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Abstract
Isolation and detection of microplastics (MP) in marine samples is extremely cost- and labor-intensive, limiting the speed 
and amount of data that can be collected. In the current work, we describe rapid measurement of net-collected MPs (net mesh 
size 300 µm) using a benchtop near-infrared hyperspectral imaging system during a research expedition to the subtropical 
North Atlantic gyre. Suspected plastic particles were identified microscopically and mounted on a black adhesive back-
ground. Particles were imaged with a Specim FX17 near-infrared linescan camera and a motorized stage. A particle mapping 
procedure was built on existing edge-finding algorithms and a polymer identification method developed using spectra from 
virgin polymer reference materials. This preliminary work focused on polyethylene, polypropylene, and polystyrene as they 
are less dense than seawater and therefore likely to be found floating in the open ocean. A total of 27 net tows sampled 2534 
suspected MP particles that were imaged and analyzed at sea. Approximately 77.1% of particles were identified as polyeth-
ylene, followed by polypropylene (9.2%). A small fraction of polystyrene was detected only at one station. Approximately 
13.6% of particles were either other plastic polymers or were natural materials visually misidentified as plastics. Particle 
size distributions for PE and PP particles with a length greater than 1 mm followed an approximate power law relationship 
with abundance. This method allowed at-sea, near real-time identification of MP polymer types and particle dimensions, 
and shows great promise for rapid field measurements of microplastics in net-collected samples.
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Introduction

Millions of metric tons of plastic waste are estimated to enter 
the ocean annually from coastal sources [23, 32]. Most of the 
plastic that is produced is less dense than seawater [1], and 
about 60% of the positively buoyant plastic debris that enters 
the oceans from land is likely transported offshore by surface 
currents and winds [31, 36]. Floating plastic debris there-
fore tends to accumulate within oceanic gyres and restricted 
coastal waters [31]. During the time the debris remains at sea, 
large plastics items gradually fragment into smaller pieces 
—so-called microplastics (MP,plastic particles  <5 mm) — 
under the combined effects of temperature, UV radiation, and 
actions by waves and organisms [1, 19, 22].

The ecological effects of microplastics in the ocean are 
uncertain [2, 5, 56], but thought to be detrimental (e.g., [13, 
56] and persistent in the marine environment [27, 37]. The 
distribution of marine microplastics is highly heterogeneous, 
and data scarcity can hinder interpretation of transport, fate, 
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and environmental impact [14]. Indeed, Lebreton et al. [30] 
concluded that there remains a major discrepancy between 
the amount of buoyant plastic that enters the oceans every 
year (i.e., millions of tons) and the amount that has been 
reported at the ocean surface (i.e., hundreds of thousands of 
tons). Recent analysis using a larger dataset suggested that 
plastic debris transport to the ocean is in fact orders of mag-
nitude lower than previously estimated [54], and adequate 
data coverage is essential to constrain the global flux and 
distribution of plastic debris.

The major bottleneck in workflows for quantifying micro-
plastic particles in marine samples is usually the purification 
of MPs from natural particles [35] and the analysis of par-
ticle polymer type (e.g., [42]. Quantitative analyses of MP 
polymers by manual Fourier-transform infrared spectroscopy 
(FTIR) or Raman spectroscopy give high-quality results, but 
are time-consuming, often limited to a small portion of the 
sample [38], and may be unable to identify a small portion 
of the sampled particles due to, e.g., fluorescence [6]. Objec-
tive quantitative methods can avoid both false negative and 
false positive identification commonly associated with visual 
sorting [25]. Recent advances in particle mapping software 
help to further reduce operator bias [43, 53].

Hyperspectral imaging (HSI) has emerged in recent years 
as a promising tool for microplastic identification, with limi-
tations in terms of particle size but substantial advantages 
regarding cost and speed of analysis [25, 44, 56]. Hyper-
spectral MP identification may also be possible with reduced 
or eliminated pre-processing such as organic matter diges-
tion [56]. Similar to short-wave infrared (SWIR, [44], near-
infrared (NIR) reflectance spectra of natural materials show 
broad peaks rather than the sharply defined peaks charac-
teristic of plastic polymers, making it easier to discriminate 
natural and anthropogenic debris. Hyperspectral imaging has 
been used successfully to identify polymer types in particles 
and fibers [12] in soils  [46], marine waters [4, 45, 47] ), fish 
[56], and beach litter [17, 51].

Hyperspectral imaging of MPs tends to be limited to rela-
tively large particles. Most studies using near-infrared (NIR) 
or short-wave infrared (SWIR) HSI for MP identification 
report a size detection limit on the order of 200–300 µm 
(e.g., [25, 56], although Zhu and colleagues [58] success-
fully identified particles as small as 100 µm using NIR-HSI. 
Higher spatial resolution has been reported infrequently 
[16], and references therein). Nonetheless, most samples of 
floating MP rely on towed nets with a typical mesh size 
of  ~300 μm [11, 29] ), so that HSI identification is a tech-
nique well-suited for MP identification in such samples. 
Inexpensive, rapid microplastic identification via NIR-HSI 
therefore has the potential to greatly expand the global pol-
lution database, for example, through sampling efforts by 

non-governmental organizations (e.g., [7, 8] and citizen sci-
ence [21].

The current study focuses on net-collected MPs from the 
subtropical gyre of the North Atlantic Ocean. Plastic debris 
in this region was documented for the first time in the 1970s 
[9], and since then, a number of studies have been carried 
out in the North Atlantic to understand transport processes 
and quantify plastic debris (e.g., [10, 15, 28, 29]. Some 20% 
of the marine inventory of floating plastic debris is accumu-
lated in the North Atlantic [10, 15]. This material appears 
primarily concentrated in the inner accumulation zone of 
the North Atlantic subtropical gyre (the North Atlantic “gar-
bage patch”), between the Azores and Bermuda [10]. Plas-
tic inventories within the inner accumulation zone average 
400 g km−2, with maxima as high as 2500 g km−2 [10]. In 
the same region, Eriksen et al. [15] reported plastic particle 
abundances of up to 106 km−2.

In the current work, we describe a method for rapid NIR-
HSI measurement of net-collected MPs at sea in a ship-
board laboratory. This approach has the potential to greatly 
increase the collection of marine MP data and can also pro-
vide near real-time data to guide sample collection activities.

Methods

Study site

The current study was conducted during cruise SO279 on 
R/V SONNE between 04 December 2020 and 05 January 
2021. Stations were located within the North Atlantic Gyre 
south of the Azores, and focused especially on the inner 
accumulation zone of the gyre (Fig. 1).

Sample collection and particle mounting

A Neuston Catamaran trawl (Hydro-Bios, Kiel, mouth size 
40 × 70 cm) equipped with a mechanical flowmeter and a 
300-µm mesh net with a 100-µm cod end was used to col-
lect particles floating at the sea surface. Three net tows were 
conducted per station at approximately three knots ship speed 
for 20 min per tow from the side of R/V SONNE. After each 
tow, the net walls were washed into the cod end with seawater. 
The cod end was removed, placed in a covered metal pot, and 
transferred to the lab. Floating Sargassum macroalgae was 
abundant in the study area and was removed from the samples 
by hand and adhering particles rinsed back into the sample 
with filtered seawater (FSW; filter cascade with 20, 10, and 
1 µm nominal wound-fiber filters; Knaub GmbH, Germany). 
The sample was then filtered over a 125-µm sieve and rinsed 
into a glass 500-ml preserving jar with filtered seawater.
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Floating plastic particles were picked from the jar by 
hand or the surface layer of the sample was poured onto a 
250-µm sieve with a spoon and left to dry to reduce human 
bias. Visible particles were picked with forceps and mounted 
onto adhesive black backgrounds for HSI analysis. The black 
background reduces reflection in the near-infrared region 
and is easily removed during the image processing. The 
test beds were separated into three columns of particles of 
approximately 1.2 cm wide, slightly less than the camera 
field of view at the given test bed height.

Camera system

The benchtop NIR-HSI system used in the current study 
was a Specim FX17 camera (Specim Spectral Imaging Ltd.; 
Oulu, Finland) mounted on a Specim linear lab bed scanner 
(Fig. 2). The FX17 linescan camera has a spectral range of 
900–1700 nm, with 224 spectral bands and a spatial sam-
pling of 640 pixels. A macro lens was used to achieve a field 
of view on the order of 1200 µm, giving a pixel dimension of 
approximately 2–4 µm. Samples were illuminated overhead 
by two halogen lights at approximately 45° from the front 
and back of the camera target field. The hyperspectral cam-
era and lab scanner were controlled using Specim’s LUMO 
software suite. Reference white and dark spectra were meas-
ured using a Specim-supplied white reference material and 
a closed shutter measurement, respectively.

Image processing

Hyperspectral images were processed using a custom soft-
ware written in Python. A combination of an edge-finding 
algorithm (sobol) and a segmentation algorithm (watershed) 
from scikit-image [49] was used to identify particles in the 

images. The sobol filter finds the edges of the particles by 
computing an approximation of the pixel intensity gradi-
ents. The detected edges are then used to seed the water-
shed segmentation algorithm, filling the pixels belonging to 
each particle. This segmentation method only works with 
one channel (e.g., black and white images). The mean of 
the spectrum was therefore taken in each pixel to flatten 
the hyperspectral image into the appropriate format. This 
segmentation method worked well as long as the particle 
edges did not touch.

Fig. 1   Study site. Filled circles 
indicate net sampling locations, 
and numbers are station IDs. Pie 
charts indicated for each station 
are the triplicate individual net 
tows, except station 107, which 
had six tows (polyethylene, PE; 
polypropylene, PP; polystyrene, 
PS). The size of the pie charts 
indicates the total number of 
microplastic particles collected 
in each respective tow. The inset 
shows the location of the sam-
ple locations within the North 
Atlantic Ocean, with the gyre 
surface currents (redrawn from 
[50]. Map drawn with QGIS 
Version 3.22.13

Fig. 2   (From left) Benchtop NIR hyperspectral scanning system 
installed in a shipboard laboratory, and real-color photograph and 
false-color scan of some large microplastic particles collected in the 
catamaran trawl. The width of the scan image is about 1 cm
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Size calibration and measurement

Particle dimensions were calibrated with a 1-cm white refer-
ence bar on each scan (Fig. 3). The calibration bar width was 
used to set the pixel width in the software. Particle length 
and width were determined by calculating a singular value 
decomposition on the particle pixels, from which major and 
minor particle axis lengths were calculated. Other particle 
properties, such as particle area and perimeter, were calcu-
lated using the scikit-image measure class [49]. An example 
of some scanned particles is shown in Fig. 3, along with the 
indicated major axes (lengths) and minor axes (widths) of 
the particles.

Polymer reference spectra and non‑plastic particles

A series of virgin plastic polymer beads obtained during 
the JPI Oceans project BASEMAN [18] were used to estab-
lish the reference spectra for polymer identification. The 
polymers included polystyrene (PS), high- and low- density 
polyethylene (HD- and LD-PE), and polypropylene (PP) 
(Fig. 4a). These polymers were chosen for focus because 
they represent the highest industrial production and abun-
dance in freshwaters and drinking water [26] and are lighter 
than or close to sea water density: PS (1.04–1.07 g/cm3), 
PE (0.91–0.96 g/cm3), and PP (0.90–0.91 g/cm3) [3], and 
therefore most likely to be transported to the central ocean 
gyre. Because only these three polymer types were included 
in the reference library, particles identified as “unknown” 
could be either natural materials or other plastic polymers. 
The scikit-learn random forest algorithm [39] was used to 
classify the particle polymer types. The algorithm is trained 
on the one-hot encoded data from the reference library, tak-
ing as features the presence of the peaks and troughs in the 
spectra.

Cross‑validation of NIR‑HSI polymer identification 
by Raman spectroscopy

A sub-set of 350 particles (~14% of the total particles 
sampled) taken from NEMICAT tows 14 to 16 were ana-
lyzed after the expedition in a land-based laboratory with a 
Labram HR800 confocal Raman microscope (Horiba Jobin 
Yvon GmbH, Bensheim, Germany). For each measure-
ment, a photo mosaic of an area with up to 4 cm edge length 
was recorded, and particles were manually marked on the 
optical image. An automated multiple point measurement 
with a 532-nm wavelength laser was then performed at all 
marked positions. Spectra identification was done with the 

Fig. 3   Example scan with par-
ticles identified. White dotted 
lines indicate major and minor 
axes for particle size determina-
tion. The light-colored bar at the 
image bottom is 10 mm wide
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Example spectra for five unknown particles and their putative identifi-
cation. Spectra are normalized to the average reflectance
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KnowItAll Horiba edition spectral data base (Bio-Rad, Phil-
adelphia, PA, USA). The identification process was not auto-
mated, since fluorescence and noise within a spectrum may 
cause a poor match with the reference spectrum although 
a sufficient number of characteristic peaks are present. A 
fluorescence signal can, for example, originate from dye 
molecules within a polymer or from organic particles that 
were mistakenly selected as polymer particles. A high noise 
level can be observed for strongly weathered polymers or for 
non-polymeric particles with weak or non-existent Raman 
modes. Hence, the presence of fluorescence or noise can-
not be used to generally identify a particle as polymer or 
non-polymer. Unidentified particles with high fluorescence 
were additionally measured with a 785-nm wavelength laser. 
The fluorescence signal shifts within the spectra depending 
on the excitation wavelength, and in some cases, a parti-
cle identification was possible after the change of the laser 
wavelength.

Results and discussion

Particle spectra

Some example spectra of standard polymers, non-plastics, 
and unknown particles and their polymer identification by 
the random forest classifier are presented in Fig. 4. Gener-
ally, PE particles showed similar spectra to the reference vir-
gin polymer pellets. Most of these particles showed the peak 
around 1540 nm, making them easy to identify. Polypropylene 
particles showed slightly more variation, possibly caused by 
weathering of the material. Polypropylene particle spectra had 
a characteristic trough at 1196 nm that was not present for PE. 
Polypropylene also showed a small trough at 1215 nm, but 
this was similar to the PE spectra. In some cases, it was dif-
ficult to separate the trough at 1215 nm from that at 1196 nm, 
making it harder to distinguish between the two polymers.

Three spectra classified as “other” materials are shown 
in Fig. 4c. One particle type was subsequently visually 
identified as floating pumice stones, which likely originated 
from the nearby Azores islands (e.g., [20, 48, 55]. The 
inorganic particle showed a slight increase in reflectance at 
higher wavelengths, compared with an organic crustacean 
(shrimp) carapace, which showed a decrease in reflectance 
above  ~1300 nm. A final example of an unidentified particle 
is also shown. This particle could not be visually identi-
fied, but showed a reflectance spectrum between those of the 
pumice and shrimp particles. All three spectra were unlike 
any of the reference plastic particles and were identified cor-
rectly as non-polymer by the classification algorithm: the 
last two spectra were verified by Raman spectroscopy to be 
non-polymer materials, and the unidentified particle was too 
fluorescent to identify.

Polymer classification accuracy

Among the 350 particles analyzed by Raman spectros-
copy in a land-based laboratory, 250 were identified as 
PE, 31 as PP, 16 as non-polymer or unknown spectra and 
53 could not be evaluated due to fluorescence or lack of a 
sufficiently strong signal. The random forest classifier per-
formance was evaluated by using tenfold cross-validation 
against the particle library positively identified by Raman 
spectroscopy. The mean probability of detection was calcu-
lated (true positive rate) and the mean probability of false 
alarm (false positive rate). The random forest classifier 
allows to make a trade-off between these two values. The 
fraction of decision trees in the random forest voting for a 
certain polymer, denoted by Prf, is evaluated as a measure 
of prediction certainty. A threshold value for Prf can then 
be selected to achieve a specified true or false positive rate.

The estimated false positive rate is plotted against the 
estimated true positive rate as calculated from the Raman 
reference library in Fig. 5. Insufficient data for PS par-
ticles was available in the reference library to assess the 
accuracy of detecting this polymer (i.e., no PS particles 
were present in the Raman spectroscopy data). Detection 
of almost all PE particles (e.g.,  >95%), would result in 
a false positive rate of more than 7% (Fig. 6). A lower 
detection rate for PE particles (e.g., 92%) would reduce 
the false positive rate to about 5%. The area under the 
curves in Fig. 6 is 0.98 for PE, 0.97 for PP, and 0.96 for 
the other materials, indicating good performance of the 
classifier. An area of 0.5 (the 1:1 line in Fig. 5) would 
correspond to an uninformative classifier (in which case 
randomly guessing whether a particle belongs to a poly-
mer class would be just as good), and an area of 1 would 
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be a perfect classifier. For further analysis, we chose a 
threshold for Prf at which the estimated false positive rate 
remains below 5% (Table 1).

The spectra for plastic polymers was markedly differ-
ent from natural materials collected from North Atlantic 
surface waters such as driftwood, Sargassum algae, and 
crustaceans (shrimp, crabs) (Fig. 4b). Collected micro-
plastic particles showed some evidence of organic bio-
fouling, although this was mostly restricted to crevices 
(Fig. S1) and did not appear to substantially affect the 
average spectra. Spectral peaks and troughs unique to the 
different polymers were identified visually (Fig. 4a). The 
presence of peaks and troughs in the observed particle 
spectra were identified using the scipy peak finding algo-
rithm [52]. No foam plastic particles were found in the 
samples. Spectra for high- and low-density polyethylene 
were indistinguishable and grouped as “polyethylene,” 
similar to the results of Karlsson et al. [25].

The bulk net samples contained mostly Sargassum 
seaweed and zooplankton, but also up to nearly 300 
f loating plastic fragments and rope fibers per tow 
(Table  2). The apparent plastic fragments comprised 
a range of colors, but were predominantly white (e.g., 
Fig. 2). False-color scans with the FX-17 camera showed 
extensive erosion, pits, and cracks of the particles 
indicative of weathering and fragmentation (e.g., Fig. 2 
and Fig.  S2). Microplastic particle concentrations 
ranged between 0.063 and 3.6 particles per cubic meter, 
excluding stations where the flowmeter was clogged with 
Sargassum (Table 2).

Polymer distribution and particle sizes

Microplastic particle concentrations were highest south of the 
Azores and lowest at the station farthest east (Fig. 1), con-
sistent with accumulation within the gyre interior. However, 
marked variability was also evident, with replicate tows at 
individual stations collecting particle numbers that varied by 
up to a factor of seven (e.g., tows 1-3 at Station 18-1; Table 2). 
Microplastic polymer types for each tow are shown in Table 2, 
and the overall proportion is shown in Fig. 6a. The majority 
of particles were identified as PE (77.1%), with a smaller pro-
portion classified as PP (9.2%). Some particles could not be 
assigned to a certain polymer and were therefore classified as 
the ‘other material’ category (13.6%). There was no obvious 
spatial trend in polymer types (Fig. 1), except for PS, which 
was only detected at the first station sampled.

A histogram of particle size distribution, as normalized 
abundance versus length, is plotted for PE, PP, and the “other” 
material class in Fig. 6b. The amount of particles n in each bin 
is normalized to the bin width, to obtain the particle size distri-
bution in terms of a normalized abundance in n/mm (e.g., [10].

For larger particle lengths (~2 mm and larger), the particle 
size distributions for PE and PP seem to follow approximately 
a power law relationship, as noted in previous studies [24]. 
This means that the particle abundance scales with ∝ l

−� , 
where l is the particle length and � is the power law exponent. 
We calculate � = 3.41 ± 0.08 for PE, and � = 2.80 ± 0.22 for 
PP. As a reference, Cozar et al. [10] calculated 2.93 ± 0.08 
for the global ocean. Local estimates of the particle size dis-
tribution shape and slope for different polymers can provide 

Fig. 6   a Polymer type propor-
tion of all analyzed particles. 
b Particle size distribution for 
PE, PP, and the “other” material 
class, using nine size classes 
ranging from 0.3 mm (the net 
mesh size) to 40 mm
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Table 1   Detection probability 
(true positive rate, TPR; 
false positive rate, FPR) and 
selection threshold for polymer 
identification

Material PE PP Others PE PP Others

TPR 0.98 0.86 0.83 0.92 0.92 0.92
FPR 0.07 0.02 0.01 0.05 0.05 0.05
Selection threshold Prf, max Prf, max Prf, max Prf > 0.785 Prf > 0.320 Prf > 0.243
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important information on degradation and fragmentation pro-
cesses [24]. The hyperspectral imaging system allows for rapid 
quantification of this information and can provide valuable 
information for future microplastic studies.

Lower abundance of PE and PP particles smaller than 
1–2 mm was observed. This has been reported in multiple 
earlier studies (e.g., [10, 40], and possible causes are related 
to vertical mixing in the water column of smaller particles 
[41], removal of smaller particles due to biofouling/inges-
tion [34], smaller particles escaping the net mesh [33], or 
sampling bias due to smaller particles not being observed 
during sample preparation.

Conclusions

Near-infrared hyperspectral imaging shows very good 
performance for rapid analysis of large microplas-
tics (i.e.,  >300 µm, and up to 12 mm in the narrowest 

dimension). The NIR-HSI system is inexpensive relative to 
most FTIR and Raman spectroscopy devices (~50 k€ ver-
sus 500 k€). Sample analysis is fast relative to these other 
techniques, making it possible to analyze hundreds to thou-
sands of particles in a day. Together, this suggests that NIR-
HSI has the potential to relieve bottlenecks in the analytical 
workload of global microplastic studies. Since the technique 
works well for large particles, it is particularly well-suited 
for net-collected particles and those collected during citizen 
science activities.

The system is light and portable enough that it can be 
transported to field laboratories, such as research ships, 
and the microplastic particles can be analyzed soon after 
collection. Mounting and imaging the collected particles 
is also simple, reducing the need for technical expertise. 
The automated particle identification and polymer analysis 
procedures reduce operator input and improve objectiv-
ity. However, the visual particle selection from bulk net 
samples still introduces a source of user error, and future 

Table 2   Summary data of the 
catamaran net tows, locations, 
microplastic particles, and 
microplastic polymers. 
Additional station data is 
included in the Supplementary 
Information

a Net clogged with Sargassum weed, flowmeter blocked

Station Latitude Longitude Volume 
sampled 
(m3)

Total MP MP/m3 n PE n PP n PS n Other

18–1 31° 39.920′ N 024° 27.287′ W 270 41 0.152 21 2 14 4
18–1 31° 40.476′ N 024° 28.369′ W 196 283 1.444 229 16 30 8
18–1 31° 41.038′ N 024° 29.374′ W 228 38 0.167 17 2 19 0
43–1 31° 19.496′ N 029° 34.347′ W 174 152 0.874 127 12 0 13
43–1 31° 20.462′ N 029° 35.133′ W 24a 82 3.417 69 9 0 4
43–1 31° 21.472′ N 029° 35.958′ W 98 63 0.643 51 9 0 3
48–1 31° 19.939′ N 030° 41.100′ W 333 53 0.159 23 2 0 28
48–1 31° 20.671′ N 030° 42.267′ W 325 98 0.302 74 8 0 16
48–1 31° 21.545′ N 030° 43.284′ W 292 108 0.370 95 4 0 9
55–1 31° 07.098′ N 033° 49.016′ W 204 214 1.049 188 19 0 7
55–1 31° 07.953′ N 033° 49.748′ W 176 280 1.591 257 19 0 4
55–1 31° 09.021′ N 033° 50.493′ W 81 293 3.617 240 16 0 37
68–1 32° 10.424′ N 034° 09.152′ W 176 28 0.159 23 0 0 5
68–1 32° 11.403′ N 034° 09.900′ W 244 54 0.221 39 3 0 12
68–1 32° 12.425′ N 034° 10.645′ W 144a 81 0.563 63 11 0 7
78–1 33° 08.520′ N 034° 33.673′ W 204 75 0.368 64 4 0 7
78–1 33° 09.608′ N 034° 34.564′ W 269 28 0.104 23 2 1 2
78–1 33° 10.708′ N 034° 35.527′ W 27a 194 7.185 168 17 0 9
87–1 33° 20.447′ N 033° 49.999′ W 212 41 0.193 22 0 0 19
87–1 33° 21.646′ N 033° 49.509′ W 206 13 0.063 2 0 0 11
87–1 33° 22.754′ N 033° 49.090′ W 257 24 0.093 4 0 0 20
107–1 35° 08.367′ N 020° 49.280′ W 297 24 0.081 13 3 0 8
107–1 35° 09.270′ N 020° 48.266′ W 333 34 0.102 23 5 0 6
107–1 35° 10.310′ N 020° 47.104′ W 291 40 0.137 36 4 0 0
107–1 35° 11.257′ N 020° 46.044′ W 285 35 0.123 25 4 0 6
107–1 35° 12.198′ N 020° 44.991′ W 308 24 0.078 19 2 0 3
107–1 35° 13.206′ N 020° 43.862′ W 272 18 0.066 15 1 0 2
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method developments should focus on eliminating user 
bias during the particle selection process, for example, by 
performing a complete digestion of non-plastic material 
and imaging the entire residual material.

The results of the current study were focused on a very 
limited set of polymer types. While this is appropriate 
for offshore regions where transport is limited by particle 
polymer buoyancy, application in other environments such 
as beaches will require extension of the polymer library 
to include more dense polymers as well. Previous reports 
suggest that the NIR signatures for many additional poly-
mers are sufficiently unique to allow successful discrimi-
nation among types (e.g., [51].

A couple changes to the current identification procedure 
may improve the overall workflow in the future. First, the 
image segmentation algorithm can possibly be made more 
accurate by considering the full spectral image, as opposed 
to segmenting a black and white image as was done here 
as a preliminary step. This might help detect some of the 
translucent particles which are hard to detect on the black 
and white images and would reduce merging errors for 
overlapping particles. This will be important if manual 
particle picking and mounting is eliminated in favor of 
complete digestion and full residue imaging.

Second, the classification algorithm can be improved in 
the future by including more reference data. Since the refer-
ence data in this study was limited, the classification algo-
rithm presented here only uses the presence of prescribed 
peaks and troughs to keep the number of features low. With 
enough training data, the entire spectrum could be fed to a 
classification algorithm instead, with the algorithm deter-
mining internally which patterns in the spectrum are most 
important to distinguish between different materials.

Field-collected samples contain both smaller particles 
(although perhaps not net samples) and aged or weathered 
MPs. In addition to a classification library that includes a 
more diverse range of polymers, it is not yet clear what effect 
surface weathering has on NIR spectra. The results of the 
current work suggest that weathering effects do not have 
a major impact, at least on the key spectra features used 
for polymer identification on the large MPs analyzed here. 
However, these spectra features decrease in strength as par-
ticle size decreases, and it may be challenging to identify 
polymer types by NIR-HSI in smaller particles. Weathering 
effects may also become more important as the spectra qual-
ity decreases with particle size.

Finally, MP identification by NIR-HSI may have some 
advantages compared with other polymer identification tech-
niques, in addition to being low cost and high throughput. 
For example in the current work, some 15% of the cross-
checked particles were unidentifiable by Raman spectros-
copy, largely because of fluorescence. Such fluorescence 
can originate from plastic additives like dyes, and a Raman 

non-identified particle can still be a polymer and may be 
correctly identifiable by NIR-HSI.
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