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Abstract
The so-coined fourth paradigm in science has reached the sensing area, with the use of machine learning (ML) toward data-
driven improvements in sensitivity, reproducibility, and accuracy, along with the determination of multiple targets from a 
single measurement using multi-output regression models. Particularly, the use of supervised ML models trained on large 
data sets produced by electrical and electrochemical bio/sensors has emerged as an impacting trend in the literature by allow-
ing accurate analyses even in the presence of usual issues such as electrode fouling, poor signal-to-noise ratio, chemical 
interferences, and matrix effects. In this trend article, apart from an outlook for the coming years, we present examples from 
the literature that demonstrate how helpful ML algorithms can be for dispensing the adoption of experimental methods to 
address the aforesaid interfering issues, ultimately contributing to translate testing technologies into on-site, practical, and 
daily applications.
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Introduction

Since the early days of science, classical heuristics have 
looked for patterns from limited data sets to achieve laws, 
models, and rules. Many of the chemical heuristics that 
have still been taught in chemistry courses date back at 
least a century ago, such as the concept of electronegativity, 

the Pauling rules, and the periodic table of elements. As a 
limitation, such heuristics suffer from extrapolation issues, 
being valid only under specific conditions. For instance, the 
periodic table and electronegativities can change drasti-
cally at high pressures. Alternatively, the traditional heuris-
tic approach has recently been replaced by artificial intel-
ligence (AI) and machine learning (ML) models trained on 
large data sets (these terms are briefly explained in the next 
topic of this article). Because of the significant amount of 
data available and the existence of open-source software 
able to perform high-throughput data processing, AI and 
ML methods have provided the so-called fourth paradigm 
in science, namely, data-driven scientific discoveries and 
improvements by applying robust algorithms that are valid 
at more extreme conditions when compared with the con-
ventional models [1].

ML has contributed to advance diverse areas such as 
speech processing, finances, navigation control, loco-
motion, personality profiling, game playing, computer 
vision, organic synthesis, bioinformatics, drug discov-
ery, material design, and sensors/biosensors (bio/sen-
sors) [2, 3]. Bio/sensors have been widely developed in 
a period of sustained growth due to a series of intrinsic 
advantages like speed, low-cost, simplicity, nondestruc-
tive property, and ability to make on-site applications 
across environmental, food, and biomedical fields [4, 
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5]. In particular, the electrical and electrochemical bio/
sensors are powerful tools by combining low-cost, hand-
held, and user-friendly platforms with rapid and high-
performance assays. However, these approaches can 
suffer from issues such as electrode fouling, poor signal-
to-noise (S/N) ratio, chemical interferences, and matrix 
effect that undermine their precision and accuracy. As 
an alternative, ML algorithms can assist the performance 
of electrical and electrochemical bio/sensors even when 
facing those challenges [4].

In a pioneering work, Holmberg et al. [6] reported in 
1996 the use of ML to reduce signal drifts in electronic 
noses for correctly classifying 85% of alcohol gas samples 
(1-propanol, 2-propanol, 1-butanol, and 2-butanol). Since 
then, the amalgamation of electrical and electrochemical 
bio/sensors with ML to process their data has proved to 
be an effective shortcut to reach accurate analyses, being 
a frontier trend in the sensing area [4, 5]. Indeed, ML 
methods bring relevant analytical gains by eventually 
removing anomalous experimental features while smartly 
picking up only certain data to obtain robust descriptors, 
which can deliver analytically useful information (out-
puts) from qualitative (analyte identification and pattern 
classification) and/or quantitative (regression) analyses 
with enhanced sensitivity, reproducibility, and accuracy 
even in the presence of issues (electrode fouling, poor 
S/N ratio, and matrix effects) as mentioned before [4, 
5, 7–9]. Another ML-aided benefit is the capability of 
monitoring multiple parameters or targets from a single 
measurement (multidetermination), thus avoiding the 
need of separation methods or various selective sensors/
biosensors (bio/sensors) [10, 11]. Such advances are sum-
marized in Scheme 1, together with conceptual considera-
tions on bio/sensors and ML. Some reviews have already 

been reported summarizing the use of ML in different 
bio/sensing applications [4, 5, 9, 11]. Specifically, this 
trend article is aimed at researchers in the field of electro-
chemical/electrical bio/sensors with focus on the general 
benefits of ML (particularly, supervised models) and how 
it can help us to overcome typical and decisive analytical 
issues found in the area.

Brief considerations on ML methods

ML is a class of statistical methods that automatically 
identifies patterns in data sets, even if they are present 
in high-dimensionality spaces, to obtain input–output 
algorithms. In the sensing field, such ML algorithms 
can predict unknown information (output) in qualitative, 
semi-quantitative, or quantitative assays [2, 12]. To date, 
ML is a subfield of AI that covers any computational 
tool capable of mimicking human intelligence, includ-
ing “less intelligent” approaches such as decision trees, 
if–then rules, and computer logic. ML methods can be 
categorized into unsupervised or supervised learning. In 
the first case, patterns from unlabeled inputs (the output 
is unknown) are found for clustering, density estimation, 
and/or dimensionality reduction tasks. For instance, PCA 
is a commonly used approach to decrease the dimension-
ality of large data sets while preserving relevant infor-
mation contained in the original data cloud. Conversely, 
supervised learning is trained on labeled inputs to achieve 
classification or regression algorithms, which are able to 
accurately provide discrete and continuous (numerical) 
outputs, respectively [2]. Details on the concept, advan-
tages, and limitations of a set of ML algorithms can be 
found out in recent and didactic reviews [3, 4].

Scheme 1   Some highlights 
ML-wise and brief considera-
tions on electrical and electro-
chemical bio/sensors and ML 
used in these platforms



3685Machine learning toward high‑performance electrochemical sensors﻿	

1 3

ML‑aided analytical gains in bio/sensors

Capacity of classification

When bio/sensors lead to the generation of chemi-
cally diversified outputs, i.e., fingerprints, with pattern 
responses being attained to the samples, the use of ML 
becomes an effective strategy to assure accurate detection 
and/or classification tasks [13–21]. Impedimetric devices 
are attractive tools to provide diversified features as the 
variation of impedance (Z) with frequency depends on 
a set of distinguishable parameters, including resistive, 
capacitive, interface, and mass-transport phenomena [22]. 
Ali et al. [15] reported a disposable all-printed impedance 
sensor for fast detection and classification of three bacte-
ria, Salmonella typhimurium, and Escherichia coli strains. 
Such a sensor consisted of interdigitated silver (Ag) elec-
trodes coated with Ag nanowires. While the impedance 
data for forty samples of each strain were similar, unique 
sample-related fingerprints consisting of distinct input 
features, i.e., power, current–potential (i-V) curve, and 
first and second derivative of these curves, were extracted 
from the data and utilized as features in pattern recogni-
tion methods like linear discrimination analysis (LDA), 
linear maximum likelihood estimation (MLE), and non-
linear back propagation neural network (BPNN). These 
unsupervised approaches delivered the classification of the 
samples through randomized cross-validation tests with 
100% accuracy.

In the work developed by Okur et al. [19], an electronic 
nose based on quartz crystal microbalance (QCM) sens-
ing array was applied to distinguish five pairs of chiral 
odor molecules, with ten volatile organic compounds 
(VOCs) in total. These arrays were coated with six dif-
ferent metal–organic framework (MOF) thin films, three 
of them with chiral properties and the other three, achiral. 
Since the isomers have their intrinsic response patterns, 
these features were treated by a ML method toward a more 
detailed understanding of the sensor data and an enhanced 
performance of the nose. Supervised k-nearest neighbor 
(KNN) algorithm was used, and the mean classification 
accuracy for distinguishing all 10 isomers was 96.1%, indi-
cating that it was possible to discriminate the compounds 
with high accuracy.

More recently, the coronavirus disease 2019 (COVID-
19) pandemic showed us the necessity of developing 
quickly available tools to address emerging healthcare 
issues at the point of care (POC). In the testing area, differ-
ent devices were reported to diagnose this infection [23], 
with ML methods proving to be essential in some works 
for clinical screening applications. For instance, Shan 
et al. [17] addressed a noninvasive approach to detecting 
and following up on individuals who are at risk or have 

an existing COVID-19 infection, with a potential ability 
to serve as a pandemic control tool. Specifically, a breath-
ing device composed of a hybrid sensing array based on 
nanomaterial with multiplexed detection capability was 
described. Different gold (Au) nanoparticles bonded to 
organic ligands created electrical resistance-based finger-
prints as these nanoconjugates undergo diversified levels 
of swelling or shrinking after exposure to volatile disease-
specific biomarkers. ML methods were used to investi-
gate the pattern of these signals to achieve the COVID-19 
signature toward screening purposes. The study cohort 
included 49 confirmed COVID-19 patients, 58 healthy 
controls, and 33 non-COVID lung infection controls. Dis-
criminant factor analyses (DFA) of the sensing data pro-
vided 94% and 76% accuracies in differentiating patients 
from controls for the training and test sets, respectively. 
The method further led to 90% and 95% accuracies in dif-
ferentiating between patients with COVID-19 and those 
with other lung infections. ML models can benefit not only 
from diversified sensing data, but also from a significant 
training set size for creating descriptors with an enhanced 
prediction ability. In this way, analyses of a larger number 
of training samples are expected to boost the classification 
ability of the prior sensor in blinded sample-with applica-
tions (test set).

The combination of sensor with ML method toward 
COVID-19 diagnosis was also proposed by Beduk et al. [21]. 
In this case, laser-scribed graphene (LSG) devices coupled to 
Au nanoparticles (AuNPs) were developed as affinity-based 
biosensing platforms to probe novel variants of COVID-19, 
i.e., alpha, beta, and delta, as presented in Fig. 1A. The elec-
trode was modified with angiotensin-converting enzyme 2 
(ACE2) bioreceptor for detecting SARS-CoV-2 S1 and S2 
antigen proteins. A homemade electrochemical analyzer, 
KAUSTat, was utilized for differential pulse voltammetry 
(DPV) experiments. This device is portable and allowed 
smartphone connection via micro-USB port. The KAUSTat 
platform was also able to provide ML processing through a 
neural algorithm, thus meaning a promising tool to deliver 
POC diagnostics. The dense neural network (DNN)–super-
vised architecture was used to validate such a self-diagnosis 
setup. A clinical study was conducted with nasopharyngeal 
swabs from 63 patients having the SARS-CoV-2 variants, 
patients without the mutation, and negative patients. Accu-
racies of 98.7%, 99.5%, 100.0%, and 99.4% were obtained 
for the inference of the beta, alpha, and delta variants and 
control patients, respectively. Particularly, apart from electri-
cal devices as discussed before, these data reveal the ability 
of faradaic electrochemical methods to afford chemically 
diversified signals for ML-aided high-performance classi-
fications as well.

In another work, our group [24] used a five–amino acid 
peptide (Asn-Asn-Ala-Thr-Asn-COOH, called PEP2003) 
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to recognize SARS-CoV-2 antibodies in a label-free (LF) 
biosensor designed for COVID-19 screening. The biosen-
sor relied on glassy carbon electrodes (GCE) coated with 
AuNPs, which were used for electrochemical impedance 
spectroscopy (EIS) analyses. In contrast to big-size rec-
ognition elements (e.g., proteins and antibodies), this pep-
tide can be easily prepared via chemical synthesis and it is 
not amenable to denaturation, hence meeting the trade-off 
between scalability, cost, and shelf-life. The biosensor pre-
served 95.1% of the initial signal for 20 days when stored 
dry at 4 °C. Concerning the discrimination of two types 
of diluted human sera, pre-pandemic individuals (15) and 
convalescent patients (24), false negatives (~ 10%) were 
noted when using a cutoff line based on univariate charge-
transfer resistances (Rct, extracted from Nyquist plots) for 
COVID-19 screening. To solve this issue, a supervised 
model named sure independence screening and sparsifying 
operator (SISSO) was used, and two simple equations fitted 

the Rct data. Remarkably, such equations led to the COVID-
19 screening of sera into healthy and infected groups with 
no false positives or negatives, i.e., 100.0% accuracy. SISSO 
converts the input data into low-dimensional and easy-to-
use mathematical equations aiming at accurate qualitative or 
quantitative analyses even from a small number of training 
sets, therefore meeting the trade-off between accuracy and 
simplicity/speed of computation. Such advantages favor the 
development of ML-aided sample-to-answer experiments on 
mobile phones, which would greatly facilitate detection at 
the point of care as no data treatment by the user is needed.

Accurate quantification

Beyond their employment to improve the capacity of clas-
sification, ML methods have been applied to increase the 
quantification accuracy [25–27]. For instance, Rivera et al. 
[26] used supervised random forest (RF) and feedforward 

Fig. 1   ML-aided analytical gains in electrical and electrochemical bio/
sensors. A Immunoaffinity biosensor based on LSG/AuNPs electrodes 
to detect novel variants of COVID-19. Construction of the biosensing 
interface and SARS-CoV-2 detection (1), sensor attached on a port-
able electrochemical analyzer connected to smartphone by USB (2), 
DPV scans showing the oxidation current changes after each modifica-
tion and detection of 200 ng mL−1 SARS-CoV-2 S1 and S2 antigens  
(I: Bare LSG, II: AuNPs-LSG, III: AuNPs-LSG-Binders, IV: AuNPs-
LSG Immunosensor, V: 200 ng mL-1 S1 antigen, and VI: 200 ng mL-1 
S2 antigen) (3), DNN architecture (4), and resulting spatial representation 
of the dataset collected by measuring nasopharyngeal swabs of COVID- 
19-positive and negative patients (5). EDC, NHS, and Cys mean 1-ethyl- 

3-(3-dimethylaminopropyl)carbodiimide, N-hydroxysulfosuccinimide, 
and cysteine, respectively. Reproduced from [21], Copyright 2020 with 
permission from Elsevier B.V. B Smartphone-based ECL sensor. Sche-
matic diagrams of data-driven modeling using FNN and RF algorithms 
(1) and the parity plots of predicted vs actual Ru(bpy)2+

3
 concentrations 

using RF (2) and FNN (3). Reprinted from [26], Copyright 2020 with 
permission from MDPI Open Access Journals. C Multidimensional elec-
trochemical sensor toward metal ion recognition. Microfluidic device 
comprising an association of double-layer capacitors in parallel (1), a 
parity plot of predicted vs true ion concentrations according to RF (2), 
and the errors related to multi-output regression (3). Reproduced from 
[10], Copyright 2020 with permission from Elsevier B.V
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neural network (FNN) algorithms to quantitatively inves-
tigate the relationship between the concentration of 
Ru(bpy)2+

3
 luminophore and the resulting electrochemilu-

minescence (ECL) and electrochemical signals, as exhib-
ited in Fig. 1B. The multivariate character of this kind of 
experiment naturally imposes challenges against the fitting 
of accurate regression models, which were successfully 
attained by both the prior ML methods. Multimodal data 
consisting of ECL images and amperograms (recorded 
in + 1.2 V) and the Ru(bpy)2+

3
 concentrations were pro-

cessed as the input and output features for ML models, 
respectively. High correlations (0.99 for RF and 0.96 for 
FNN) between real and predicted values were achieved in 
the detection range from 0.02 to 2.50 µmol L−1. Thus, the 
RF and FNN regression models proved to be capable of 
directly inferring the Ru(bpy)2+

3
 concentration from diversi-

fied ECL and electrochemical responses.
More recently, Lu et al. [27] applied the artificial neural 

network (ANN) in the analysis of niclosamide (NA) using an 
electrochemical sensor. ANN was chosen due to its intrinsic 
abilities such as the high capacity of self-learning, solution 
of non-linear problems in arbitrary data, high-speed search 
for optimal modeling, and robustness against noise issues. 
The sensor consisted of a glassy carbon electrode modified 
with carbonized MOF. DPV scans were first recorded to 
quantitatively detect NA in the range from 1.0 nmol L−1 to 
9.0 μmol L−1 by the traditional analytical curve method. In 
this case, the peak currents presented a linear relationship 
with the NA concentration square, and the root mean square 
error of calibration (RMSEC) was 2.7602. When ANN was 
applied to the DPV data, nonetheless, the RMSEC was 
reduced to 0.2788. For the analysis of NA in spiked real 
drug samples, the average relative standard deviation (RSD) 
of recoveries reduced from 1.9 to 1.6% with the ML method. 
More significative improvements in prediction capacity can 
be provided by ML when challenging the method in complex 
samples, as it will be discussed in the section “Supervised 
models solving specific challenges in chemical analyses and 
bio/sensors” of this trend article.

Multidetermination from single measurements

Another analytical gain from the adoption of supervised 
ML models to treat the bio/sensing data is the capabil-
ity of addressing the determination of multiple analytes, 
i.e., multidetermination, from a single measurement, thus 
bypassing the use of preparation methods (e.g., clean-up 
routine, extraction, chromatography, and electrophoresis) 
or different selective sensors as usually required. Accord-
ingly, this strategy leads to important advances in cost 
reduction, throughput, and operational simplicity [10, 28, 
29]. Some recent examples of this application of ML are 
presented below.

Bonet-San-Emeterio et al. [29] proposed a voltammetric 
device electrochemically modified with reduced graphene 
oxide (rGO) for the analysis of mixtures of dopamine 
(DA), serotonin (5-hydroxytryptamine, 5-HT), and their 
most common interferents, i.e., ascorbic acid (AA) and 
uric acid (UA). Although these compounds are electro-
chemically active, peak current overlapping can occur as 
their voltammetric responses are similar, damaging the 
accuracy of direct electrochemical analyses. Remarkably, 
ANN provided the accurate quantification of each com-
ponent from a unique voltammetry scan. Methods such 
as principal component analysis (PCA), discrete wavelet 
transform (DWT), and fast Fourier transform (FFT) were 
further employed to decrease the dimensionality of the 
voltammetric data. The graphs acquired from DWT-ANN 
showed the lowest dispersion and greatest linearity (cor-
relation coefficient > 0.974). Further, this model yielded 
a normalized root-mean-square error (NRMSE) of 0.088.

In another publication, our group [10] developed a mul-
tidimensional electrochemical sensing array that assures 
the multidetermination of metal ions in lake samples in 
a direct way from a single cross-reactive electrode and 
measurement, as presented in Fig.  1C. Microfluidic 
devices were prototyped by a scalable, cleanroom-free, 
green, and simple method, whereas commercial and ordi-
nary stainless-steel capillaries were utilized as sensing 
probes. The latter formed an association of double-layer 
capacitors in parallel to generate multidimensional, i.e., 
chemically diversified, responses. This property was 
reached in a single response since the equivalent capaci-
tances (fingerprints) encompass contributions of all the 
individual capacitors that were capable of delivering pat-
tern responses because of the multidimensional nature 
of the frequency-function capacitance scans [30, 31], as 
aforesaid for impedimetric devices. This sensor led to the 
simultaneous quantification of the cations Ni2+, Al3+, and 
Cu2+ from universal ac voltage tests by treating the capaci-
tance values assuming the electrodes as ideally polarizable 
interfaces. Specifically, multi-output regressions based 
on RF algorithms showed high correlation coefficients 
(R2 > 0.99) in all the cases. The overall mean absolute 
error (MAE) was revealed to be only 0.2 mg L−1 (the con-
centrations of the ions ranged from 5.0 up to 50.0 mg L−1).

Supervised models solving specific 
challenges in chemical analyses and bio/
sensors

Electrode fouling

As recently demonstrated by Ferreira et al. [7], ML is capa-
ble of circumventing accuracy issues caused by electrode 
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fouling. Specifically, the authors developed a platform using 
a millifluidic impedimetric sensor to monitor the synthesis of 
silica nanoparticles (SiO2NPs) for 24 h. These nanoparticles 
were selected due to their wide range of applications. Using 
linear regression–based analytical curves with univariate 
signals of Z at specific frequencies as sensing features, the 
inter-synthesis accuracy (employing independent sensors as 
well) was poor. Specifically, the determined hydrodynamic 
diameter (DH) of the nanoparticles presented discrepancies 
of up to 132.8% with regard to the true data (determined by 
dynamic light scattering, DLS). This poor reproducibility 
was shown to be triggered by the adsorption of SiO2NPs 
on the Au electrode during the synthesis. Utilizing SISSO 
descriptors composed of only six Z inputs (at different fre-
quencies; the whole spectra contained 18 Z data), this inter-
ference could be overcome with DH being determined in 
a real-time, accurate, and simple way without using anti-
fouling layers on the electrodes. The global average accu-
racy was 103.7 ± 1.9%, thereby demonstrating the robustness 
of the SISSO descriptor. The SiO2NP concentration could 
also be attained with accuracy using the SISSO multi-output  
regression model. The root-mean-square errors (RMSE) 
were calculated as 2.0 nm and 2.6 × 1010 nanoparticles mL−1 
for the size and SiO2NPs concentration, respectively.

In another work, Aiassa et  al. [32] developed a new 
method for electrochemical sensing of propofol with com-
pensation of the fouling effect through the ML model, as 
shown in Fig. 2A. In this case, the passivation of the HB 
pencil lead, a carbon electrode, stemmed from the forma-
tion of a polymeric film coating, decreasing the signal and 
disturbing the accuracy as such a phenomenon is charac-
terized by a strong non-linear response. As a consequence, 
the application of a univariate linear regression model to 
cyclic voltammetry (CV) features provided poor accuracy 
in classifying propofol samples diluted in phosphate buff-
ered saline solution (PBS) and human serum, being only 
69.8% and 33.3%, respectively. The compensation of this 
non-linear fouling effect was achieved by processing the CV 
data through the radial basis function support vector classi-
fier (RBF-SVC), which is a non-linear ML algorithm. In this 
case, the accuracies were improved to 98.9% and 100% for 
samples in PBS and human serum, respectively.

As noted in the two prior works [7, 32] and following in 
this section, supervised ML models are a powerful strategy 
to afford direct analyses as the use of experimental meth-
ods to inhibit the interfering issue is avoided and ML-fitted 
algorithms can be automatically performed, e.g., in mobile 
phones toward the development of sample-to-answer fash-
ions. The latter facilitates detection at the point of need 
because no data treatment or interpretation by the user is 
required. Concerning the approaches that are commonly 
described in the literature to prevent electrode fouling, they 
include self-assembled monolayers of polyethylene glycol, 

zwitterionic polymers, hybrid coating, and bovine serum 
albumin (BSA). Although valuable, these blocking layers 
generally hamper the redox reaction kinetics, hence impair-
ing the analytical performance of the device. Further, these 
coatings may present low durability, repeatability, and scal-
ability, mining POC tests and commercial manufacturing 
feasibility [33].

Matrix effects

ML can also be employed to solve matrix effects in chemical 
analysis, as recently reported by our group [8]. Microhole-
structured and flexible Ni meshes acting simultaneously 
as gas diffusion membranes and electrodes were used for 
voltammetric determination of volatile compounds. The 
diffusion of gas from donor (samples) to receptor phases 
(electrolyte) was conducted in headspace (contactless) 
mode, thus minimizing issues related to the mesh fouling, 
as represented in Fig. 2B. The platform was challenged in 
sugar cane fermentation broths for ethanol determination. 
This application is relevant to detect unconformities and pro-
vide high efficiencies in the production of ethanol biofuel. 
Ni(OH)2-modified Ni electrodes were interrogated with CV 
to probe ethanol vapor dissolved into the receptor solution. 
Briefly, Ni(OH)2 was reversibly oxidized in alkaline media 
to the high-valence NiOOH, which promoted the irreversible 
oxidation of ethanol by acting as an electron mediator [34]. 
Using the univariate method of analytical curve–based inter-
polation with oxidation currents (+ 0.65 V) as responses, 
the attained ethanol concentrations variated in relation to 
the expected data with accuracies from 80% up to 105%. 
This accuracy range suffered from the susceptibility of gas 
diffusion to matrix effects as the medium composition alters 
the analyte evaporation rate. Nonetheless, a simple SISSO 
descriptor with CV scan–based inputs was once again able 
to boost accuracy, as discussed next.

Parity plots between the predicted and expected concen-
trations of ethanol exhibited ideal behavior, with the slope 
close to 1.0 and linear fitting (0.99 R2), whereas the accura-
cies ranged from 97 to 102% for the test samples [8]. The 
use of a mathematical descriptor containing only seven fea-
tures of current at different potentials provided direct assays 
with accuracy. In this sense, while the traditional method 
of standard addition may overcome matrix effect interfer-
ences, the necessity for determining spiked solutions before 
the analysis of every sample can compromise the practical 
accomplishment of daily, practical, and on-site applications.

Chemical interferences

Torrecilla et al. [35] developed an amperometric biosensor 
to simultaneously determine glucose and its interferents, 
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AA and UA, in a mixture. The concentration of these ana-
lytes ranged from 0.1 to 1.0 mmol L−1, and their analyti-
cal information was extracted from CV. The combination 
of biosensing responses with chemometric tools can solve 
the issue of complex analytical signals from the set of spe-
cies with similar responses. In this sense, the authors used 
ANN to process the device signals aiming at the accurate 
quantification of glucose in the presence of interferents. The 
contents of glucose, AA, and UA could be estimated with 
mean prediction errors (MPE) of 0.007, 0.013, and 0.032, 
respectively. Moreover, in all these cases, R2 was higher than 
0.99. Using ML, accurate quantifications could be reached 

without the adoption of experimental methods to prevent 
chemical interferences in bio/sensors, such as the use of 
separation techniques and permselective membranes [36].

Sensitivity

Improving the sensitivity is a relevant task to be pursued 
in the sensing area. In addition to contributing toward early 
monitoring, sensitive devices allow a high dilution of sam-
ples, hence providing the analysis of small-volume samples 
(a crucial benefit in biological assays) and preventing elec-
trode fouling as the interferences present in the samples are 

Fig. 2   ML addressing specific challenges in the bio/sensing area. 
A Continuous voltametric monitoring of propofol. Experimental 
setup and the representation of a propofol molecule (1), scheme of 
the proposed ML approach that assured accurate determinations in 
spite of the electrode fouling (2), and the confusion matrices for 
the results in undiluted human serum with the standard linear ana-
lytical curve (3) and with the ML-based model (4). Adapted from 
[32], Copyright 2022 with permission from ACS. B Bifunctional 
metal mesh working as gas diffusion membrane and electrode for 
the accurate electrochemical quantification of ethanol in liquid 
samples (donor) by overcoming matrix effect–related interferences. 
Illustration of the developed protocol with the addition of an elec-
trolytic receptor solution to dissolve ethanol vapor and provide 
low-ohmic drop faradaic electrochemical assays (1), picture (2) and 
SEM images (3) of the flexible Ni mesh with 20.0-µm microholes, 
and parity plots of predicted vs true concentrations of ethanol 

considering the sensing data treatment by the traditional univari-
ate analytical curve method (4) and SISSO (5). Adapted from [8], 
Copyright 2021 with permission from ACS. C ML-aided sensitive 
monitoring of gas (1–3) and LWC from soy leaves (4–8). Layers of 
the device and the use of DNN to extract “hidden signals” from the 
raw resistance signals (1), DNN learning approach (2), and clas-
sification accuracy for two H2 concentrations measured in distinct 
metallic electrodes as highlighted (3). Adapted from [43], Copy-
right 2022 with permission from ACS. Impedimetric wearable sen-
sor composed of flexible free-standing Ni electrodes to assess LWC 
from soy leaves. Electrodes before (4) and after attachment on leaf 
using adhesive tape (5), electrodes under deformation (6), Z assays 
over 24 h at 30 and 20 °C (7), and the ensuing parity plot of pre-
dicted vs expected LWC at 20 °C using SISSO (8). The scale bar in 
(4) means 5.0  mm. Adapted from [44], Copyright 2022 with per-
mission from ACS
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diluted to insignificant contents [37]. Despite the existence 
of a plethora of efficient strategies to enhance sensitivity 
such as the use of nanomaterials toward current amplification 
[38–41], the adoption of bare electrodes is desirable by sup-
porting scalable, simple, and low-cost sensing methods [42]. 
In this case, we can resort to ML to guarantee sensitive analy-
ses by smartly selecting specific input features. For instance, 
Cho et al. [43] developed a resistive array comprising six 
metals, i.e., Au, Cu, Mo, Ni, Pt, and Pd, for sensitive gas 
monitoring. DNN was used to extract “hidden signals” from 
the raw resistance signals in the error region, as shown in 
Fig. 2C. They found that the use of ML enabled a reduction 
in the limit of detection (LOD) for H2 from 10.0 to 2.5 mg 
L−1 with a recovery of 73.8% considering the Pd electrode.

Significant ML-assisted improvement in the S/N ratio was 
recently described by our group [44]. We proposed an impedi-
metric wearable sensor for determining the loss of water con-
tents (LWC) from soy leaves at different temperatures along 
24 h, namely, 12 h at 30 °C and then 12 h at 20 °C. Water 
content is a key marker of leaf health, and it can lend insights 
into daily practice in precision agriculture, toxicity studies, 
and the development of agricultural inputs. Ni films obtained 
by well-established microfabrication approaches (photolithog-
raphy and electroplating) were used as flexible on-leaf elec-
trodes, as displayed in Fig. 2C. While these electrodes were 
sufficiently sensitive to quantify LWC at 30 °C using a simple 
linear fitting from univariate single-frequency Z input data, 
these signals remained nearly unchanged over the next 12 h 
at 20 °C when the water loss rate was decreased 1.7 times 
(6.2 × 10−3% min−1 at 30 °C and 3.7 × 10−3% min−1 at 20 °C). 
Remarkably, the SISSO descriptor picking up only six input 
features from the whole Bode plot (16 Z values vs frequency) 
led to the accurate monitoring of LWC at 20 °C, with RMSEs 
being 0.2% and 0.1% for the training and test sets, respectively. 
The ability of directly determine LWC from plant leaves at dis-
tinct temperatures through a simple ML descriptor is important 
for practical use of the method outside of laboratory facilities 
in outdoor or even indoor gardens.

Outlook

As presented throughout this trend article, the convergence 
of electrical and electrochemical bio/sensors with machine 
learning methods provides a promising strategy aiming at 
the translation of testing technologies capable of affording 
point-of-need and extensive trials (many trials per thousand 
people) into practical use. In addition to allowing multide-
termination and improving the analytical performance of 
devices through the discrimination of overlapping signals, 
supervised ML models may lead to accurate tests without the 
requirement for experimental methods to prevent common 
analytical issues such as electrode fouling, matrix effects, 

chemical interferences, and poor S/N ratio. These obstacles 
can delay time and increase costs facing the commercial 
adaptation of sensing technologies [23].

According to Clark [45]: “the young investigators in the 
field of sensors are coming from a myriad of backgrounds, 
including materials, analytical chemistry, and chemical 
biology.” Probably, by considering the analytical gains pro-
vided by ML-fitted mathematical models as described above, 
advanced data treatment techniques trained on large data sets 
will be also a crucial topic to be dominated by the emerg-
ing generation of these scientists. In fact, the amalgamation 
of bio/sensors with ML has emerged as a relevant trend in 
the literature, adding even more interdisciplinarity to the 
exciting sensing area [23]. In practice, several commercial 
and open-source software packages, codes, and tools exist 
to implement the most common ML models and learning 
workflow tasks. A set of theoretical and experimental data-
bases are also available for supporting various areas [2, 46].

As mentioned above, the prediction ability of supervised 
ML methods is expected to progressively increase with the 
number of training samples and the chemical diversification 
of the sensing data (inputs) [1]. Hence, instead of training 
the model with standard samples or a limited number of real 
samples as usually noted in the literature, the descriptors 
in future works should be extracted from large sets of real 
samples. Such a type of investigation will not only contribute 
to effectively advancing the platform across the technology 
readiness levels (TRLs) toward real-world applications, but 
also it will likely reinforce the engineering, biological, and 
chemical challenges into the research, including parameters 
such as reproducibility, scaling, stability (i.e., shelf-life), 
sensitivity, cross-reactivity, and fouling. In this way, one 
should also stress the relevance of dialogues with business-
related entities for product development. The convergence 
among academic and industrial knowledge will probably 
work as a shortcut to speed up the commercial translation 
of sensing systems, which are likely to be better equipped to 
deal with on-demand economic, social, health, and environ-
ment challenges in the future.

However, one should stress that the two prior require-
ments, i.e., number of training samples and chemical diversi-
fication of the inputs, are not enough to guarantee the fitting 
of algorithms with a high generalization, i.e., models that 
can accurately predict the output for unknown samples (test 
set) outside the training set. The fitting of these algorithms 
from large data sets critically depends also on the quality of 
the experimental data that compose the inputs [2, 47]. Spe-
cifically, the measurements must be precise and reproduc-
ible to minimize systematic errors. Further, the experimental 
data must be representative of the target property even in the 
presence of the aforesaid analytical issues. In fact, ML will 
only be able to meet these issues if a minimum correlation 
between the sensing data and the target property is held. 
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In practice, as absolute signal values are amenable to non-
specific variations, this correlation can be partially provided 
by parameters such as peak position and signal profile, i.e., 
relative variations in signals.
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