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Abstract
Nucleic acid testing technology has made considerable progress in the last few years. However, there are still many chal-
lenges in the clinical application of multiple nucleic acid assays, such as how to ensure accurate results, increase speed and 
decrease cost. Herein, a three-way junction structure has been introduced to specifically translate analytes of loop-mediated 
isothermal amplification to a catalytic hairpin assembly. For different analyses, a well-optimized nucleic acid circuit can be 
directly applied to detection, through only one-component replacement, which only not avoids duplicate sequence design but 
also saves detection cost. Thanks to this design, multiple and logical analysis can be easily realized in a single reaction with 
ultra-high sensitivity and selectivity. In this paper, Mycoplasma pneumoniae and Streptococcus pneumoniae can be clearly 
distinguished from the clinical mixed sample with negative control or one analyte in one tube single fluorescence channel. 
The fair experimental results of actual clinical samples provide a strong support for the possibility of clinical application of 
this methodology.
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Introduction

Respiratory infections are caused by the invasion of patho-
gens in the human respiratory tract and have the potential 
to be fatal, especially for children. Respiratory infections 
are very common, and highly contagious infections such as 
Middle East respiratory syndrome (MERS), severe acute 
respiratory syndrome (SARS) and coronavirus disease 

2019 (COVID-19) seriously threaten global public health 
security. Therefore, timely diagnosis of infectious diseases 
is important to prevent widespread outbreaks. Currently, the 
main techniques used to detect respiratory infections include 
immunoassays [1], polymerase chain reaction (PCR) [2, 3], 
next-generation sequencing (NGS) [4–6] and enzyme-linked 
immunosorbent assay (ELISA) [7]. However, these methods 
generally have disadvantages of time-consuming processes, 
high cost, the need for expensive testing equipment and low 
accuracy, which makes it difficult to meet the actual needs 
of clinical diagnosis [8, 9], especially with portable assays 
or off-the-shelf point-of-care tests (POCT). In addition, res-
piratory infections usually can be caused by a variety of 
pathogens, which means that clinical patients may have mul-
tiple infections. Furthermore, the symptoms of respiratory 
pathogens are often similar, such as a cough and fever, mak-
ing it difficult to differentiate between pathogens by clinical 
symptoms. Accordingly, an ideal multi-pathogen detection 
method with high accuracy and low cost, along with rapid 
speed, is urgently needed in clinical practice to assist port-
able diagnosis and precise treatment.

In recent years, a series of isothermal amplification 
techniques which can carry out exponential nucleic acid 
enrichment at a constant temperature have been considered 
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as promising PCR alternatives to shorten or simplify the 
detection progress, including loop-mediated isothermal 
amplification (LAMP) [10–14], rolling circle amplification 
(RCA) [15, 16], nucleic acid sequence-based amplification 
(NASBA) [17] and recombinase polymerase amplification 
(RPA) [18]. Among these methods, LAMP can amplify 
DNA templates upwards of ~  109-fold at 55–65 °C with 
only one polymerase, thus attracting special attention for its 
ultra-high sensitivity and simple downstream signal output 
[19]. Even so, there are still various practical problems, such 
as false positives, low sensitivity and low signal-to-noise 
ratio. Multiplex detection of different pathogens is also dif-
ficult to achieve. Traditional multiplex detection requires 
designing different labeled probes according to different 
detecting target and collecting signals in different emission 
channels [20–22]. There is thus a significant technical bar-
rier to developing low-cost and portable detection devices 
or instruments.

To overcome the above disadvantages, we and others 
have coupled LAMP with strand-exchange nucleic acid cir-
cuits [23] such as catalytic hairpin assembly (CHA) [24] 
and hybridization chain reaction (HCR) [25]. For exam-
ple, a typical CHA reaction uses a single-stranded DNA 
(ssDNA) catalyst to trigger two successive toehold-mediated 
strand-exchange reactions and induce two hairpin structures 
(H1 and H2) self-assembling into a stable duplex product 
(H1:H2). This process can recognize the catalyst with ultra-
high sequence specificity and generate 50–100-folds ampli-
fication within a few hours [26–30]. Therefore, when a piece 
of loop sequence within LAMP amplicons is designed as 
a CHA catalyst, CHA can provide ultra-sequence specific-
ity and high signal-to-background ratio in addition to the 
ultra-sensitivity [31]. In a recent advance, we have proven 
that the ssDNA catalyst can be replaced by a partial duplex 
DNA (three-way catalyst) which can trigger the CHA reac-
tion by forming a three-way (3W) junction structure with H1 
[32, 33]. The major advantage of this improvement, called 
3W-CHA, is that for different targeting sequence detection, 
only the sequences of domain α* of CHA-H1 and domain 
β* of TP must be changed according to the new targets. This 
means that different targets have respective H1 but share 
the same H2 and reporter sequences, avoiding complicated 
sequence rebuilding for new targets. In addition, we pro-
pose a new mode of multiplex assay, in which 3W-CHA 
can realize “one-tube one-channel multiple assay” by read-
ing different concentrations of consumed H1s that corre-
spond to different fluorescence values. This has shown great 
potential in solving the problem of multi-tube analysis and 
multi-channel analysis for multiplex detection. However, this 
proof-of-concept proposal has not been verified using any 
clinical application.

In this paper, we validate for the first time the above 
advantage of 3W-CHA (i.e. high universality and intelligence 

in multiple assays) by coupling LAMP reactions from clinical 
samples infected by pediatric respiratory pathogens. Pediatric 
respiratory diseases are the most common type of disease in 
children and are prone to causing pneumonia, showing an 
increasing trend year by year, and pneumonia has become 
one of the leading causes of death in children. Mycoplasma 
pneumoniae (MP) and Streptococcus pneumoniae (SP) were 
selected as detection targets in this work because they are 
the most common pathogens of clinical respiratory diseases 
in children. They have similar clinical symptoms, and the 
patients are likely to have both infectious diseases. There-
fore, the multiplex testing for MP and SP facilitates precise 
treatment and symptomatic use of drugs. The method, called 
LAMP-3W-CHA, can detect as low as 200 copies/µL of both 
MP and SP DNA with high specificity and signal-to-back-
ground ratio. And all four situations for the existence of MP 
and SP can be clearly identified with a single fluorescence 
probe (FAM) and in one tube, which has been well-proven 
with 23 clinical samples. The actual samples include seven 
alveolar lavage fluid samples and 16 throat swab samples.

Experimental

Materials

All the oligonucleotides, including isotheral amplifica-
tion primers, modified sequences and gene sequences were 
synthesized by Sangon Biotech (Shanghai, China), and the 
sequences are shown in Table S1. The concentrations of the 
sequences were determined by measuring the absorbance at 
260 nm using a DeNovix DS-11 + FX spectrophotometer 
(DeNovix Inc., Wilmington, DE, USA). The nucleic acid 
extraction kits used to extract nucleic acids from actual sam-
ples were purchased from Tiangen Biotech (Beijing, China). 
The Mycoplasma Pneumoniae Detection Kit (which uses real-
time PCR) was purchased from Daan Gene Co., Ltd (Guang-
zhou, China). All the oligonucleotides were stored in 1× TE 
buffer (pH 7.5) or  H2O at -20 °C. The 10× isothermal buffer 
(10× Iso) and Bst 2.0 DNA polymerase were purchased from 
New England Biolabs (Ipswich, MA, USA). Buffers used here 
were 1× Iso (20 mM Tris–HCl, 10 mM  (NH4) 2SO4, 50 mM 
KCl, 4 mM  MgSO4, 0.1% Tween 20, pH 8.8) and 1× TNaK 
(20 mM Tris–HCl, 140 mM NaCl, 5 mM KCl, pH 7.5, 5 mM 
 Mg2+). All reagents used were of analytical grade.

Method for the validation of LAMP reaction

LAMP reaction was prepared for MP p1 gene (M21519.1) 
and SP cpsA gene (MK606437.1). The primer mixtures 
were prepared in advance, and contained 5 µM F3, 5 µM 
B3, 20 µM FIP and 20 µM BIP. The volume of each reac-
tion system was 25 µL of 1× isothermal buffer (20 mM 
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Tris–HCl, 10 mM  (NH4) 2SO4, 10 mM KCl, 2 mM  MgSO4, 
0.1% Triton X-100, pH = 8.8), including 3 µL of different 
copies of the synthetic target genes, 2 µL of primer mixture, 
2 µL of 4 mM dNTPs, 0.5 µL of 100 mM  MgCl2 and 10 µL 
of 5 M betaine. The reaction mixtures were heated at 95 °C 
for 2 min, followed by chilling on ice for 2 min. Then 1.5 
µL (8U) of Bst 2.0 DNA polymerase was added to mixtures 
above to trigger the LAMP reactions and 1.5 µL 20× Eva-
Green was added to monitor DNA amplification. Twenty 
microliters of each reaction solution was put into a Light-
Cycler 96 instrument (Roche Diagnostics GmbH, Germany) 
for 1 h and recorded every 1 min at 60 °C. The results of the 
LAMP reaction are shown in Figure S3.

Standard LAMP reaction

This experiment refers to the experimental method in the 
article [33]. The LAMP reaction was prepared for the MP 
p1 gene (M21519.1) and SP cpsA gene (MK606437.1). The 
MP and SP LAMP reaction primer mixtures were prepared 
in advance, both containing 5 μM F3, 5 μM B3, 20 μM FIP 
and 20 μM BIP. The volume of each reaction system was 
50 μL of 1× Iso buffer, including 6 μL of different copies 
of the synthetic target genes, 4 μL of primer mixture, 4 μL 
of 4 mM dNTPs, 1 μL of 100 mM  MgCl2 and 10 μL of 
5 M betaine. The reaction mixtures were heated at 95 °C for 
2 min, followed by chilling on ice for 2 min. Then 3 μL (8U) 
of Bst 2.0 DNA polymerase was added to the mixtures to 
trigger the LAMP reactions. The reactions were incubated 
at 60 °C for 90 min, followed by heating to 80 °C for 20 min 
to denature the DNA polymerase. Afterwards, some of the 
products were kept at 4 °C until they were analyzed by elec-
trophoresis on 1% BBI LE agarose gel. Each well was loaded 
with 5 mL of the LAMP product and an additional 1 μL of 
6× orange loading dye (40% glycerol, 0.25% Orange G). 
The electrophoresis gel was developed at 120 V for 30 min. 
The rest of the products were kept an -20 °C until the next 
experiments [33].

Standard 3W‑CHA detection

This experiment refers to the experimental method in the 
article [33]. In standard 3W-CHA detection, targets at dif-
ferent concentrations were hybridized with 200 nM TP in 
1× TNak buffer via a standard annealing process, in which 
mixtures were heated at 95 °C for 5 min and cooled down to 
room temperature at 0.1 °C  s−1. This annealing process can 
be applied to all other annealing steps mentioned in the sub-
sequent experiments. Then the mixtures were further mixed 
with 200 nM H1, 800 nM H2 and 200 nM reporter duplex 
(containing 200 nM F and 400 nM Q, and annealed before) 
in 1× TNak buffer in equal volume. H1 and H2 were pre-
annealed to be refolded. The final reaction concentrations 

were 50 nM H1, 200 nM H2, 50 nM F, 100 nM Q and 50 nM 
TP. In order to prevent the loss caused by plastic adsorption 
and ensure accurate fluorescence quantification, we added 
2 μM (dT)21 in all reaction solutions. Seventeen microliters 
of each reaction solution was transferred to a Nunc 384 low-
volume black microplate and recorded every 1 min at 55 °C 
on a Cytation™ 5 imaging multi-mode plate reader (Biotek, 
Winooski, VT, USA).

Multiplex target detection with 3W‑CHA

The procedure of multiplex target detection at 55 °C was 
similar to that for standard 3W-CHA detection with a little 
modification. Different targets were hybridized with different 
TPs  (TMP with  TPMP and  TSP with  TPSP) in the same tube in 
1× TNak buffer via a standard annealing process. Then the 
mixtures were further mixed with H1 solution (containing 
400 nM  H1MP and 200 nM  H1SP), 600 nM H2 and 600 nM 
reporter duplex (containing 600 nM F and 1.2 μM Q) in 1× 
TNak buffer in equal volume. The final concentrations of 
 TPMP and  TPSP were both 50 nM. In order to prevent the loss 
caused by plastic adsorption and ensure the accurate fluores-
cence quantification, we added 2 μM (dT)21 in all reaction 
solutions. Seventeen microliters of each reaction solution 
was transferred to a Nunc 384 low-volume black microplate 
and recorded every 1 min at 55 °C on a Cytation™ 5 imag-
ing multi-mode plate reader (Biotek, Winooski, VT, USA).

LAMP detection with 3W‑CHA

The method for the validation of the LAMP reaction is 
shown in the supporting information. The end-point LAMP 
reaction detected with 3W-CHA was performed in the same 
manner as standard 3W-CHA detection for oligonucleotide, 
except that the oligonucleotide target is replaced by LAMP 
product.

Multiplex detection with LAMP‑3W‑CHA

Multiplex LAMP product detection was conducted by the 
LAMP reaction product we made earlier. For this purpose, 
2.5 μL MP LAMP product and 3 μL SP LAMP product 
were annealed with 400 nM  TPMP and 200 nM  TPSP in a 
total volume of 25 μL of 1× TNak buffer. All of the above 
mixtures were further mixed with CHA components  (H1MP, 
 H1SP, H2 and reporter duplex F:Q) in 1× TNak buffer. The 
final reaction contained 100 nM  H1MP, 50 nM  H1SP, 150 nM 
H2 and 150 nM reporter duplex (containing 150 nM F and 
300 nM Q). In order to prevent the loss caused by plastic 
adsorption and ensure the accurate fluorescence quantifica-
tion, we added 2 μM (dT)21 in all reaction solutions. Seven-
teen microliters of each reaction solution was transferred to 
a Nunc 384 low-volume black microplate and recorded every 
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1 min at 55 °C on a Cytation™ 5 imaging multi-mode plate 
reader (Biotek, Winooski, VT, USA).

Nucleic acid extraction with nucleic acid extraction 
kit

Two hundred microliters of the actual sample was put into 
a 2 mL centrifuge tube, 20 µL of Proteinase K solution was 
added, and the solution was vortexed to mix well. Then, 200 
µL of Buffer GB was added and mixed the solution well. The 
solution was incubated at 56 °C for 10 min with occasional 
shaking of the sample and brief centrifugation to remove 
droplets from the inside of the tube cap. Then, 200 µL of 
ethanol (96–100%) was added to the solution, which was 
gently inverted, and the sample was mixed and left at room 
temperature for 5 min. The solution obtained in the previous 
step was added to a CR2 column, centrifuged at 12,000 rpm 
(~ 13,400×g) for 30 s, then the waste solution was discarded 
and the CR2 column was returned to the collection tube. 
Next, 500 µL of GD buffer was added to the CR2 column 
and centrifuged at 12,000 rpm (~ 13,400×g) for 30 s, after 
which the waste solution was discarded and the CR2 column 
was returned to the collection tube. Subsequently, 600 µL of 
PW rinse solution was added, the mixture was added to the 
CR2 column and centrifuged at 12,000 rpm (~ 13,400×g) 
for 30 s, and the waste solution was discarded and the CR2 
column returned to the collection tube. Again, 600 µL of 
PW rinse solution was added and centrifuged at 12,000 rpm 
(~ 13,400×g) for 30 s, after which the waste solution was 
discarded and the CR2 column was returned to the collection 
tube and centrifuged at 12,000 rpm (~ 13,400×g) for 2 min, 
and the waste solution was poured off. Finally, the CR2 
column was transferred to a clean centrifuge tube, 20–50 
µL of TB elution buffer was added dropwise to the middle 
of the adsorbent membrane and centrifuged at 12,000 rpm 
(~ 13,400×g) for 2–5 min at room temperature, and the solu-
tion was collected in a centrifuge tube.

Actual sample detection with LAMP‑3W‑CHA

The nucleic acids were extracted from actual samples using 
a nucleic acid extraction kit before LAMP reaction (SI). The 
primer mixtures of the LAMP reaction were prepared as 
before. The volume of each reaction system was 25 μL of 1× 
Iso buffer, including 3 μL of the extracted nucleic acid, 2 μL 
of primer mixture, 2 μL of 4 mM dNTPs, 0.5 μL of 100 mM 
 MgCl2 and 5 μL of 5 M betaine. The reaction mixtures were 
heated at 95 °C for 2 min, followed by chilling on ice for 
2 min. Then 1.5 μL (8U) of Bst 2.0 DNA polymerase was 
added to the mixtures above to trigger the LAMP reactions. 
The reactions were incubated at 60 °C for 90 min, followed 
by heating to 80 °C for 20 min to denature the DNA poly-
merase. Finally, the LAMP reaction product was used to 

initiate the 3W-CHA reaction in the same manner as multi-
plex LAMP product detection with 3W-CHA.

Validation of PCR reaction with PCR kits

The MP PCR reaction with PCR kits was detected with the 
Mycoplasma Pneumoniae Detection Kit (real-time PCR 
method) purchased from Daan Gene Co., Ltd (Guangzhou, 
China). Two microliters of nucleic acid extracted using the 
kit from actual samples was added to the tube containing 40 
µL PCR reaction solution and 3 µL Taq enzyme. Then, 20 
µL of each reaction solution was put into the LightCycler 96 
instrument (Roche Diagnostics GmbH, Germany). The run 
editor of the instrument is shown in Table S2.

Results and discussion

The principle of target mimic gene detection using 
three‑way junction CHA

The CHA circuit is a nucleic acid circuit which can also 
achieve 100-fold signal amplification. In the traditional CHA 
circuit (Figure S1), a single-stranded DNA oligonucleotide 
is repeatedly used to initialize the CHA reaction without 
being consumed, like a catalyst [24, 34]. To detect differ-
ent input targets, we make an important modification on the 
trigger and obtain the nucleic acid circuit, called three-way 
junction-based CHA (3W-CHA) (Fig. 1). When T (defined 
as α–β) and TP (defined as β*-γ) are linked together by β-β* 
hybridization, the T:TP duplex replaces the single-stranded 
DNA oligonucleotide in the CHA reaction and acts as a 
trigger to initiate the toehold-mediated chain displacement 
reaction, which can open the hairpin, called H1. Meanwhile, 
T:TP:H1 formed a three-way junction structure. The exposed 
segment I of H1 hybridizes with a segment I* of another 
hairpin, called H2, thus exposing its segment III and forming 
the H1:H2 duplex. Then the exposed segment III of H2 can 
replace the 3′ quencher-labeled strand (Q) and combine with 
5′ FAM-labeled strand (F). Finally, the fluorescent groups 
are excited to generate fluorescent signals, and the fluores-
cence intensity depends on the amount of H1 being released. 
The T:TP duplex can be recycled into the next cycle of the 
3W-CHA reaction without being consumed, just like a cata-
lyst. The concentration of released FAM (represented by the 
final fluorescence enhancement) is theoretically equivalent 
to that of H1. In addition, two specific reactions, namely 
T:TP recognition obtained by β-β* hybridization and T:TP-
H1 recognition obtained by α-α* hybridization, provide 
a double guarantee for allele recognition. As a result, the 
3W-CHA circuit can not only detect the target mimic gene 
sensitively and quickly, but can also realizes 100-fold signal 
amplification.

2176 Yu C. et al.
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In order to detect MP and SP. Two 3W-CHA reactions 
were designed according to previous publication [33]. Sin-
gle-stranded nucleic acid measuring 33 and 38  nucleotides 
(nt) in length within MP and SP genes were selected as the 
targeting sequence mimics, termed  TMP and  TSP, respec-
tively. As the sequence design in Fig. 1B shows,  TPMP 
with  H1MP and  TPSP with  H1SP were designed according 
to sequences of  TMP and  TSP, respectively. The α* and β* 
domains were only different between different TPs and 
H1s, and the two 3W-CHA reactions used the same H2, F 
and Q sequences. As shown, both  TMP:TPMP (Fig. 2A) and 
 TSP:TPSP (Fig. 2B) duplexes could successfully trigger the 

3W-CHA reaction with high signal-to-noise ratio and effi-
ciency. Note that the reaction rates of the two reactions are 
slightly different because of the different sequences being 
detected. The different CG ratio and Gibbs free energy have 
a relatively large effect on the efficiency of the reaction.

Simultaneous 3W‑CHA detection of  TMP and  TSP 
in one tube

As derived from the principle of 3W-CHA, we only need to 
change the base sequence of α* (on H1) and β* (on TP) to 
realize the detection of different target genes, while other 

Fig. 1  A Scheme for a detector based on 3W-CHA. Asterisks (*) are used to represent complementary sequences. B The sequence design of the 
three-way junction structures  TMP:TPMP:H1MP and  TSP:TPSP:H1SP

Fig. 2  The 3W-CHA reaction of  TMP and  TSP. A Detection of differ-
ent concentrations of  TMP.  [H1MP] = 1/4 [H2] = [F] = 1/2[Q] = 50 nM, 
 [TPMP] = 50  nM. B Detection of different concentrations of  TSP. 

 [H1SP] = 1/4[H2] = [F] = 1/2[Q] = 50  nM,  [TPSP] = 50  nM. The con-
centrations of the target  (TMP or  TSP) were 0, 2.5 nM, 5 nM, 10 nM 
and 20 nM
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sequences (H2, F and Q) that play a key role do not need 
to be changed. Making use of this advantage, we can real-
ize the multiple detection of  TPMP and  TPSP in one tube 
and with a single fluorescence channel. TPs and all CHA 
components were the same as above. The mixtures were 
added into a probe mixture containing 100 nM  H1MP and 
50 nM  H1SP, which allowed  TMP and  TSP to release up to 
50 nM and 100 nM of fluorescent FAM reporter, respec-
tively, when the reaction was terminated at the end. For 
example, when ≥ 10 nM  TMP or  TSP was present, about 2 h 
was enough for the reactions to be completed. The results of 
simultaneous detection are shown in Fig. 3B. Based on the 
fluorescence signal platform, it is reasonable to determine 
whether the sample contains the target gene and the specific 
type of the target gene. To identify the presence of  TSP, the 
fluorescence readout is set above the NC line but below the 
50 nM line. Similarly, to identify the presence of  TMP, the 
fluorescence readout should be above the 50 nM line but 
below the 100 nM line, while to identify the presence of both 
 TMP and  TSP, the fluorescence readout should be significantly 
above the 100 nM line and infinitely close to the 150 nM 
line. Please note that there is still a slowly increasing trend 

for the fluorescence of NC and  TSP. This is normal because 
of the background reaction induced by the high concentra-
tion of  H1MP, but it will not affect the result if we control the 
reaction time to less than 2 h.

3W‑CHA detection coupled with LAMP amplification 
(LAMP‑3W‑CHA) for ultrasensitive detection

The above experiments confirm that 3W-CHA can effec-
tively detect the target mimic gene with high efficiency and 
universality. But the nM level sensitivity for the TP will not 
be enough to meet the ultra-high requirement for pathogen 
gene detection. In order to enhance the sensitivity, LAMP 
reaction was imported, in which the sequences of  TPMP and 
 TPSP were, respectively, designed as the loop sequences 
within the LAMP products. In this way (shown in Fig. 4A), 
the detection of  TPMP or  TPSP was replaced by the detec-
tion of the LAMP products for the MP or SP gene template. 
This method is shortened as LAMP-3W-CHA. Electro-
phoresis was used to verify that the self-designed LAMP 
reactions were very effective (Figure S3). We then carried 
out the LAMP-3W-CHA for MP and SP gene templates, 

Fig. 3  Simultaneous 3W-CHA detection of  TMP and  TSP in one 
tube. A Sequence design schematic of the two 3W-CHAs for  TMP 
and  TSP. B The results of the simultaneous detection for  TMP and 

 TSP.  [H1SP] = 1/2[H1MP] = 1/3[H2] = 1/3[F] = 1/6[Q] = 50  nM, 
 [TPMP] =  [TPSP] = 50 nM. Once present,  [TMP] =  [TSP] = 10 nM
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respectively. After 1 h LAMP reaction, the products from 
different concentrations of templates were mixed with the 
corresponding TP and the components of CHA (includ-
ing H1, H2 and reporter duplex F:Q), and the process of 
3W-CHA detection was initialized and monitored in real 
time using a fluorescence plate reader. As shown in Fig. 4B, 
LAMP products amplified different concentrations of the 
templates may generate very similar 3W-CHA signals and 
consume out all the CHA components within 2 h. There was 
no concentration dependence because 1 h LAMP reaction 
may be enough for the templates of different concentrations 
to generate similarly high amounts of products. The detec-
tion limits for the MP template and the SP template are 200 
copies/μL and 20 copies/μL, respectively. Both sensitivities 
meet clinical requirements.

Simultaneous LAMP‑3W‑CHA detection of MP 
and SP gene templates in one tube

On the basis of the above verification of the conception, 
we carried out the simultaneous detection of the LAMP 
products amplified from MP and SP gene templates. TPs 
and 3W-CHA components were the same as above (Fig. 3). 
The LAMP products (with none, one or two templates) were 

added into a probe mixture containing 50 nM  TPMP, 50 nM 
 TPSP, 100 nM  H1MP, 50 nM  H1SP, 150 nM H2 and 150 nM 
reporter duplex F:Q. The 3W-CHA results are shown in 
Fig. 5. The discrimination of the four situations (NC, MP, 
SP and MP + SP) follows exactly the same method as that 
of Fig. 3B.

Actual sample detection with LAMP‑3W‑CHA

To test the feasibility of applying the LAMP-3W-CHA cir-
cuit in actual samples, we separately explored the detection 
of MP and SP in alveolar lavage fluid and throat swabs. We 
prepared seven alveolar lavage fluid samples and 16 throat 
swab samples. After the DNA was extracted by the kit, the 
LAMP-3W-CHA detection procedure was carried out and 
data treatment methods following the same simultaneous 
LAMP-3W-CHA protocol established above (Fig. 6). We 
list the detection results using bar graphs shown in Fig. 6, in 
which whether a patient is infected by one or two pathogens 
is clearly presented. The results were then compared with 
PCR detection. Because there is no dual-detection commer-
cial PCR kit for MP and SP, MP and SP detection was car-
ried out in two tubes using their respective PCR kits (Figure 
S5). The results of the MP PCR kit were consistent with the 

Fig. 4  3W-CHA detection of LAMP amplicons. A Schematic 
of using 3W-CHA to detect loop amplicons of the LAMP reac-
tion. B Responses of 3W-CHA to single MP LAMP ampli-

cons.  [H1MP] = 1/4[H2] = [F] = 1/2[Q] = 50  nM,  [TPMP] = 50  nM. 
C Responses of 3W-CHA to single SP LAMP amplicons. 
 [H1SP] = 1/4[H2] = [F] = 1/2[Q] = 50 nM,  [TPSP] = 50 nM
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results of our detection, but we could not detect SP using 
the kit (please note there are few SP PCR kits on the market, 
so it is hard for us to use another one for comparison). We 
randomly sent one SP-positive LAMP-3W-CHA (but PCR-
negative) sample to WillingMed Technology (Beijing) Co., 
Ltd. for NGS sequencing, which should be the gold standard 
method for gene detection. The sequencing result confirmed 
that the sample is indeed SP-positive, which proves the accu-
racy of the LAMP-3W-CHA detection. We thus demonstrate 
LAMP-3W-CHA as a promising clinical method for one-
tube multiple detection. It deserves further optimization and 
instrumentation for even higher practicability. All actual 
samples were provided by the First Bethune Hospital of Jilin 
University. The explanation of the routine detection methods 
for MP and SP in hospital and comparison with LAMP-3W-
CHA is shown in as Sect. 2 of the Supporting Information.

Conclusions

In conclusion, we took advantage of the 3W-CHA nucleic 
acid circuit and placed it downstream of the LAMP 
reaction to obtain the method called LAMP-3W-CHA. 
3W-CHA enables sensitive and rapid detection of tar-
get DNA and also enables 100-fold amplification of the 
signal, with target DNA as low as 2.5 nM unamplified 
detected by 3W-CHA in 1.5 h. And when we combined 
3W-CHA with LAMP reaction, 200 copies/μL of target 
DNA were able to be detected by LAMP-3W-CHA. Then 
we realized multiplex detection of MP and SP in one tube 
and a single fluorescence channel with LAMP-3W-CHA. 
The results can be logically determined according to the 
fluorescence signal platform. Finally, we tested the actual 
samples with LAMP-3W-CHA and compared the results 

Fig. 5  3W-CHA detection of 
MP and SP. The result can be 
logically determined accord-
ing to the fluorescence signal 
platform. The final concentra-
tions of each component were 
as follows:  [H1MP] = 100 nM, 
 [H1SP] = 50 nM, [H2] = 150 nM, 
[F] = 150 nM, [Q] = 300 nM, 
 [TPMP] =  [TPSP] = 50 nM

Fig. 6  Actual sample detection with LAMP-3W-CHA. According to 
the fluorescence signal platform, it can be logically determined that 
the actual samples numbered 2, 3, 4, 8, 10, 11, 17 were identified as 
infected with MP, the actual samples numbered 1, 5, 6, 7, 12, 13, 14, 
15 were identified as infected with SP, and the actual samples num-

bered 9, 16 were identified as infected with both MP and SP. The final 
concentrations of each component were as follows:  [H1MP] = 100 nM, 
 [H1SP] = 50  nM, [H2] = 150  nM, [F] = 150  nM, [Q] = 300  nM, 
 [TPMP] =  [TPSP] = 50 nM
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with those of commercial PCR kits, and the results were 
matched. The detection of actual clinical samples provides 
strong support for the possible clinical application of the 
LAMP-3W-CHA. In addition, this method is simple in 
design and takes a short time to achieve the detection of 
new targets, just by changing the sequence α* on H1 and 
β* on TP. Therefore, we believe that LAMP-3W-CHA can 
be regarded as a useful tool for nucleic acid detection in 
clinic diagnostics, and next we will try to combine it with 
microfluidic chip technology and apply it to point-of-care 
testing (POCT).
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