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Abstract
This trend article provides an overview of recent advancements in Non-Target Screening (NTS) for water quality assessment,
focusing on new methods in data evaluation, qualification, quantification, and quality assurance (QA/QC). It highlights
the evolution in NTS data processing, where open-source platforms address challenges in result comparability and data
complexity. Advanced chemometrics and machine learning (ML) are pivotal for trend identification and correlation analysis,
with a growing emphasis on automated workflows and robust classification models. The article also discusses the rigorous
QA/QC measures essential in NTS, such as internal standards, batch effect monitoring, and matrix effect assessment. It
examines the progress in quantitative NTS (qNTS), noting advancements in ionization efficiency-based quantification and
predictive modeling despite challenges in sample variability and analytical standards. Selected studies illustrate NTS’s role
in water analysis, combining high-resolution mass spectrometry with chromatographic techniques for enhanced chemical
exposure assessment. The article addresses chemical identification and prioritization challenges, highlighting the integration
of database searches and computational tools for efficiency. Finally, the article outlines the future research needs in NTS,
including establishing comprehensive guidelines, improving QA/QC measures, and reporting results. It underscores the
potential to integrate multivariate chemometrics, AI/ML tools, and multi-way methods into NTS workflows and combine
various data sources to understand ecosystem health and protection comprehensively.

Keywords Non-target screening · High-resolution mass spectrometry · QA/QC in water analysis ·
Chemometrics/machine learning · Quantitative non-target screening · Aquatic contaminants · Data standardization

Introduction

Water ecosystems are essential for all living but have endured
various anthropogenic threats, ranging from pollution to
over-exploitation. As a safeguard, the tools used to assess
water quality are crucial.However, theworld is rapidly evolv-
ing, and the compounds finding their way into water systems
are changing. Therefore, continuously adaptingmodernmea-
surement and data analysis techniques has become desirable
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and imperative to keep pace. The dominant approaches are
targeted screening methods, i.e., target analysis and suspect
screening, that have been instrumental in detecting known
contaminants [1, 2]. However, their restrictive scope limits
their efficacy, potentially allowing unknown or unexpected
pollutants to go unnoticed. Non-target screening (NTS),
powered by high-resolution mass spectrometry (HRMS),
extended those tools, offering a dynamic solution uncon-
strained by the need to search for specific, pre-identified
contaminants [3].

While NTS has ushered in new possibilities for pollu-
tant detection, it has its challenges [4]. Firstly, the sheer
volume of data generated by HRMS instruments such as
Orbitrap or time-of-flight systems coupled with gas chro-
matography (GC) or liquid chromatography (LC) can be
daunting, demanding sophisticated data management and
processing tools. Analyzing and interpreting the vast spec-
tra of chemical signatures also requires much expertise
and refined methodologies [5]. Additionally, distinguish-
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ing between signal noise, naturally occurring compounds,
and emerging pollutants poses another intricate trilemma
[6]. The double-edged sword of comprehensive chemical
databases is evident in non-target screening. On the one
hand, amore extensive database offersmore opportunities for
compound identification. Conversely, the enormous volume
of information can make pinpointing a specific compound
akin to finding a needle in a vast haystack. To address this
challenge, adopting approaches like PubChemLite can be
beneficial, which refines the vastness of the database by
focusing on the most relevant and commonly encountered
compounds, thus combining the power of comprehensive
data with the ease of targeted searches [7]. Beyond these
technical hurdles, practical challenges arise regarding stan-
dardization across laboratories and regulatory adaptation. As
the field of NTS continues to evolve, addressing these hur-
dles is crucial to harnessing its full potential. In light of the
challenges inherent to NTS, the field has witnessed a surge
of innovations and methodologies, underscoring the ever-
evolving landscape of water quality assessment [3]. These
trends promise to refine our understanding and detection
capabilities and foster a proactive stance toward potential
threats. From advancements in instrument technology, data
processing, and method performance assessment to collab-
orative efforts for database expansion and standardization,
these trends represent a renewed commitment to preserving
the sanctity of water ecosystems. This Trend article high-
lights advances in data evaluation approaches, the importance
of quality assurance/quality control guidelines and valida-
tion protocols for NTS study outputs, and quantitative NTS
strategies by focusing on works conducted within the past
five years. In this way, different challenges, opportunities,
and related concepts to NTS will be explored. In the conclu-
sion section, an outlook for the future trajectory of non-target
screening in aquatic ecosystems will be presented based on
emerging and expected needs.

Current data evaluation trends in NTS

The evaluation ofHRMSdata inNTS consists of two aspects:
(1) initial raw spectra processing, aiming to condense via
multi-step approaches relevant chemical information from
individual measurement data, i.e., feature extraction, and (2)
data analysis, putting the chemical information obtained into
a meaningful context, e.g., comparing samples for moni-
toring trend analysis in time series experiments. The outer
structure of NTS processing workflows, namely centroiding,
peak detection, etc., looks almost harmonized and famil-
iar with target or suspect screenings. However, in detail,
the explicit algorithms of the individual steps can differ
significantly, making result comparability challenging. In

data analysis, advanced multivariate chemometrics meth-
ods and machine learning (ML) have become indispensable
tools for discovering hidden patterns and identifying corre-
lations where conventional methods are limited. Moreover,
high-throughput annotations of unknown features are being
performed using open-source molecular discovery work-
flows that utilize spectral libraries, ML, and cheminformatic
tools [8].

Full scan HRMS/MS data storage allows retrospective
analysis without re-run sample analyses. This potential has
been proposed as an early warning system worldwide to
detect emerging pollution threats [9]. In 2019, theNORMAN
Digital Sample Freezing Platform (DSFP) was launched to
enable digital sample archiving and retrospective suspect
screening [10]. However, challenges exist due to the sheer
size and complex nature of NTS data, particularly in archiv-
ing HRMS data, meta-data, and processing capabilities [11].
As outlined in the following sections, data processing work-
flows in the NTS generally consist of several steps, from
feature extraction to structural elucidation.

Data processing: feature extraction

Hyphenated HRMS instruments generally produce complex
and diverse datasets requiring specific processing and robust
processing tools and procedures. Briefly, the main aim of
the processing step is to provide a compact “component
table” from the original raw data. Processing parameters
are crucial to further screening success. The significant
points here are extracting highly qualified features, proper
feature alignment, redundant feature filtering, and reliable
componentization of features to the same unique molecular
structure.Recently, differentNTSdata processing algorithms
and methods have been extensively reviewed [6]. Nowadays,
in addition to vendor software, open-source tools such as
XCMS [12], MZmine [13], SIRIUS [14], MS-DIAL [15],
enviMass [16], have been used for HRMS data handling
of environmental samples. However, since most of these
packages were developed for -omics data, the workflow
and parameters are not necessarily appropriate for environ-
mental studies regarding issues like frequent appearances
of low-intensity peaks, more highlighted matrix effects, and
long-term exposure monitoring. The impact of data prepro-
cessing on the production of different outputs and quality
would be another noticeable concern at this stage [68]. This
insight requires more thorough research and collaboration to
ensure reliable and robust NTS tools and procedures.

The open-source platform PatRoon [17] enables compre-
hensive environmental NTS data processing, from HRMS
pre-treatment to compound annotation. With PatRoon, com-
parison between algorithms is possible, and feature coverage
can be increased by utilizing both common and distinctive
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features among algorithms. InSpectra, an open-source and
modular web-based NTS and suspect screening workflow,
was released in 2023 [18]. LC-HRMS data can be archived,
shared, and curated through parallel computing with InSpec-
tra. Moreover, InSpectra can identify, track, and prioritize
pollution threats in a reproducible and transparent manner.

According to [19], while not limited to water samples,
it has been found that vendor software like Thermo Com-
pound Discoverer or Agilent MassHunter is frequently used
for LC or GC-HRMS NTS data processing. However, com-
mercial software often presents proprietary constraints, such
as limited customization options and exclusive data formats,
making transitions or data sharing cumbersome. The closed
nature of these tools obscures the understanding of data pro-
cessing, posing challenges for rigorous scientific evaluations.
Furthermore, such software may face interoperability issues
due to restrictions on available platforms and variations in
tools used by collaborators, hampering seamless teamwork
and comprehensive system compatibility. Thus, due to the
main disadvantage of commercial software, developing and
validating open software that leverages NTS for both GC-
and LC-HRMS data while deconvoluting MS2 data for more
coverage of chemical exposure in water environments is
highly required. An alternative to these “feature profile” (FP)
packages is to exploit multi-way chemometric methods for
direct “component profile” (CP) production. For example,
a set of LC-HRMS measurements can be efficiently mod-
eled by a multi-way algorithm after initial data compression
[20]. Multivariate curve resolution-alternating least squares
(MCR-ALS) and parallel factor analysis 2 (PARAFAC2)
are the most efficient methods. However, other tensor fac-
torization algorithms can also be implemented after extra
preprocessing steps. Uponmodeling on each data array, three
matrices of CPs are generated: resolved “pure” LC pro-
files, their mass spectral counterpart, and the area under
resolved LC profiles as quantification scores. Therefore,
data dimensionality can be reduced, decreasing the risk of
incomplete componentization and missing compounds that
cannot be detected by feature-based peak detection [21].
Data processing protocols based on multiple samples align
well with real-world aquatic NTS advancements and per-
spectives, such as monitoring pollution pathways in river
water, wastewater samples undergoing chemical or biologi-
cal treatment, or water samples measured under a variety of
extraction/instrumental conditions [20, 22, 23].

Nevertheless, multi-way methods have prerequisites to
consider when applied in GC/LC-MS data processing [24].
As the most flexible algorithm, MCR-ALS provides addi-
tional benefits in NTS of water samples with complex GC-
or LC-HRMS data structures (e.g., substantial RT shifts and
co-elution issues) designed in response to environmental

conditions. However, MCR workflows are mainly semi-
automated, and solutionsmayhave some ambiguities, though
their extent can be mitigated by incorporating sensible ALS
optimization constraints. A comparison of FP packages and
CP approaches in different water NTS categories would help
us understand how they differ qualitatively and quantitatively
when extracting a holistic or prioritized subset of chemical
spaces. An overall emphasis should be placed on expanding
and optimizing fully automated multi-way-based workflows
designed to process NTS raw GC- and LC-HRMS data and
produce CPswith high completeness andminimal user input.

Data analysis: pattern recognition

With the “component table” in place, various chemo-
metrics/ML algorithms and visualization tools could be
employed for downstream tasks such as uncovering chemical
trends and pollution events, monitoring the occurrence and
fate of pollutants, assessing of water treatment process, and
developing intelligent prioritization criteria to select environ-
mentally relevant features.Hence, it is also crucial to consider
data transformations, intensity normalization, and scaling for
removing unwanted variations before further analysis. Data
processing challenges with NTS include the high dimen-
sionality of HRMS records and the possibility of redundant
information, the lack of adequate sample size, and the num-
ber of replicates required for statistical testing. An effective
data reduction strategy and exploration are therefore required
in the first place. In unsupervised NTS, principal compo-
nent analysis (PCA), hierarchical clustering analysis (HCA),
and co-occurrence analysis using Venn diagrams are the
most popular methods to evaluate similarities, co-variations,
and differences between various NTS cases [5]. While these
methods benefit data exploration, onemust know their poten-
tial and limitations about high dimensional HRMS data [25,
26].

The recently used supervised classification and multi-
variate statistical tools in NTS of water samples are partial
least squares-discriminant analysis (PLS-DA), its orthogonal
directed model (OPLS-DA), support vector machines with
linear kernels (SVM), PLS-path modeling, and multivariate
ANOVA models [22, 23, 27, 28]. Due to their multivariate
advantage, these methods complement univariate statistics
(e.g., volcanoplots,Mann–WhitneyU test,ANOVA)because
they consider all features simultaneously and can consider
pollutant compound interrelations associated with the out-
come (Fig. 1). Multiple validation criteria must be applied to
evaluate the performance and generalizability of predictive
models followingmodel training, suggesting that procedures
for assessing the effectiveness of NTS methods may need to
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Fig. 1 Representation of
ASCA(+) loading plot (Factor
“sampling location”) to display
the final subsets of highly
prioritized chemicals (ESI+)
strongly associated with
different stream water sources
by the joint implementation of
univariate (volcano test) and
multivariate statistical methods
(PLS-DA-VIP and ASCA+)
[28]. Note: ASCA(+): extension
of ASCA (ANOVA
Simultaneous Component
Analysis) for unbalanced
experimental design;
PLS-DA-VIP: Partial Least
Squares-Discriminant
Analysis-Variable Importance in
Projection

be improved and standardized [6, 29]. However, the previous
reports show that NTS data classification can be non-linear
in more complex scenarios, such as heterogeneous or highly
dynamic behavior of pollution sources or when there is a sub-
stantial overlap in the chemical composition of water sources
[25, 28]. Therefore, more flexible and robust non-parametric
learners such as SVMmodels with non-linear kernels, artifi-
cial neural networks (ANNs), deep learning (DL) algorithms,
and ensemble classifiers such as random forest (RF) and gra-
dient boosting algorithms (such as XGBoost and CatBoost)
can be exploited in cases where linear classification methods
are not robust tools.

Moreover, ML tools have a high potential for use in
many other fields within NTS research, including reten-
tion time (RT) prediction [30] and collision cross section
(CCS) prediction in ionmobility spectrometry (IMS) coupled
with HRMS as well [31]. Furthermore, constructing several
robust classification models on the same sample set may be
necessary to avoid interpretation biases and false discover-
ies. The final explanatory and predictive outputs would be
highly beneficial for future comparison of aquatic ecosys-
tems and uncovering the exposure of relevant pollutants and
proper chemical fingerprints in various situations. Such ben-
efits align with what has been emphasized in the literature,
which is that NTS data sharing and the development of
data repository platforms are essential to facilitate collabora-
tive trials, QA/QC, method developments and comparisons,
unify protocols, and contribute to policy and regulatory
development.

Quality assurance/quality control efforts
in NTS

The complex nature of NTS requires stringent quality assur-
ance and quality control (QA/QC) measures to ascertain the
reliability and validity of results [32, 33]. Many of these
QA/QC protocols are general and originate from conven-
tional target analyses, with scarce specific developments for
NTS [34]. Therefore, exploring and discussing these mea-
sures within the NTS framework and evolving a perspective
view on future developments and trends within this field is
crucial. In the meaning of QA/QC, there are three layers
in the analytical process where quality has to be ensured:
Samples, Measurement System, and Data Processing. NTS
measurements are organized in long-running batch series,
so ensuring stability should be prioritized [33]. It is neces-
sary to ensure sample stability, signifying that samples and
their components remain intact and unchanged throughout
the analysis. In this situation, one suggestion is to include
internal standards (ISs) multiple times within the batch anal-
ysis, as Caballero-Casero et al. (2021) put forth [33]. The
stability can then be assessed by evaluating the consistency
of these internal standards and pooled sample results over
time. Next to sample stability, monitoring measurement sys-
tem stability using quality control charts and batch effect
correction is integral for NTS [33, 35]. Including and consid-
ering blank samples can be used to identify memory effects
at an early stage and prevent cross-contamination.

Moreover, these blank measurements can be considered
for later background corrections [34]. Assessing matrix
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effects is integral to preserving the NTS process’s reliabil-
ity [33]. Matrix compounds can cause significant shifts in
retention time and m/z, with the latter primarily originating
from data processing and being associated with increased
data dispersion and overlapping effects in the extracted ion
traces [6]. QC samples fortified with ISs are vital in assess-
ing matrix effects by comparing QC samples in the absence
and presence of respective matrices [33]. Moreover, QC
samples provide information about potential interferences,
recovery efficiency, error rates for identifications, and pre-
cision throughout the analytical process [32, 33, 35]. The
number of ISs depends on the complexity of the samplematri-
ces, with each IS requiring successful identification by the
workflow’s conclusion [34]. These standards help to normal-
ize data, minimize variability, and augment reliability [36].
Additionally, QC samples are a reference point to validate
the outcomes derived from the NTS process [36].

Ensuring that the sample used in the laboratory accu-
rately reflects the real environmental matrix is crucial. It
can be done by comparing the standard deviations of sample
replicates with those from pooled samples [33, 35]. Pooled
samples should also be used for method development to
assess andoptimize various parameters during sample extrac-
tion, data acquisition, and data processing, which is common
in metabolomics and can easily be transferred to NTS in
water analysis [34, 37]. In the context of QA/QC, quantifying
substances identified in NTS accurately presents challenges
due to complexities tied to sample matrices, concentrations,
and compound characteristics. Although methods like pre-
dicted ionization efficiency can be employed to calibrate
concentrations against known standards — which will be
discussed further in the subsequent section — it should be
noted that existing predictive quantification methods in NTS
donotmeet the same standards as conventional quantification
techniques [36, 38]. Predictive quantification in non-target
screening involves estimating the quantity of substances
based on signal normalization. Due to inherent variations
and uncertainties, an acceptable signal enhancement is often
set between 30 and 150%of the original signal, depending on
the specific context of the analysis. Deviations outside these
limits may indicate potential errors or biases in the NTS pro-
cess [33].

The advancement and adoption of open-access data pro-
cessing tools are pivotal for transparent and reproducible
NTS results [34]. Reporting data processing and data analysis
details is crucial as various algorithms provide significantly
different findings, which is still one of the biggest chal-
lenges inNTS data processing [6, 20]. However, encouraging
interlaboratory comparability investigations can enhance the
consistency and comparability of results across different lab-
oratories [33]. Regarding data evaluation, the human element
remains a significant unknown. Consequently, it is essential
to utilize objective calculation methods, such as those for

data similarity considerations, like isotope matching. These
methods provide an unbiased evaluation for identification
and should be given precedence over subjective approaches
such as visual assessments [6, 39]. Clear and detailed guide-
lines are required for reporting the identification of unknown
features and assessing the confidence level [34, 35, 40]. The
proposed Identification Points (IP) scoring system by Aly-
gizakis et al. (2023) is based on the already well-established
scoring system by Schymanski et al. (2014) [39, 40]. It
aims to establish objective standards for non-target screening
results, thus improving consistency and quality in data inter-
pretation [39]. In certain instances, penalties can be applied to
the IP score, such as when recorded data-dependent scans are
lacking or poor fragmentation is observed [39]. An overview
in Fig. 2 summarizes the essential elements of QA/QC for
NTS.

Selected NTS approaches in water analysis
studies

NTS has been rapidly advancing in recent years since it pro-
vides a more holistic view of chemical exposure patterns in
different environmental samples by combining HRMS with
LC or GC. However, GC-HRMS is still insufficiently uti-
lized compared with LC-HRMS despite the large spectral
databases available (e.g., NIST20 and Wiley 11) [5, 19].
Moreover, combined methods have only been used in very
few cases [41, 42]. Undoubtedly, further progress would
be in developing GC-/LC-HRMS-based NTS workflows
for the same aqueous environment. As a result, chemical
space coverage can be efficiently increased in various NTS
applications, depending on the study design and research
questions. The same holds for multidimensional chromato-
graphic systems, HILIC-to-reverse phase chromatography,
and combinedworkflows using different ionization technolo-
gies.

NTS workflows have been advancing by adopting passive
sampling devices (PSDs) to sample streams and multi-
watersheds, which have advantages such as time integrity,
cost-effectiveness, fewer disruptions, and greater sensitivity,
all of which are beneficial for determining pollution status
in streams and determining pollution level [5, 11, 28, 43].
Thus, PSD-based strategies can be exploited to capture both
“aggregate” and “cumulative” exposure information about
environmental pollution. In summary, using combined strate-
gies in sampling, sample preparation, instrumental measure-
ments, and data acquisition modes, namely data-dependent
acquisition (DDA) and data-independent acquisition (DIA)
in NTS workflows leading to higher chemical coverage in
the aquatic environment, is highly recommended. However,
experimental and operational limitations, availability, and
complexity of recorded data should be considered [11, 44].
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Fig. 2 Overview of the essential elements of QA/QC for NTS in water analysis

These considerations also apply to the combined target, sus-
pect, and non-target strategies in different NTS scenarios [5,
45]. However, exhaustive elucidations remain challenging
and laborious since they need to be confirmed with reference
standards and manually verified. Thus, peak prioritization,
or specifying the most reliable subset of chemicals based on
the research question, is a fundamental part of many NTS
studies. Such prioritization ensures that elucidation efforts
are focused on the most relevant chemicals and mitigate
the risk of overlooking potentially hazardous pollutants. As
a result, environmental risk assessment and management
efforts could be facilitated using such an approach. There
has been a growing number of strategies for prioritizing,
whether by effect-directed analysis (EDA), exposure-driven
approaches, or their combination [11, 36]. The most recent
examples of exposure-driven prioritization strategies are time
series LC-HRMS prioritization based on deep learning con-
volutional neural network (DL-CNN) [46] and group-wise
PCA (GPCA) [26], spatiotemporal-based prioritization using
PLS-DA-VIP, ASCA(+) [28], binary comparisons using
sparse ASCA (GASCA) [22], highly polar pollutant prior-
itization [47], removal rate ranking in wastewater treatment
plants (WWTPs) [48] and source (urban and agricultural)
related prioritization [49]. NTS chemical fingerprinting and
quantitative source tracking have also been improved in
recent years from a method development perspective [50]

and in real-world applications, suggesting that a reliable
diagnostic subset of features or “smart tracers” can pre-
dict pollution sources in watersheds, their relative locations,
and quantify processes that are beyond the capabilities of
conventional ecosystem sensors through the advancement
of ML-based workflows [25]. Alternatively, recent studies
suggest that hazard-driven prioritization based on MLinvit-
roTOX [51], a classifier based on both structural and MS2
data, and online prioritization [52] based on an intelligent
MS2 acquisition method could be helpful to focus identifi-
cation efforts on features with the most significant potential
to harm the environment, rather than those that are most
abundant.

The use of NTS in advanced oxidation processes (AOPs)
is on the rise. It offers several advantages, including the
identification of unknown transformation products (TPs),
understanding how the water matrix influences the forma-
tion of new TPs, determining treatment efficiency on a global
scale, detecting abnormalities early, optimizing processes,
and making decisions [5, 53]. Furthermore, it was found
that AOP treatment evaluation can be improved by adding
supercritical fluid chromatography (SFC)-HRMS to the LC-
HRMS-based workflow for identifying unknown persistent
and mobile organic compounds (PMOCs) found in ground-
water samples to achieve greater detection coverage of highly
polar compounds [54].
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NTS workflows face significant challenges in identifying
a prioritized chemical based solely on its accurate mass and
MS/MS fragmentation patterns. In particular, for LC-HRMS
and with available databases for GC-EI, the assignment
of tentative structures in an expert and validated way is
still a great challenge and is tedious and time-consuming.
Searching in large compound databases (e.g., Massbank,
mzCloud, ChemSpider, and PubChem) for possible struc-
tures of an elemental formula typically results in numerous
hits that need to be ranked and considered further by avail-
able MS/MS recorded data, retention time (RT) plausibility,
providedmeta-data, and limited comparability among instru-
ments, as well. Moreover, developing different in silico tools
(Metfrag andCSI: FingerID integratedwith SIRIUS) for pre-
dicting MS fragmentation patterns and RT predictions using
QSPRmodels are additional validation criteria in NTSwork-
flows and reducing false positive findings. Smaller databases
such as STOFF-IDENT [55] and CompTox [56] could facil-
itate the identification of prioritized unknown chemicals.
PubChemLite, a subset of PubChem, was introduced by
Schymanski et al. in 2020 for more efficient identifica-
tion efforts in exposomics and environmental research [7].
Recent progress has been made regarding improving chem-
ical identifications through integrating experimental spectra
(ENTACT) into MassBank and developing automated work-
flows to support non-targeted exposomics and NTS surveys
on aquatic samples [57, 58]. A further improvement may
be achieved by adding spectral data measured over different
types of HRMS systems under varying conditions.

Quantification in NTS

Quantitative non-target screening (qNTS) is one of the
newest analytical fields with substantial challenges, such
as the absence of analytical standards, variable ionization
efficiency across laboratories and instruments, and the com-
plexity of samples that range from effluents to drinking water
[38, 59–63]. However, recent advancements have brought
promising solutions to the forefront. Methods like ionization
efficiency-based quantification and machine learning mod-
els have improved accuracy [38, 59, 60, 62]. These models,
predominantly based on the Random Forest approach, pro-
vide reliable predictions and allow for applying different
prediction strategies depending on the confidence level of
the analytical signal. Additionally, they enable comparabil-
ity across different laboratories, instruments, and analysis
methods [64]. Nevertheless, these advancements have their
limitations. Discrepancies in complex matrices, significant
errors in modeling approaches, and variability between dif-
ferent instruments and matrices pose challenges [59, 60, 64].
Notably, the need for reference standards for the vast diver-
sity of chemicals can limit quantification accuracy, hindering

the progress of non-targeted screening [65]. Looking ahead,
the field of NTS is ripe for evolution. The development and
improvement of models, especially those utilizing machine
learning, are vital future directions. Increasing the range
of detectable chemicals and optimizing prediction accuracy
could revolutionize the NTS era.

Moreover, there is a pressing need to continue monitoring
and managing identified substances. This need will require
authorities to control the release of prioritized substances
and new chemical candidates, an effort that will undoubtedly
shape the future landscape of NTS in aquatic environments.
Recent advancements in qNTSemphasize its adaptability and
the scientific community’s dedication to refining its methods
formore accurate results. From grapplingwith quantification
accuracy to harnessing the power of machine learning, qNTS
continues to evolve in response to the challenges it faces.
As we look to the future, the field stands ready to embrace
new techniques and strategies, all in pursuit of more effec-
tive detection, identification, and quantification of unknown
chemicals.

Conclusion and outlook

Recent advances in NTS of aquatic environments include
improved QA/QC guidelines, advanced data processing
tools, more comprehensive coverage of “chemical space,”
novel prioritization strategies, and increased quantitative
approaches. The number of environmental chemicals, sus-
pects, and HRMS spectral databases is growing, and work-
flows are becoming increasingly automated for chemical
identification and structural analysis. Future research needs
and challenges related to NTSworkflow performance assess-
ment include establishing guidelines for all steps of NTS
workflows, improving QA/QC measures, and refining result
reporting. In this context, a first step has already been made
by esteemed research networks, such as the NORMAN Net-
work, BP4NTA, and the German Water Chemistry Society,
who provided guidelines andQA/QC service tools for report-
ing [3, 4, 66]. Additionally, the initiation of the official norm
process for ISO standards marks a significant stride toward
standardizing QA/QC in NTS, and its establishment will
undoubtedly shape and enhance the practice of QA/QC in
NTS in the foreseeable future [67]. The IP scoring system can
be further enhanced and adjusted as technological advance-
ments increase data availability. A transition from primarily
qualitative to quantitative approaches in NTS could improve
the overall quality and accuracy of NTS [36]. QA/QC inNTS
data processingmust become a focal point for future develop-
ments. Currently, valid uncertainty estimation of NTS results
is seldom achievable as individual intermediate results are
not collected or considered during the complex multi-step
NTS data processing [6]. The role of the evaluating analyst
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in making critical decisions, such as setting input parame-
ters for data processing and analysis, has yet to be studied.
Future developments should strive for uniform evaluation
criteria, standardized protocols, and the inclusion of statis-
tical methods to describe qualities and uncertainties. From
a QA/QC perspective, developing and openly providing ref-
erence datasets is crucial, enabling result verification and
characterizing strengths, weaknesses, and application ranges
of data processing methods.

Different open-source software platforms and statisti-
cal packages have been developed and are available for
HRMS data preprocessing/processing water samples. Sig-
nificant progress has been made in integrating multivariate
chemometrics methods and AI/ML tools into feature engi-
neering, data formatting, peak annotations, and downstream
data analysis, which has led to several opportunities for NTS
discoveries in the future. These trends can be expanded to
accommodate a variety of statistical approaches, comprehen-
sive LC- and GC-HRMS measurements, and different MS2

acquisition modes. Moreover, incorporating the multi-way
methods in NTS workflows as an alternative or complemen-
tary to the current packages can provide benefits such as

providing “pure” qualitative and quantitative information on
individual pollutants globally and robustly.

Combination protocols and complementary tools have
shown promise in different NTS areas. In this regard, the
future expects researchers to conduct multiple robust ML
and multivariate/univariate-based prioritizing strategies for
selecting the most reliable subset of emerging pollutants
based on significant ecological/health risks, environmental
exposure/persistence/co-occurrence, or both in several real-
world NTS scenarios. Furthermore, retrospective analysis
and usage of archived HRMS data will increase due to the
increasing trend of sharing data in FAIR repositories. Addi-
tionally, an emerging trendwill be the integration of chemical
NTS data with other data sources in water ecosystems,
including Environmental DNA (eDNA) methods (e.g., for
microbial communities), -omics-based approaches, ecolog-
ical and hydrological parameters, and other environmental
gradients, using advanced multiblock and statistical analysis
tools (Fig. 3).Using integrative approaches allows us to better
understand the environment and anthropogenic contami-
nants’ effect on ecosystem health and ultimately facilitate
efforts to protect ecosystems.

Fig. 3 Schematic representation
of the emerging NTS-Omics
integration framework within an
aquatic monitoring and
ecosystem health study. Note:
PPCPs: Pharmaceuticals and
Personal Care Products; TPs:
Transformation Products; PFAS:
Perfluoroalkyl and
Polyfluoroalky Substances;
DBP: Disinfection Byproducts;
eDNA: environmental DNA
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ular framework for processing, visualizing, and analyzing mass
spectrometry-based molecular profile data. BMC Bioinformatics.
2010;11:395. https://doi.org/10.1186/1471-2105-11-395.

14. Böcker S, Letzel MC, Lipták Z, Pervukhin A. SIRIUS: decompos-
ing isotope patterns for metabolite identification†. Bioinformatics.
2009;25:218–24. https://doi.org/10.1093/bioinformatics/btn603.

15. Tsugawa H, Cajka T, Kind T, Ma Y, Higgins B, Ikeda K, et al. MS-
DIAL: data-independentMS/MSdeconvolution for comprehensive
metabolome analysis. Nat Methods. 2015;12:523–526. https://doi.
org/10.1038/nmeth.3393

16. LoosM, Schmitt U.: enviMass version 3.5. Available online. Avail-
able from: https://doi.org/10.5281/zenodo.1213098

17. Helmus R, ter Laak TL, van Wezel AP, de Voogt P, Schymanski
EL. patRoon: open source software platform for environmental
mass spectrometry based non-target screening. J Cheminform.
2021;13:1. https://doi.org/10.1186/s13321-020-00477-w.

18. Feraud M, O’Brien JW, Samanipour S, Dewapriya P, van Herw-
erden D, Kaserzon S, et al. InSpectra - A platform for identifying
emerging chemical threats. J Hazard Mater. 2023;455: 131486.
https://doi.org/10.1016/j.jhazmat.2023.131486.

19. Manz KE, Feerick A, Braun JM, Feng YL, Hall A, Koelmel J,
et al. Non-targeted analysis (NTA) and suspect screening analy-
sis (SSA): a review of examining the chemical exposome. J Expo
SciEnvironEpidemiol. 2023;33:524–536. https://doi.org/10.1038/
s41370-023-00574-6

20. Hohrenk LL, Vosough M, Schmidt TC. Implementation of chemo-
metric tools to improve datamining andprioritization inLC-HRMS
for nontarget screening of organic micropollutants in complex
water matrixes. Anal Chem. 2019;91:9213–20. https://doi.org/10.
1021/acs.analchem.9b01984.

21. GorrochateguiE, Jaumot J,TaulerR.ROIMCR: apowerful analysis
strategy for LC-MS metabolomic datasets. BMC Bioinformatics.
2019;20:256. https://doi.org/10.1186/s12859-019-2848-8.

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.chemosphere.2017.05.071
https://doi.org/10.1016/j.scitotenv.2018.01.277
https://doi.org/10.1016/j.scitotenv.2018.01.277
https://doi.org/10.1186/s12302-023-00779-4
https://doi.org/10.1021/acs.analchem.1c02660
https://doi.org/10.1039/D1AY00111F
https://doi.org/10.1007/s00216-023-04776-7
https://doi.org/10.1007/s00216-023-04776-7
https://doi.org/10.1186/s13321-021-00489-0
https://doi.org/10.1016/j.envint.2021.106885
https://doi.org/10.1021/acs.est.8b00365
https://doi.org/10.1021/acs.est.8b00365
https://doi.org/10.1016/j.trac.2019.04.008
https://doi.org/10.1016/j.trac.2019.04.008
https://doi.org/10.1016/j.teac.2020.e00102
https://doi.org/10.1021/ac051437y
https://doi.org/10.1186/1471-2105-11-395
https://doi.org/10.1093/bioinformatics/btn603
https://doi.org/10.1038/nmeth.3393
https://doi.org/10.1038/nmeth.3393
https://doi.org/10.5281/zenodo.1213098
https://doi.org/10.1186/s13321-020-00477-w
https://doi.org/10.1016/j.jhazmat.2023.131486
https://doi.org/10.1038/s41370-023-00574-6
https://doi.org/10.1038/s41370-023-00574-6
https://doi.org/10.1021/acs.analchem.9b01984
https://doi.org/10.1021/acs.analchem.9b01984
https://doi.org/10.1186/s12859-019-2848-8


2134 M. Vosough

22. KhatoonabadiRL,VosoughM,HohrenkLL, Schmidt TC.Employ-
ing complementary multivariate methods for a designed non-
target LC-HRMS screening of a wastewater-influenced river.
Microchem J. 2021;160: 105641. https://doi.org/10.1016/j.microc.
2020.105641.

23. Cairoli M, van den Doel A, Postma B, Offermans T, Zemmelink
H, Stroomberg G, et al. Monitoring pollution pathways in river
water by predictive path modelling using untargeted GC-MS mea-
surements. npj Clean Water. 2023;6:48. https://doi.org/10.1038/
s41545-023-00257-7

24. Vosough M. Current challenges in second-order calibration of
hyphenated chromatographic data for analysis of highly complex
samples. J Chemom. 2018;32:1–15. https://doi.org/10.1002/cem.
2976.

25. Dávila-Santiago E, Shi C, Mahadwar G, Medeghini B, Insinga L,
Hutchinson R, et al. Machine learning applications for chemical
fingerprinting and environmental source tracking using non-target
chemical data. Environ Sci Technol. 2022;56:4080–90. https://doi.
org/10.1021/acs.est.1c06655.

26. PurschkeK,VosoughM,Leonhardt J,WeberM, Schmidt TC. Eval-
uation of nontarget long-term LC-HRMS time series data using
multivariate statistical approaches. Anal Chem. 2020;92:12273–
81. https://doi.org/10.1021/acs.analchem.0c01897.

27. Bonnefille B, Karlsson O, Rian MB, Raqib R, Parvez F, Papazian
S, et al. Nontarget analysis of polluted surface waters in
bangladesh using open science workflows. Environ Sci Technol.
2023;57:6808–24. https://doi.org/10.1021/acs.est.2c08200.

28. Hohrenk-DanzoumaLL,VosoughM,MerkusVI,Drees F, Schmidt
TC. Non-target analysis and chemometric evaluation of a pas-
sive sampler monitoring of small streams. Environ Sci Technol.
2022;56:5466–77. https://doi.org/10.1021/acs.est.1c08014.

29. Fisher CM, Peter KT, Newton SR, Schaub AJ, Sobus JR.
Approaches for assessing performance of high-resolution mass
spectrometry-based non-targeted analysis methods. Anal Bioanal
Chem. 2022;414:6455–71. https://doi.org/10.1007/s00216-022-
04203-3.

30. Boelrijk J, vanHerwerdenD,EnsingB, Forré P, Samanipour S. Pre-
dicting RP-LC retention indices of structurally unknown chemicals
from mass spectrometry data. J Cheminform. 2023;15:28. https://
doi.org/10.1186/s13321-023-00699-8

31. Yang F, van Herwerden D, Preud’homme H, Samanipour S. Col-
lision cross section prediction with molecular fingerprint using
machine learning. Molecules. 2022;27:6424. https://doi.org/10.
3390/molecules27196424.

32. Pourchet M, Debrauwer L, Klanova J, Price EJ, Covaci A,
Caballero-Casero N, et al. Suspect and non-targeted screening of
chemicals of emerging concern for human biomonitoring, environ-
mental health studies and support to risk assessment: frompromises
to challenges and harmonisation issues. Environ Int. 2020;139:
105545. https://doi.org/10.1016/j.envint.2020.105545.

33. Caballero-Casero N, Belova L, Vervliet P, Antignac JP, Cas-
taño A, Debrauwer L, et al. Towards harmonised criteria in
quality assurance and quality control of suspect and non-target
LC-HRMS analytical workflows for screening of emerging con-
taminants in human biomonitoring. TrAC - Trends Anal Chem.
2021;136:116201. https://doi.org/10.1016/j.trac.2021.116201

34. Schulze B, Jeon Y, Kaserzon S, Heffernan AL, Dewapriya P,
O’Brien J, et al. An assessment of quality assurance/quality control
efforts in high resolution mass spectrometry non-target workflows
for analysis of environmental samples. TrAC - Trends Anal Chem.
2020;133: 116063. https://doi.org/10.1016/j.trac.2020.116063.

35. Jewell KS, Hermes N, Ehlig B, Thron F, Köppe T, Thorenz U,
et al. Methodik zur Anwendung von Non-Target-Screening (NTS)
mittels LC-MS/MS in der Gewässerüberwachung. Umweltbun-
desamt; 2021. Available from: https://www.umweltbundesamt.

de/publikationen/methodik-zur-anwendung-von-non-target-
screening-nts.

36. Minkus S, Bieber S, Letzel T. Spotlight on mass spectrometric
non-target screening analysis: advanced data processing methods
recently communicated for extracting, prioritizing and quantifying
features. Anal Sci Adv. 2022;3:103–112. https://doi.org/10.1002/
ansa.202200001

37. Broadhurst D, Goodacre R, Reinke SN, Kuligowski J, Wilson
ID, Lewis MR, et al. Guidelines and considerations for the
use of system suitability and quality control samples in mass
spectrometry assays applied in untargeted clinical metabolomic
studies. Metabolomics. 2018;14:1–17. https://doi.org/10.1007/
s11306-018-1367-3.

38. Kruve A, Kiefer K, Hollender J. Benchmarking of the quantifica-
tion approaches for the non-targeted screening of micropollutants
and their transformation products in groundwater. Anal Bioanal
Chem. 2021;413:1549–59. https://doi.org/10.1007/s00216-020-
03109-2.

39. Alygizakis N, Lestremau F, Gago-Ferrero P, Gil-Solsona R, Arturi
K, Hollender J, et al. Towards a harmonized identification scor-
ing system in LC-HRMS/MS based non-target screening (NTS)
of emerging contaminants. TrAC - Trends Anal Chem. 2023;159:
116944. https://doi.org/10.1016/j.trac.2023.116944.

40. Schymanski EL, Jeon J, Gulde R, Fenner K, Ruff M, Singer
HP, et al. Identifying small molecules via high resolution mass
spectrometry:communicating confidence. Environ Sci Technol.
2014;48:2097–8. https://doi.org/10.1021/es5002105.

41. Diera T, Thomsen AH, Tisler S, Karlby LT, Christensen P,
Rosshaug PS, et al. A non-target screening study of high-density
polyethylene pipes revealed rubber compounds as main contami-
nant in a drinking water distribution system. Water Res. 2023;229:
119480. https://doi.org/10.1016/j.watres.2022.119480.

42. Simonnet-Laprade C, Bayen S, McGoldrick D, McDaniel T,
Hutinet S,MarchandP, et al. Evidence of complementarity between
targeted and non-targeted analysis based on liquid and gas-
phase chromatography coupled to mass spectrometry for screening
halogenated persistent organic pollutants in environmental matri-
ces. Chemosphere. 2022;293: 133615. https://doi.org/10.1016/j.
chemosphere.2022.133615.

43. Wang S, Basijokaite R, Murphy BL, Kelleher CA, Zeng T. Com-
bining passive sampling with suspect and nontarget screening to
characterize organicmicropollutants in streamsdrainingmixed-use
watersheds. Environ Sci Technol. 2022;56:16726–16736. https://
doi.org/10.1021/acs.est.2c02938

44. Yang Y, Yang L, Zheng M, Cao D, Liu G. Data acquisition meth-
ods for non-targeted screening in environmental analysis. TrAC
Trends Anal Chem. 2023;160: 116966. https://doi.org/10.1016/j.
trac.2023.116966.

45. Hinnenkamp V, Balsaa P, Schmidt TC. Target, suspect and non-
target screening analysis from wastewater treatment plant effluents
to drinking water using collision cross section values as additional
identification criterion. Anal Bioanal Chem. 2022;414:425–38.
https://doi.org/10.1007/s00216-021-03263-1.

46. Nikolopoulou V, Aalizadeh R, Nika MC, Thomaidis NS. Trend-
Probe: time profile analysis of emerging contaminants by LC-
HRMSnon-target screening anddeep learning convolutional neural
network. J Hazard Mater. 2022;428: 128194. https://doi.org/10.
1016/j.jhazmat.2021.128194.

47. Minkus S, Bieber S, Letzel T. (Very) polar organic com-
pounds in the Danube river basin: a non-target screening work-
flow and prioritization strategy for extracting highly confident
features. Anal Methods. 2021;13:2044–2054. https://doi.org/10.
1039/D1AY00434D

48. QianY,WangX,WuG,Wang L, Geng J, YuN, et al. Screening pri-
ority indicator pollutants in full-scale wastewater treatment plants

123

https://doi.org/10.1016/j.microc.2020.105641
https://doi.org/10.1016/j.microc.2020.105641
https://doi.org/10.1038/s41545-023-00257-7
https://doi.org/10.1038/s41545-023-00257-7
https://doi.org/10.1002/cem.2976
https://doi.org/10.1002/cem.2976
https://doi.org/10.1021/acs.est.1c06655
https://doi.org/10.1021/acs.est.1c06655
https://doi.org/10.1021/acs.analchem.0c01897
https://doi.org/10.1021/acs.est.2c08200
https://doi.org/10.1021/acs.est.1c08014
https://doi.org/10.1007/s00216-022-04203-3
https://doi.org/10.1007/s00216-022-04203-3
https://doi.org/10.1186/s13321-023-00699-8
https://doi.org/10.1186/s13321-023-00699-8
https://doi.org/10.3390/molecules27196424
https://doi.org/10.3390/molecules27196424
https://doi.org/10.1016/j.envint.2020.105545
https://doi.org/10.1016/j.trac.2021.116201
https://doi.org/10.1016/j.trac.2020.116063
https://www.umweltbundesamt.de/publikationen/methodik-zur-anwendung-von-non-target-screening-nts
https://www.umweltbundesamt.de/publikationen/methodik-zur-anwendung-von-non-target-screening-nts
https://www.umweltbundesamt.de/publikationen/methodik-zur-anwendung-von-non-target-screening-nts
https://doi.org/10.1002/ansa.202200001
https://doi.org/10.1002/ansa.202200001
https://doi.org/10.1007/s11306-018-1367-3
https://doi.org/10.1007/s11306-018-1367-3
https://doi.org/10.1007/s00216-020-03109-2
https://doi.org/10.1007/s00216-020-03109-2
https://doi.org/10.1016/j.trac.2023.116944
https://doi.org/10.1021/es5002105
https://doi.org/10.1016/j.watres.2022.119480
https://doi.org/10.1016/j.chemosphere.2022.133615
https://doi.org/10.1016/j.chemosphere.2022.133615
https://doi.org/10.1021/acs.est.2c02938
https://doi.org/10.1021/acs.est.2c02938
https://doi.org/10.1016/j.trac.2023.116966
https://doi.org/10.1016/j.trac.2023.116966
https://doi.org/10.1007/s00216-021-03263-1
https://doi.org/10.1016/j.jhazmat.2021.128194
https://doi.org/10.1016/j.jhazmat.2021.128194
https://doi.org/10.1039/D1AY00434D
https://doi.org/10.1039/D1AY00434D


Non-target screening in water analysis 2135

by non-target analysis. J Hazard Mater. 2021;414: 125490. https://
doi.org/10.1016/j.jhazmat.2021.125490.

49. Kiefer K, Du L, Singer H, Hollender J. Identification of LC-HRMS
nontarget signals in groundwater after source related prioritization.
Water Res. 2021;196: 116994. https://doi.org/10.1016/j.watres.
2021.116994.

50. Peter KT, Kolodziej EP, Kucklick JR. Assessing reliabil-
ity of non-targeted high-resolution mass spectrometry finger-
prints for quantitative source apportionment in complex matri-
ces. Anal Chem. 2022;94:2723–2731. https://doi.org/10.1021/acs.
analchem.1c03202

51. Arturi K, Hollender J. Machine Learning-Based Hazard-Driven
Prioritization of Features in Nontarget Screening of Environmental
High-Resolution Mass Spectrometry Data. Environ Sci Technol.
2023. https://doi.org/10.1021/acs.est.3c00304.

52. Meekel N, Vughs D, Béen F, Brunner AM. Online prioritization of
toxic compounds in water samples through intelligent hrms data
acquisition. Anal Chem. 2021;93:5071–5080. https://doi.org/10.
1021/acs.analchem.0c04473

53. Vazquez L, Llompart M, Dagnac T. Complementarity of two
approaches based on the use of high-resolution mass spectrometry
for the determination of multi-class antibiotics in water. Pho-
todegradation studies and non-target screenings. Environ Sci Pol-
lut Res Int. 2023;30:1871–1888. https://doi.org/10.1007/s11356-
022-22130-9.

54. Tisler S, Tüchsen PL, Christensen JH. Non-target screening of
micropollutants and transformation products for assessing AOP-
BAC treatment in groundwater. Environ Pollut. 2022;309: 119758.
https://doi.org/10.1016/j.envpol.2022.119758.

55. Letzel T, Bayer A, Schulz W, Heermann A, Lucke T, Greco G,
et al. LC-MS screening techniques for wastewater analysis and
analytical data handling strategies: sartans and their transformation
products as an example. Chemosphere. 2015;137:198–206. https://
doi.org/10.1016/j.chemosphere.2015.06.083.

56. Williams AJ, Grulke CM, Edwards J, McEachran AD, Mansouri
K, Baker NC, et al. The CompTox Chemistry Dashboard: a com-
munity data resource for environmental chemistry. J Cheminform.
2017;9:61. https://doi.org/10.1186/s13321-017-0247-6.
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