . . , J , we get

wt (αϕ�(φ ◦ πγ )) = wt (φ ◦ πϕ�γ ) =
J

⊗

j=0

wt (φ ◦ πϕ�γ j )

= (φ ◦ πϕ�γ0) ⊗
J

⊗

j=1

(

φ
(

e(−1) j+s X�( j)t
) · (φ ◦ πϕ�γ j )

)

,

hence

[α−1
ϕ�
(wt )](φ ◦ πγ ) = (φ ◦ πγ0) ⊗

J
⊗

j=1

(

φ
(

e(−1) j+s X�( j)t
) · (φ ◦ πγ j )

)

and

1

(2n)J

∑

�

[α−1
ϕ�
(wt )](φ ◦ πγ ) = (φ ◦ πγ0) ⊗

J
⊗

j=1

1

2n

2n
∑

i=1

φ(e(−1) j+s Xi t ) · (φ ◦ πγ j )

= (φ ◦ πγ0) ⊗
J

⊗

j=1

cφ,g(t) · (φ ◦ πγ j ).

Here, we used

∑

�:[1,J ]−→[1,2n]

J
⊗

j=1

a�( j), j =
J

⊗

j=1

2n
∑

i=1

ai, j .

27 If we choose some E(t) : M −→ G with E(t) = Edi (t) on each Si and define σS to be the joint

intersection function of S1, . . . , S2n , we get wt = w
S,σS
E(t) . Recall that we assumed that R contains not only

the “genuine” subgroups in W , but also the finite products of such subgroups, provided they mutually commute.
Therefore, it is not important that E(t) is possibly not included in �(S).
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By assumption, we have T = Tγ ⊗ Tγ ′ = √
dim φ(φ ◦ πγ )kl ⊗ Tγ ′ for some

matrix indices k, l and some Tγ ′ ∈ Mγ ′ with γ ′ = γ \ {γ }. Additionally using
S ∩ im (ϕ�γ

′) = ∅ and ‖φk
l ‖∞ ≤ ‖φ‖∞, we get

∥

∥

∥

1

(2n)J

∑

�

(

α−1
ϕ�
(wt )− e−

1
2λφ J t2

1
)

T
∥

∥

∥∞

≤
∥

∥

∥

√

dim φ
( 1

(2n)J

∑

�

(

α−1
ϕ�
(wt )− e−

1
2λφ J t2

1
)

(φ ◦ πγ )
)k

l
⊗ Tγ ′

∥

∥

∥∞

≤ ‖Tγ ‖∞ (eη(t0)J t4 − 1) ‖Tγ ′ ‖∞
for all |t | < t0, by Lemma B.2 and the surjectivity [14] of πυ : A −→ G#υ for every
hyph υ. 
�
Corollary 7.4. Let π ′ be some representation of ADiff , let T ∈ Mγ be a nontrivial
gauge-variant spin network and let ψ ∈ H be D-invariant with 〈ψ,π(T )ψ〉H �= 0.

Then there is a one-parameter group wt of Weyl operators and ε, t0 > 0, such that
for all 0 �= |t | < t0 there is a diffeomorphism ϕ with

|〈ψ,π(

(wt − 1)(αϕT )
)

ψ〉H| ≥ ε.
Proof. • Set ε := min{ 1

2 ,
1
4 |〈ψ,π(T )ψ〉H|} > 0. Fix τ0 > 0 and some non-trivial

irreducible representation φ occurring in T . Next, choose positive real τ2 and τ4,
such that (using the η(τ0) as given in Lemma 7.3)

‖ψ‖2
H ‖T ‖∞ (eη(τ0)τ − 1) < ε for all |τ | < τ4

and

e−
1
2λφτ < ε for all |τ | > τ2.

Define now

J0 := 1

2

√

2τ2τ4 and t0 := min

{

1

τ2
J0,

3
√

J0, τ0

}

.

We say that (J, t) ∈ N+ × R is an admissible pair iff

0 < |t | < t0 and
J0

t3 ≤ J ≤ 2
J0

t3 .

As one checks easily, the admissibility of (J, t) implies J t2 > τ2 and J t4 < τ4.
Moreover, for every 0 < |t | < t0, there is an even J (t) ∈ N+ such that (t, J (t)) is
admissible.

• Choose now a one-parameter subgroup wt of Weyl operators and, for all positive
integers J , some diffeomorphisms ϕ�, � ∈ PJ , as in Lemma 7.3. Consequently, we
have

∣

∣

∣

1

(2n)J

∑

�∈PJ

〈ψ,π((

α−1
ϕ�
(wt )− e−

1
2λφ J t2

1
)

T
)

ψ〉H
∣

∣

∣
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≤
∥

∥

∥π
( 1

(2n)J

∑

�∈PJ

(α−1
ϕ�
(wt )− e−

1
2λφ J t2

1)T
)∥

∥

∥B(H) ‖ψ‖
2
H

≤
∥

∥

∥

1

(2n)J

∑

�∈PJ

(α−1
ϕ�
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H

< ε

and, using (1− ε) |〈ψ,π(T )ψ〉H| ≥ 1
2 |〈ψ,π(T )ψ〉H| ≥ 2ε,

∣

∣

∣

1

(2n)J

∑

�∈PJ

(

1− e−
1
2λφ J t2)〈ψ,π(T )ψ〉H

∣

∣

∣
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1− e−
1
2λφ J t2) |〈ψ,π(T )ψ〉H| ≥ (1− ε) |〈ψ,π(T )ψ〉H| ≥ 2ε

for all admissible pairs (J, t).
• Altogether, we have for all admissible pairs (J, t),
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ψ〉H
∣

∣

∣

∣

∣

∣

∣

> ε.

• Finally, for all 0 < |t | < t0, we may choose a J (t) providing an admissible pair
(J (t), t). By the lines above, there is some ϕ ∈ {ϕ� | � ∈ PJ (t)}, such that

|〈ψ,π(

(wt − 1)(αϕT )
)

ψ〉H| = |〈ψ,π
(

(α−1
ϕ (wt )− 1)T

)

ψ〉H| > ε

using the D-invariance of ψ . 
�
Proof of Proposition 7.1. Corollary 7.4 shows that W ′ splits W at 1ν0 for every nontri-
vial gauge-variant spin network state T with 〈1, T 〉ν0 ≡ 〈1ν0 , π(T )1ν0〉H �= 0. Hence,
W ′ splits W at 1ν0 , by Lemma 3.3. Since π is regular, Proposition 2.21 gives the asser-
tion. 
�

7.2. Naturality. Now we are using nice enlarged structure data and assume additionally
that

• D contains at least the stratified isomorphisms described in Subsect. 6.4 and at least
those necessary to keep Proposition 6.14 valid;

• S contains at most all D-orbits of semianalytic subsets in M having a finite wide
triangulation and being of lower dimension than M , but contains at least the q-balls
and q-simplices with q < dim M .



Representations of the Weyl Algebra in Quantum Geometry 129

Proposition 7.5. Let π ′ be a D-natural representation of ADiff , such that 1ν0 is a diffeo-
morphism-invariant vector and µν0 equals µ0 for some ν0 ∈ N.

Then the restriction of π ′ to Hν0 is the fundamental representation π0, i.e., we have
Pνπ ′(a) = π0(a)Pν for all a ∈ ADiff .

The proof of the proposition will use several steps we are now going to write down in
separate lemmata. For this, throughout the whole section, we will assume that π ′ is a
D-natural representation of ADiff having some 1ν0 as a D-invariant vector. Moreover,
µν0 equal µ0. Finally, as usual, we set π := π ′|A.

Lemma 7.6. Let S1 and S2 be elements in S having orientationsσS1 andσS2 . Assume that
they are oriented-strata equivalent. Finally, let g ∈ G be some element and di : Si −→ G
for i = 1, 2 be the constant function with value g.

Then w
S1,σS1
d1

is a πν0 -unit (πν0 -scalar) iff w
S2,σS2
d2

is a πν0 -unit (πν0 -scalar).

Proof. Let ϕ be a product of localized stratified isomorphisms mapping S1 onto S2 as
well as their orientations. Then

αϕ(w
S1,σS1
d1

) = w
ϕ(S1),ϕ(σS1 )

ϕ(d1)
= wS2,σS2

d2
.

Now, the assertion follows from Corollary 2.10. 
�
Lemma 7.7. Let S some subset of M, such that S and ∂S are connected embedded
submanifolds in M (without boundary) and that S is an embedded submanifold in M
having boundary ∂S. Moreover, assume that S has one of its natural orientations. Finally,
let w = wS,σS

d for some constant d ∈ �(S).
Then Pν0π(w)1ν0 ∈ Hν0 ≡ L2(A, µ0) is orthogonal to all non-trivial gauge-variant

spin network states that are not based on an edge γ whose image equals S, ∂S or S.

Recall that no edge of a gauge-variant spin network is labelled with the trivial represen-
tation.

Proof. Let T be a gauge-variant spin network state in Mγ . There are two main cases:

• im γ neither equals S, ∂S nor S.
By Proposition 6.22, there is an infinite number of localized stratified diffeomor-
phisms ϕi , leaving S (including its orientation and d) and each edge of γ except
for some γ invariant, and forming a hyph {ϕi (γ )}i . Consequently, αϕi T and αϕ j T
are orthogonal for i �= j . Moreover, each αϕi commutes with w. Therefore, by
Lemma 2.17, Pν0π(w)1ν0 is orthogonal to T .

• im γ equals S, ∂S or S.
Assume first im γ = ∂S. Since im γ is compact, ∂S has to be compact as well. Hence,
it is isomorphic to S1. After a possibly necessary re-orientation of γ , the product of
all paths in γ is a closed edge γ with image ∂S. Assume that T is not (γ, φ)-based
for some φ. Then there is some vertex m in γ , where the adjacent edges at m are
either labelled with different representations or carry non-matching indices. Now,
as in the previous case, but this time by Proposition 6.23, there are infinitely many
localized stratified diffeomorphisms ϕi , leaving the sets S (including orientation and
d) and ∂S invariant; they simply move m along ∂S stretching ∂S a bit. By Lemma
3.4, any two αϕi T and αϕ j T with i �= j are orthogonal. Since each αϕi commutes
with w, Lemma 2.17 proves the orthogonality of Pν0π(w)1ν0 and T .

The case of im γ = S is completely analogous. For im γ = S we may additionally
get the case of an embedded interval. However, this is analogous as well. 
�
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Immediately from the proof of the lemma above and that of Proposition 6.22, we get

Corollary 7.8. Let S be some subset of M and wS,σS
d ∈ W be any Weyl operator.

Moreover, let γ be a graph not contained in the closure of S.
Then Pν0π(w)1ν0 ∈ Hν0 ≡ L2(A, µ0) is orthogonal to all non-trivial gauge-variant

spin network states in Mγ .

We are now going to prove that the Weyl operators to open balls given some constant
“labelling” d, are πν0 -units. We start with the dimensions 0 and 3+, but smaller than
dim M , proceed with dimension 1 and end up with dimension 2.

Corollary 7.9. Let s < dim M be some non-negative integer with s �= 1, 2, and let S be
an open or closed s-dimensional ball in M given a nice orientation.

Then w := wS,σS
d is a πν0 -unit for every constant d ∈ �(S).

Proof. Letγ be a non-trivial graph. Since s �= 1, 2, neither S, ∂S nor S equals im γ . Thus,
Pν0π(w)1ν0 is orthogonal to each non-trivial T ∈ MSN. Since MSN is a continuous
µ0-generating system, w is a πν0 -scalar (see also Lemma 2.14).

To prove that w is even a πν0 -unit observe first that, by Propositions 6.10 and 6.14,
there is a stratified isomorphism ϕ mapping S onto itself, but reverting its orientation.
Thus, αϕ(w) = w∗, whence w2 is a πν0 -unit by Corollary 2.11. Since G is compact,
there is a square root for any element. Re-doing the proof for d1 ∈ �(S) with d1 d1 = d
gives the assertion. 
�
Lemma 7.10. Let w ∈ W be a Weyl operator for some quasi-surface S and some
constant d ∈ �(S), and let γ be an analytic edge, such that Pν0π(w)1ν0 is contained
in the closure of span Bγ .

If the image of γ is not completely contained in S, then w is a πν0 -scalar.

Proof. Let m ∈ im γ \ S. If γ is closed, we may assume that m is not the base point
of γ . Consider now for each g ∈ G the Weyl operator wg,m given by the quasi-surface
Sm := {m}, whereas the orientation of Sm is chosen, such that the direction of γ coincides
with the orientation of Sm . Since Sm and S are disjoint,wg,m andw commute. Moreover,
by Corollary 7.9, wg,m is a πν0 -unit. Consequently, by Corollary 2.13, wg,m leaves
Pν0π(w)1ν0 invariant.

• Let m be not an endpoint of γ .
First of all, let T = (Tγ ,φ)

i
j ∈ Bγ,φ for some non-trivial φ with φk = φ for all k and

with m being a vertex of γ . One easily checks that

wg,m(T ) =
∑

r1,r2

φ(g2)r1
r2
(Tγ ,φ)

i(r2)

j(r1)
,

whereas i(r) is the tuple of all ik where the index belonging to the edge leaving at
m is replaced by r . Hence,

〈Pν0π(w)1ν0 , T 〉µ0 = 〈w∗g,m(Pν0π(w)1ν0), T 〉µ0

= 〈Pν0π(w)1ν0 , wg,m(T )〉µ0

=
∑

r1,r2
φ(g2)r1

r2
〈Pν0π(w)1ν0 , (Tγ ,φ)

i(r2)

j(r1)
〉µ0
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for all g ∈ G and therefore, since square roots exist in G,

〈Pν0π(w)1ν0 , T 〉µ0 =
∫

G
〈Pν0π(w)1ν0 , T 〉µ0 dµHaar(g)

=
∑

r1,r2
〈Pν0π(w)1ν0 , (Tγ ,φ)

i(r2)

j(r1)
〉µ0

∫

G
φ(g)r1

r2
dµHaar(g)

= 0.

Now, if T = (Tγ ,φ)
i
j ∈ Bγ,φ for some non-trivial φ without m being a vertex of γ ,

we may refine γ by inserting m as a new vertex. Then T is a (finite) sum of (γ, φ)-
based gSNs each having m as a vertex of the underlying graph. Using the just shown
result, we get

〈Pν0π(w)1ν0 , T 〉µ0 = 0

for all (γ, φ)-based gauge-variant spin network states.
Altogether, this shows that Pν0π(w)1ν0 is orthogonal to all non-trivial gauge-

variant spin network states, i.e., w is a πν0 -scalar.
• Let m be an endpoint of γ .

We argue analogously, using

wg,m(T ) =
∑

r

φ(g)i1
r (Tγ ,φ)

i(r)
j

if m = γ (0), and similarly for m = γ (1). 
�
Corollary 7.11. Let S be an open 1-dimensional ball in M given a nice orientation.

Then w := wS,σS
d is a πν0 -unit for every constant d ∈ �(S).

Proof. Let γ be the edge whose interior is S and choose one of its orientations. By
Lemma 7.7, Pν0π(w)1ν0 is orthogonal to all non-trivial gauge-variant spin network
states that are not based on the edge γ . By Corollary 3.6, Pν0π(w)1ν0 is contained in
the closure of the span of γ -based gSNs. Since, however, the endpoints of γ are not
contained in S, Lemma 7.10 implies that w is a πν0 -scalar. Now, by Proposition 6.10,
there is some ϕ ∈ D being the identity on S, but inverting the orientation of S, i.e.,
αϕ(w) = w∗. Corollary 2.11 implies that w2 is a πν0 -unit. As above, the assertion
follows since square roots exist in G. 
�
Corollary 7.12. Let S be an open 2-dimensional ball in M given a nice orientation.

Then w := wS,σS
d is a πν0 -unit for every constant d ∈ �(S).

Proof. The image of an edge γ equals S, ∂S or S iff γ is a closed loop along ∂S ∼= S1.
By Lemma 7.7, Pν0π(w)1ν0 is orthogonal to all non-trivial gauge-variant spin network
states not based on such a γ . Hence, we have Pν0π(w)1ν0 ∈ span Bγ by Corollary 3.6.
Observe that im γ ∩ S = ∅. Now argue as in Corollary 7.11. 
�
Proposition 7.13. Let S be a finitely widely triangulizable subset in M having a natural
orientation with dim S < dim M.

Then w := wS,σS
d is a πν0 -unit for every d ∈ �(S) being constant on S.
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Proof. • S is an open q-simplex having a nice orientation.
By Corollary 6.11 and Proposition 6.14, S is oriented-strata equivalent to a nicely
oriented q-ball. So we get the assertion, since q-balls lead to Weyl operators that are
πν0 -units (Corollaries 7.9, 7.11 and 7.12) and since this property is inherited to all
oriented-strata equivalent objects according to Lemma 7.6.

• S is finitely widely triangulizable.
This means, by definition, S is the finite disjoint union of nicely oriented sim-
plices. Since disjoint unions lead to products of (commuting) Weyl operators (see
Lemma 3.26), we get the assertion as well in the general case. 
�

Proof of Proposition 7.5. Use Proposition 7.13 and Lemma 2.12, observing that each
w′ ∈W ′ is a π ′ν0

-unit and that ADiff is generated by W , W ′ and C(X). 
�

7.3. Classification.

Definition 7.1. Enlarged structure data are called optimal iff they are nice and

• M is at least three-dimensional;
• �(S) contains

– at most the constant functions together with their E-orbits;
• D contains

– at least the stratified isomorphisms described in Subsect. 6.4,
– at least those necessary to keep Proposition 6.14 valid;

• S contains
– at least those hypersurfaces that are necessary to keep Proposition 6.21 valid,
– at least the q-balls and q-simplices for q < dim M,
– at most all D-orbits of semianalytic subsets in M having a finite wide triangulation

and being of lower dimension than M.

Theorem 7.14. Letπ ′′ be a representation of AAuto on H, such thatπ := π ′′|A is regular
and π ′ := π ′′|ADiff is D-natural. Moreover, let there exist some D-E-invariant vector in
H being cyclic for π . Finally, let optimal enlarged structure data be given.

Then π ′′ is unitarily equivalent to the fundamental representation of AAuto.

Proof. By Corollary 7.2, regularity and diffeomorphism invariance imply that there is a
first-step decomposition ofπ ′, such that someµν0 is the Ashtekar-Lewandowski measure
µ0 and that 1ν0 is D-invariant. Naturality, diffeomorphism invariance and Proposition 7.5
imply that eachw ∈W w.r.t. a constant d ∈ �(S) is aπν0 -unit. As 1ν0 is also E-invariant,
w ∈W is a πν0 -unit for every d ∈ �(S) by Lemma 2.4 and Proposition 3.38. Cyclicity
gives the proof by Corollary 2.7. 
�

We remark that the results above can be directly extended to semianalytic sets having
the same dimension as M . Of course, the triangulizability has to be guaranteed and the
intersection functions have to be adjusted. The latter one can be done, e.g., by setting
σS(γ ) for closed S to be one iff γ starts at the boundary of S and then leaves S non-
tangentially. The proofs, however, have to be modified accordingly. In particular, there is
no longer an extra dimension available to mirror simplices and balls. Instead, we now use
that there are diffeomorphisms mapping simplices (enlarged by one of its faces) onto two
other, disjoint simplices whose union is the original simplex again (Proposition 6.13).
The proofs that the corresponding Weyl operators are πν-units, should now use the first
statement of Corollary 2.11 and proceed inductively on the dimension.



Representations of the Weyl Algebra in Quantum Geometry 133

7.4. Discussion. Having now obtained the desired uniqueness theorem, we might ask
whether the assumptions for it are reasonable.

7.4.1. Structure data. First of all, let us consider the enlarged structure data.

Lemma 7.15. The following enlarged structure data are optimal:

• M is an at least three-dimensional analytic manifold;
• G is a nontrivial connected compact Lie group;
• P consists of all piecewise analytic paths in M ;
• E contains the generalized gauge transforms;28

• D contains the stratified analytic diffeomorphisms in M ;
• S contains the semianalytic sets in M (together with their D-orbits) having lower

dimension than M and having a finite wide triangulation;
• �(S) contains the natural29 intersection functions of S;
• �(S) contains the constant functions on M (together with their E-orbits);
• R contains the one-parameter subgroups of Weyl operators consistent with S, {�(S)},
{�(S)}.

From our point of view (see also the discussion in Subsect. 4.1), all ingredients are natural
up to the restrictions on S and, maybe, on M and �(S). The inclusion of semianalytic
sets is reasonable, since the stratified diffeomorphisms map analytic hypersurfaces to
semianalytic sets anyway. At the same time, the inclusion of lower-dimensional surfaces
becomes natural. But, it would be desirable to at least replace the condition of wide
triangulizability by the “standard” triangulizability, since in this case it is known that any
semianalytic set is triangulizable. The requirement that each simplex in the triangulation
is nicely oriented, is not too restrictive, since every naturally oriented, embedded surface
is at least locally nicely oriented. The finiteness, on the other hand, cannot simply be
dropped. This may at most be possible for compact M . In fact, then every semianalytic
set has a compact closure and compact boundary. Then we may triangulize them finitely,
by local finiteness. Redoing the procedure with the (lower-dimensional) semianalytic
set given by the intersection of the original one with its boundary, we may successively
get a finite decomposition of the original set into simplices. For non-compact M , this is
no longer true. Simply take a hyperplane in R

3 being triangulizable, of course, but not
finitely. Well, although our proofs above have aimed at the finite case, we may extend
the uniqueness result immediately to this example. Simply use that a hyperplane can
be rotated onto itself inverting its orientation, and argue as in Corollary 7.9. In other
words, it may be, as already mentioned above, that every analytic manifold is widely
triangulizable; but even if not, there seems to be still some leeway in our argumentation
above to keep the uniqueness given in the more general context. However, to explore
this, several technical investigations in the field of semianalytic sets are necessary that
go much beyond the scope of this paper.

We mentioned also the restriction that M has to be at least three-dimensional. Well,
for quantum gravity this is no problem at all, since the space-like hypersurfaces are
three-dimensional. The space-time is even four-dimensional, although this does not

28 The statement remains true if we assume E to be any subset of G, e.g., just the (stratified analytic) gauge
transforms of a particular principal fibre bundle.

29 To be precise, �(S) should contain the natural intersection functions of S, if S is a submanifold. In
the general case, include all intersection functions that are joint intersection functions given by the nice
intersection functions for the submanifolds forming the respective triangulation. Finally, if necessary, collect
all intersection functions generated by the action of D on stratified sets of the types mentioned previously.
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seem relevant here, since we work with compact structure groups excluding the full
covariant formulation of general relativity in four dimensions using the structure group
SO(3, 1) or Sl(2,C). Nevertheless, we expect our result to be true in dimension 2 as
well. In dimension 1, one should check it by hand – M can only be a line or a circle.

Another issue concerns the choice of functions d ∈ �(S) to label the stratified
sets. Constant functions mark some minimal condition. On the other hand, our proofs
in Subsect. 7.2 only go through for constant labellings. In fact, only these guarantee
that diffeomorphisms mapping some S onto itself preserve even its labelling. The most
obvious way out might be to add some stronger notion of regularity. In particular, we
might reuse the idea of step functions for the definition of integrals. This means we
should approximate an arbitrary (sufficiently “smooth”) function by simple functions,
i.e., by sums of step functions, having sufficiently nice, disjoint supports. These sums
now correspond to products of Weyl operators with constant labellings. Since these
are represented identically, we would get the desired uniqueness for representations
that are in this sense regular and if each d can be approximated this way. However, this
approximation again may be in conflict with the triangulation problem above. Therefore,
at this point, we state only the directly given

Lemma 7.16. Besides nice enlarged structure data, assume that each �(S) consists of
some subset of continuous functions d : M −→ G. Equip�(S)with the supremum norm
on S induced by some fixed norm on G. Assume there is some sequence (di )i∈N with
di → d in�(S), such that for all i there are finitely many Si,ki forming a decomposition
of S and each having a finite wide triangulation, whereas di is constant on each Si,ki .

Then, given the assumptions of Theorem 7.14, π ′ is equivalent to π0, provided π ′ is
�0,S,σS -regular for all S ∈ S and σS ∈ �(S).
Recall that π0 itself is always �0,S,σS -regular, i.e., if di converges pointwise on S to d,
then the corresponding Weyl operators converge weakly.

Proof. Let d, S and σS be fixed. The Weyl operators corresponding to Si,ki and di |Si,ki

are even πν0 -units according to the proof of Theorem 7.14, hence eachwS,σS
di

as well, by

Lemma 3.26. Proposition 2.22 and the �0,S,σS -regularity imply that wS,σS
d is a πν0 -unit

as well. Corollary 2.7 gives the proof. 
�

7.4.2. Further assumptions. Let us now say a few words about the other assumptions of
Theorem 7.14. That we restrict ourselves to cyclic representations, is no restriction at all,
since any (non-degenerate) representation can be decomposed into cyclic ones. Rather,
the assumption that there is a cyclic vector being at the same time diffeomorphism inva-
riant, is a restriction. This means that we only consider theories having a diffeomorphism
invariant “vacuum”. Well, this may be justified by the corresponding invariance of gene-
ral relativity leading to some special kind of quantum geometry. Next, we assumed at
least the “standard” regularity mapping weakly continuous one-parameter subgroups
into weakly continuous ones. It may be desirable to drop this assumption; however, even
in the classical theory of quantum mechanics, the Stone-von Neumann theorem relies on
the regularity assumption. Indeed, it is very difficult to prove results without referring
to it. However, in our case, there may be some hope, since the diffeomorphism group is
that large and may thence identify so many objects in order to, possibly, replace some
or all of the regularity assumptions. The naturality of the action of diffeomorphisms is
discussed below.



Representations of the Weyl Algebra in Quantum Geometry 135

7.4.3. Improvements. Finally, we would like to emphasize that we were able to drop
a crucial assumption and to weaken another made in the paper [35] by Sahlmann and
Thiemann:

First of all, we did not need any assumptions about the domains of the operators. This
was possible, since we are working with the exponentiated Weyl operators from the very
beginning. The only point, where we went down to the non-exponentiated regime, was
in Subsect. 7.1 (and Appendix B). But even there, we did not do this for generators of the
represented Weyl operators. In fact, we did only use results for the convergence of the
genuine Weyl operators w.r.t. the supremum norm. This way, we get some “analytic”
convergence at the exponentiated level that, afterwards, leads to the emergence of the
Ashtekar-Lewandowski measure by splitting and regularity.

Secondly, we significantly weakened the assumptions on the representation of the
diffeomorphisms. Although we re-used the name “natural” representation, our definition
imposes much less restrictions than that in [35]. There, the action of diffeomorphisms
is said to be natural if it is the pull-back representation of D on each L2(A, µν). This,
however, is well-defined only if the pull-back action of D is well-defined on L2(A, µν).
In fact, in general, it is not. To see this, we use again the general notation of Sect. 2.
Namely, let µν be the Dirac measure at some x ∈ X being not invariant w.r.t. W ′.
Then Hν = L2(X, µν) is isomorphic to C by ψ �−→ ψ(x) for any measurable function
ψ on X . Take some w′ ∈ W ′ with ξw′(x) �= x , and let the even continuous function
ψ be one at ξw′(x), but zero at x . Therefore, ψ = 0 in Hν , but, at the same time,
(w′(ψ))(x) = ψ(ξw′(x)) = 1, hence w′(ψ) = 1 in Hν . In other words, the extension
of the pull-back mapping from C(X) to L2(X, µν) is ill defined. Additionally, one sees
immediately, that, even if the pull-back representation is well defined, it is unitary only
if µν is W ′-invariant. This, of course, restricts the possible measures drastically. We,
instead, defined naturality (see Definition 2.5) much less restrictive. Firstly, we do not
refer to the pull-back representation at all. Secondly, before we impose conditions on
the projection of π ′ to certain Hν , we check whether Hν is invariant w.r.t. W ′. Only then
and only if µν1 and µν2 coincide, we, thirdly, require that the respective projections of
π ′ coincide. This way, the problems indicated above are circumvented.

Nevertheless, one should think why one required naturality at all in our case X = A
and W ′ ∼= D. Recall that there are three different objects to be considered: the continuous
functions on A, the Weyl operatorsw ∈W and the diffeomorphisms αϕ ∈W ′. The first
two of them are dynamical, the last one is just a constraint. Therefore, it is reasonable to
distinguish between them. For instance, it is not required that π ′ is regular. In fact, the
diffeomorphisms act arbitrarily non-continuously on H already in the fundamental repre-
sentation: Given some ψ ∈ L2(A, µ0), say a spin network state on some graph γ , then
αϕ(ψ) is orthogonal to ψ provided γ is not preserved by ϕ (actually being a negligible
restriction). Moreover, since C(A) is continuous, in any case, we may decompose the
restriction of any representation to C(A) into canonical representations on A w.r.t. cer-
tain measures. It now may be conceivable that, if the continuous functions on A cannot
distinguish between two of these addends, then the purely kinematical, constraining part
cannot either. In other words, if two measures in the first-step decomposition coincide,
then the induced representations should be identified. There is no obvious reason why
diffeomorphisms should not keep the addends of the first-step decomposition invariant –
but, there is also no reason why they should. Therefore, although it might be reasonable
to restrict oneself to natural representations of diffeomorphisms, this assumption does
not seem to be absolutely desirable. If we do this, however, observe that the arguments
above should not be applied to the Weyl operators. Indeed, first of all, these are dynamical
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objects, and, secondly, they act on a higher level, namely, on A affected by the dynamics
and not on the paths being the ultimate constituents of the theory and being the domain
for the homomorphisms in A.

7.4.4. Main open issues. Of course, the remarks above are not at all final answers why to
consider just these assumptions. At least from the mathematical point of view, it would
be highly desirable to have more general results available. We have given some hints
here for direct extensions, however, the field is still open, in particular:

Question 1. Is naturality w.r.t. diffeomorphisms necessary?

Question 2. Is regularity w.r.t. Weyl operators necessary?
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Appendix

A. Continuity Criterion

Lemma A.1. Let Y be some sequential topological space. Let X be a Banach space and
let λ : Y −→ B(X) be some map. Moreover, let ‖λ(·)‖ : Y −→ R be locally bounded.
Assume, finally, that there is some subset E ⊆ X, such that y �−→ λ(y)e is continuous
for all e ∈ E and that span E is dense in X.

Then y �−→ λ(y)x is continuous for all x ∈ X.

Proof. Fix some y′ ∈ Y and choose a neighbourhood U of y′, such that ‖λ(·)‖ is
bounded on U , say, by c. Let now ε > 0 and x ∈ X . Then there are x1, x2 ∈ X with
x1 ∈ span E and ‖x2‖ ≤ ε, such that x = x1 + x2. Since y −→ λ(y)e is continuous for
e ∈ E , so it is for e ∈ span E . Hence, there is some neighbourhood U ′ ⊆ U of y′, such
that ‖λ(y)x1 − λ(y′)x1‖ ≤ ε for all y ∈ U ′. Consequently,

‖λ(y)x − λ(y′)x‖ ≤ ‖λ(y)x1 − λ(y′)x1‖ + ‖λ(y)x2 − λ(y′)x2‖
≤ ‖λ(y)x1 − λ(y′)x1‖ + (‖λ(y)‖ + ‖λ(y′)‖)‖x2‖
≤ (2c + 1)ε

for all y ∈ U ′. Hence, y �−→ λ(y)x is continuous in y′ for all x ∈ X . Since y′ was
arbitrary, we get the proof. 
�

B. Two Estimates

Lemma B.1. Let H be some Hilbert space and N ∈ N. Moreover, let A, Ai and Bi be
linear continuous operators on H, such that ‖A‖ ≤ 1 and ‖Bi‖ ≤ 1 for all i = 1, . . . , N.
Then

∥

∥

∥

∏N

i=1
Ai Bi −

∏N

i=1
ABi

∥

∥

∥ ≤
∏N

i=1

(

1 + ‖Ai − A‖)− 1.
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Proof. We have
∥

∥

∥

∏N

i=1
Ai Bi −

∏N

i=1
ABi

∥

∥

∥ =
∥

∥

∥

∏N

i=1
(A + [Ai − A])Bi −

∏N

i=1
ABi

∥

∥

∥

≤
∏N

i=1

(‖ABi‖ + ‖(Ai − A)Bi‖
)−

∏N

i=1
‖ABi‖

≤
∏N

i=1

(‖A‖ + ‖Ai − A‖)−
∏N

i=1
‖A‖

≤
∏N

i=1

(

1 + ‖Ai − A‖)− 1.


�
Lemma B.2. Let G be a connected, compact (hence linear) Lie group and let φ be an
irreducible representation of G on Vφ . Moreover, let {Xi }ni=1 be a basis of the Lie algebra
g of G, such that − 1

n

∑

i φ(Xi )φ(Xi ) is (up to the prefactor) the (quadratic) Casimir
operator Cφ for φ. Set

cφ,g(t) := 1

2n

n
∑

i=1

(

φ(et Xi ) + φ(e−t Xi )
)

.

Then, for all t0 > 0, there is some η(t0) > 0 with
∥

∥

∥φ ⊗
⊗J

j=1

(

cφ,g(t) · φ
) − e−

1
2λφ J t2 ⊗J

j=0
φ

∥

∥

∥∞ ≤ eη(t0)J t4 − 1

for all |t | < t0 and all positive integers J . Here, λφ is the Casimir eigenvalue w.r.t. φ,
and ‖ · ‖∞ denotes the supremum norm in GJ+1 induced by the standard operator norm
‖ · ‖ on Vφ .

Proof. Let

f1(t) := cφ,g(t) and f2(t) := e−
1
2λφ t2

φ(1).

We have f1(0) = φ(1) = f2(0). Next, f ′′1 (0) = 1
n

∑n
i=1 φ(Xi )φ(Xi ) = −Cφ . Since

Cφ = λφφ(1), we have f ′′1 (0) = −λφφ(1) = f ′′2 (0). Since, moreover, the derivatives of
odd degree vanish for both f1 and f2, the derivatives of f1 and f2 coincide up to degree
3. Hence, for every t0 > 0 there is some η(t0) > 0, such that ‖ f1(t)− f2(t)‖ < η(t0)t4

for all |t | < t0. Here, we used the analyticity of f1 and f2 on full R.
Using Lemma B.1 and ‖φ(g)‖ = 1 (by unitarity of G), we get

∥

∥

∥φ(g0)

J
∏

j=1

(

cφ,g(t) φ(g j )
) − e−

1
2λφ J t2

J
∏

j=0

φ(g j )

∥

∥

∥

≤
J

∏

j=1

(

1 +
∥

∥cφ,g(t) − e−
1
2λφ t2

φ(1)
∥

∥

)

− 1

≤
J

∏

j=1

(

1 + η(t0)t
4
)

− 1

≤ eη(t0)J t4 − 1

for all g0, . . . , gJ ∈ G and all |t | < t0. 
�
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C. “Bumpy” Stratified Isomorphisms

Lemma C.1. Let τ1 and τ2 be real numbers with τ1 < τ2. Moreover, let 0 < ε <
1
2 (τ2 − τ1) and a > 0. Finally, let n ≥ 2 be an integer and define

C := [τ1 − ε, τ2 + ε] × [−2ε, 2a + 2ε] × Bn−2
2ε ⊆ R

n,

where Bm
r is the ball around the origin in m dimensions with radius r .

Then there is a stratified analytic isomorphism ϕ of R
n with the following properties

(see also Fig. 1 in Subsect. 6.4.1):

• ϕ is the identity outside C ;
• ϕ changes the second (i.e., y-)coordinate only;
• ϕ maps the first (i.e., x-)coordinate axis (restricted to [τ1− ε, τ2 + ε]) to the union of

straight lines connecting the points

(τ1 − ε, 0, !0), (τ1 + ε, 2a, !0), (τ2 − ε, 2a, !0), and (τ2 + ε, 0, !0).
Proof. W.l.o.g. we may assume that τ := τ2 = −τ1. Decompose C into the 18
subsets30

Gi j0 := Gi j × Bn−2
ε

and

Gi j+ := Gi j ×
(

Bn−2
2ε \int Bn−2

ε

)

having overlapping boundaries (for the definition of Gi j , see Fig. 1). We are going to
explicitly construct a diffeomorphism ϕ mapping Gi j∗ onto some Hi j∗. Before stating
the explicit formulae, we explain them verbally for n = 2. G11 is mapped to H11, such
that lines parallel to the x-axis are mapped to lines through (x0, y0), whereas the line
x = −τ − ε is preserved pointwise. The mapping between G12 and H12 simply makes
(mutually parallel) sloped lines out of lines parallel to the x-axis. G13 is mapped to H13
similarly as G11 to H11. The maps G2i −→ H2i map a line parallel to the x-axis again
to such a line. The shift is completely determined by the shift on the left boundaries of
the G2i . These, of course, are already given by maps of the right boundaries of G1i . The
maps for G3i will not be given explicitly. They just follow by the reflection symmetry
w.r.t. x = 0. The ideas above widely fix ϕ. We only have to take care of the matching
conditions in the !z-directions. Here, we introduce a “fall-off” when ‖!z‖ is in [ε, 2ε]. For
this, we define g(!z) := 1

2

(

1− cos(π
ε
‖!z‖)).

In the following, we will use that for any analytic function h : R × R
n−2 and any

y0 ∈ R,
ϕaux : R

n −→ R
n

(x, y, !z) �−→ (

x, y + h(x, !z)(y0 − y), !z)
is invertible analytically on

Uh := {(x, y, !z) | h(x, !z) �= 1}
by

ϕ−1
aux : Uh −→ R

n .

(x, y, !z) �−→ (

x, y−h(x,!z)y0
1−h(x,!z) , !z

)

.

Let us now state the diffeomorphism setting y0 := a + 2ε:

30 Of course, if n = 3, there are 27 connected components, and for n = 2 there are only 9. We drop the
corresponding cases here.
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• Define
ϕ110 : R

n −→ R
n

(x, y, !z) �−→ (

x, y + a
ε

x+τ+ε
2a+ε (y0 − y), !z)

and
ϕ11+ : R

n −→ R
n

(x, y, !z) �−→ (

x, y + g(!z) a
ε

x+τ+ε
2a+ε (y0 − y), !z).

Both ϕ110 and ϕ11+ are analytically invertible on x < −τ +ε+ ε2

a and are the identity
on x = −τ −ε. Moreover, they coincide on G110∩G11+. Finally, ϕ11+ is the identity
on ‖!z‖ = 2ε.

• Define
ϕ120 : R

n −→ R
n

(x, y, !z) �−→ (

x, y + a
ε
(x + τ + ε), !z)

and
ϕ12+ : R

n −→ R
n .

(x, y, !z) �−→ (

x, y + g(!z) a
ε
(x + τ + ε), !z).

Both ϕ120 and ϕ12+ are analytically invertible on full R
n , coincide on G120 ∩ G12+

and are the identity on x = −τ − ε. In particular, observe that

ϕ120(−τ − ε, y, !0) = (−τ − ε, y, !0)
and

ϕ120(−τ + ε, y, !0) = (−τ + ε, y + 2a, !0),
i.e., ϕ120(−τ, 0, !0) = (−τ, a, !0).

• The maps ϕ13∗ : Rn −→ R
n are defined analogously to the case of ϕ11∗.

• The maps ϕ2i∗ are given by
ϕ2i∗ : R

n −→ R
n,

(x, y, !z) �−→ (

x, pryϕ1i∗(−τ + ε, y, !z), !z),
where pry is the projection to the y-component.

• The remaining maps ϕ3i∗ are defined using the reflection symmetry w.r.t. x = 0.

One immediately checks that ϕ : Rn −→ R
n defined by ϕ|Gi j∗ := ϕi j∗ and ϕ|Rn\C := id

is a well-defined stratified analytic isomorphism with the desired properties. 
�
Open Access This article is distributed under the terms of the Creative Commons Attribution Noncommercial
License which permits any noncommercial use, distribution, and reproduction in any medium, provided the
original author(s) and source are credited.
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