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Abstract
Antibacterial polymer materials have gained interest due to their capability to inhibit or eradicate biofilms with greater effi-
ciency in comparison with their monomeric counterparts. Among the antimicrobial and anti-biofouling polymers, catecho-
lamine-based polymers — and in particular polydopamine — have been studied due to their favorable adhesion properties, 
which can be tuned by controlling the pH value. In this study, we used atomic force microscopy (AFM)–based spectroscopy 
to investigate the relation between the adhesion properties and surface charge density and the pH of electrochemically 
deposited polydopamine films presenting a dissociation constant of polydopamine of 6.3 ± 0.2 and a point of zero charge of 
5.37 ± 0.06. Furthermore, using AFM and attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR), 
the influence of the surface charge density of polydopamine on bacterial adhesion and biofilm formation was investigated. 
It was shown that the adhesion of Escherichia coli at positively charged polydopamine is three times higher compared to a 
negatively charged polymer, and that the formation of biofilms is favored at positively charged polymers.

Keywords Biofilm · Polydopamine · Electrodeposition · Point of zero charge · Atomic force microscopy (AFM) force 
spectroscopy · Attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy

Introduction

In the last decades, antimicrobial and anti-biofouling poly-
mers (AMPs) [1] have gained considerable interest due to 
their low toxicity, biocompatibility, and efficiency to eradi-
cate or inhibit biofilms and the proliferation of antibiotic-
resistant bacteria. The antimicrobial efficiency of AMPs 

arises from the presence of biocidal functional groups such 
as quaternary nitrogen groups, tertiary amines, halamines, 
and catechol groups [2, 3]. Polydopamine (PDA) — a mus-
sel-inspired catecholamine-based polymer — is classified as 
an AMP, and its anti-biofouling property is exploited, e.g., 
for filtration membranes [4]. PDA is known to exhibit dis-
tinct mechanical, physicochemical, and electrical properties 
that can be tuned by the deposition method and the experi-
mental conditions [5–7]. PDA films are mainly obtained 
by dip-coating via oxidation and self-polymerization in 
basic dopamine solutions (pH > 7.4). This method was first 
described by Messersmith and coworkers [8] and has been 
widely studied [9], as any surface can be coated by PDA via 
dip-coating. However, this strategy is of limited control on 
the oxidation state, homogeneity of the deposited films at 
short deposition times, conductivity, and thickness of the 
obtained polymer film [10]. In contrast, electrochemical 
methods such as cyclic voltammetry [11, 12] and pulsed 
deposition techniques [10, 13–15] have shown substantial 
potential to readily control and tune the physicochemical 
properties of PDA. Even though there is a significant body 
of literature focused on the chemical and mechanical prop-
erties of electrochemically deposited PDA (e-PDA) [11, 
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16–19], the anti-biofouling properties and the interaction 
of bacteria with e-PDA films are still a little explored field 
[15, 18, 20, 21]. It has been shown that bacterial adhesion 
is strongly influenced by the oxidation state of e-PDA with 
increased bacterial adhesion, if the polymer is in its oxidized 
form [15]. However, bacterial adhesion is also controlled by 
the surface charge of the polymer, which can be modified 
by varying the pH and the ionic strength of the medium 
the PDA-coated sample is immersed. The relation of the 
surface charge density with the pH and the point of zero 
charge (PZC) of PDA films obtained by dip-coating strongly 
depends on the deposition conditions of the polymer, as the 
PZC varies from PZC = 4.00 if PDA is synthesized in the 
presence of Tris-buffer [22] to PZC = 6.50 when formed with 
copper(II) as an oxidant [23]. To date, studies related to the 
surface charge density of e-PDA and its interactions with 
bacterial cells remain limited.

In the present work, we investigate the first stages of 
attachment of bacteria at pulse-deposited e-PDA films in 
dependence on the pH via AFM-based force spectroscopy 
[24, 25] and attenuated total reflection-Fourier transform 
infrared (ATR-FTIR) spectroscopy [26–32]. Also, studies 
via AFM force titration on the adhesive properties of e-PDA 
as a function of the pH were performed [33–36] to determine 
the dissociation constants of the polymer.

Materials and methods

Reagents and materials

All solutions were freshly prepared with deionized water 
(18.0 MΩ cm, Elga Labwater; VWR Deutschland, Ger-
many). Dopamine hydrochloride was purchased from Sigma-
Aldrich (Germany). Luria–Bertani (LB) culture medium 
was purchased from VWR International GmbH (Germany). 
Sodium chloride (NaCl), potassium chloride (KCl), sodium 
hydrogen phosphate  (Na2HPO4), sodium dihydrogen 
phosphate  (NaH2PO4), hydrochloric acid (HCl), sodium 
hydroxide (NaOH), potassium hydroxide (KOH), and fer-
rocene-methanol were purchased from Merck (Germany). 
2 cm × 2 cm gold substrates were prepared by sputter coat-
ing on silicon wafers and were cleaned in acetone, isopro-
panol, and deionized water, prior to use. All electrochemical 
experiments were performed using a CHI842B bipotentio-
stat (CH Instruments, USA) in a three-electrode cell with an 
Ag/AgCl/KCl (sat.) reference electrode, a platinum counter 
electrode, and the gold substrate as a working electrode.

Electrodeposition of polydopamine

The deposition of e-PDA was done as previously 
described [10, 15]. Briefly, e-PDA films were deposited 

onto gold-coated substrates applying 100 pulse cycles 
with a potential pulse sequence of + 0.5  V/2  s; 
0.0 V/2 s; − 0.3 V/2 s; 0.0 V/3 s vs. Ag/AgCl/KCl (sat.). 
The deposition was performed in freshly prepared and with 
argon purged 5.3 mmol  L−1 dopamine hydrochloride solu-
tion in 10 mmol  L−1 PBS (pH 7.4). Once e-PDA was pulsed-
deposited onto the gold-coated substrate, the polymer was 
further electro-oxidized in a solution of 10 mmol  L−1 PBS 
by applying a potential of + 0.5 V during 300 s vs. Ag/AgCl/
KCl (sat.).

Bacterial culture conditions

Escherichia coli strain DH5-α (originally obtained from 
Clontech Laboratories, Inc., Heidelberg, Germany) cultures 
were prepared by inoculating 25 g  L−1 sterile LB medium 
at 37 ± 1 °C up to a concentration of  109 CFU  mL−1. Bacte-
rial growth was monitored by the  OD600 using a UV–VIS 
spectrometer (Thermo Scientific NanoDrop One, MA, 
USA). The bacterial suspension was then harvested and 
resuspended in dilute LB medium (0.5 g  L−1) with different 
pH, in a range of pH 5 to 7. The pH of the LB medium was 
adjusted by adding dilute HCl or NaOH and monitored using 
a pH meter (827 pH Lab, Metrohm, Switzerland). The cul-
ture was seeded on the e-PDA samples by immersing them 
into the bacterial solution and incubating at 37 ± 1 °C, using 
a shaking incubator at a speed of 1.0  s−1 (KS 4000ic control, 
Keison Products, UK) for 16 h. For the bacteria adhesion 
experiments, the e-PDA samples were rinsed twice with LB 
medium and twice with MilliQ water and immersed in a 
10 mmol  L−1 PBS (pH 7.4) solution.

Force‑distance measurements and AFM imaging

AFM measurements were performed using a 5500 AFM/
SPM microscope (Keysight Technologies, AZ, USA) 
equipped with a closed-loop scanner. AFM contact mode 
images were recorded in air using silicon nitride probes 
(MLCT, Bruker AFM probes, CA, USA; nominal spring 
constant of 0.1 N  m−1) and a scan speed of 0.64 ln  s−1. 
Force titration experiments and bacterial adhesion experi-
ments were performed via AFM-based force spectroscopy. 
Force-distance curves were recorded in solution using sili-
con nitride probes (MLCT, Bruker AFM probes, CA, USA; 
tip radius of 20 nm and nominal spring constant of 0.1 or 
0.6 N  m−1) with a sweep rate of 1.0 µm  s−1 to minimize 
hydrodynamic effects and a loading force of 200 nN. The 
force constants of the cantilevers were determined using the 
thermal noise method [37]. Force titrations on e-PDA were 
carried out in MilliQ water with the pH adjusted by adding 
HCl or NaOH, while bacterial adhesion measurements were 
performed in 10 mmol  L−1 PBS (pH 7.4). For the charge 
density measurements, the AFM probes were treated with 
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UV-ozone, prior to each experiment. Statistical analyses 
are based on the Student t-test assuming unequal variance. 
MoutainSPIP® v. 9 (Digital Surf, France) and OriginPro® 
2019b software, V 9.6.5.169 (Origin Lab Corporation) were 
used to obtain the values of adhesion forces and surface 
charge.

ATR‑FTIR spectroscopy

The ATR-FTIR experiments were done using a Fourier 
transform infrared (FTIR) spectrometer (Alpha II, Bruker 
Optics GmbH, Germany) equipped with an ATR assembly 
(Platinum ATR, Bruker Optics GmbH, Germany) provid-
ing a single-bounce diamond crystal serving as an inter-
nal reflecting element (IRE). Six different e-PDA samples 
were investigated via ATR-FTIR, whereby for each pH 
value, two e-PDA samples were prepared: (i) an e-PDA 
sample inoculated with E. coli, and (ii) an e-PDA sample 
only exposed to the LB medium. Each sample was rinsed 
twice with LB medium and twice with MilliQ water. For 
the e-PDA samples inoculated with E. coli, the corre-
sponding e-PDA samples only immersed in LB medium 
were recorded as the background spectrum. IR spectra 
were recorded at a spectral resolution of 2  cm−1 averag-
ing 64 scans using the OPUS software package (Bruker 
Optics GmbH, Germany). Data treatment was conducted 
using a 7-point FFT filter (Origin 2019b, OriginLab). No 
baseline correction was applied.

Results and discussion

Characterization of e‑PDA

Pulse deposition and force titration of e‑PDA

e-PDA films were pulse-deposited on a gold substrate 
and after deposition, a positive potential (+ 0.5 V vs. Ag/
AgCl) was applied for 300 s to oxidize phenolic moieties 
of the PDA film. Figure S1a shows the current response 
of the e-PDA-modified electrode during the first and last 
cycles of the pulsed deposition. A decrease in the current 
(Fig. S1a) is due to the formation of the non-conductive 
polymeric film which reduces the accessibility of the 
electroactive species (ferrocene-methanol) to the gold 
electrode, blocking the charge transfer. The insulating 
nature of the PDA film is also confirmed by the cyclic 
voltammogram recorded before (Fig. S1b, black line) and 
after (Fig. S1b, red line) the modification of the gold 
electrode.

According to the literature [17, 38], the mechanism of 
polymerization of dopamine follows an electrochemical-
chemical-electrochemical (ECE) pathway. The proposed 

mechanism (Fig. S2) consists of the first electro-oxidation 
of dopamine, in which a two-electron two-proton reaction 
takes place, converting the o-diphenolic group of dopa-
mine to dopamine-quinone (DAQ, E◦� = + 0.2 V vs. Ag/
AgCl/KCl, sat.) [39]. The second step involves intramo-
lecular cyclization via Michael addition of DAQ with the 
formation of leucodopaminochrome (LDAC). The final 
electrochemical step leads to the formation of dopamine-
chrome (DAC, E◦ = −0.3 V vs. Ag/AgCl/KCl, sat.) [39]. 
Once DAC is formed, other isomerization processes occur 
leading to, e.g., the formation of indole motifs. After the 
formation of e-PDA herein, an additional oxidation step 
at + 0.5  V was applied to ensure the oxidation of the 
o-diphenols to obtain o-quinone motifs ( E◦� = + 0.2 V 
vs. Ag/AgCl/KCl, sat.) [39]. Most mechanistic studies of 
polydopamine have been reported for PDA obtained via 
dip-coating [9, 40]. In recent years, secondary pathways 
during the electrochemical polymerization of dopamine 
have been suggested, like the presence of a small amount 
of pyrrol-carboxyl groups based on X-ray photoelectron 
spectroscopy studies [41, 42], which might be formed 
via the oxidative degradation of indole-based species and 
the appearance of open-chain amines formed after the 
first oxidation step [41]. The latter suggests a pathway in 
which intramolecular cyclization does not take place. The 
proposed mechanisms of the electrochemical polymeriza-
tion of PDA and the suggested products are illustrated in 
Fig. S2.

PDA is known for its excellent adhesion properties, which 
depend also on the experimental conditions [10, 43–45]. For 
instance, using AFM force spectroscopy, a strong depend-
ence of the adhesion forces of pulse-deposited e-PDA has 
been observed at two different pH values, demonstrating a 
pronounced decrease in adhesion in acidic conditions (pH 
3) [10]. Herein, we performed a detailed study of the adhe-
sion forces in dependence on the pH (starting at pH 3 up to 
pH 10) by using the force titration method [35]. With this 
method, the magnitude of the adhesion forces is associated 
with the ionization states of both surfaces (AFM probe and 
e-PDA), as depicted in Fig. 1. An abrupt variation in the 
adhesion value at a certain pH is correlated with the dis-
sociation constant of the polymeric surface.

The force titration curve is shown in Fig.  2a, while 
Fig. 2b–d shows representative histograms of the adhesion 
forces at three different pH values. The high adhesion forces 
at alkaline pH (4.31 ± 0.06 nN, n = 500) and the sharp drop 
of the adhesion force at a pH close to pH = 9.0 and below 
pH = 7.0 can be explained by the attractive and repulsive 
forces between the AFM probe and the e-PDA surface 
(Fig. 1). These interactions arise from the protonation and 
deprotonation of the functional groups of both surfaces. For 
a better understanding of these interactions, the chemical 
nature of the AFM probe must be taken into account.
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Fig. 1  Schematics of the interactions between the AFM probe and the e-PDA substrate at (a) acidic pH (pH < 6), (b) neutral and slightly acidic 
pH (pH 6–7), and (c) slightly alkaline pH (pH > 8)

Fig. 2  (a) Force titration of 
PDA immersed in different 
solutions with different pH val-
ues. Histograms of the adhesion 
forces at (b) pH 3.27, (c) pH 
6.80, and (d) pH 9.40 (n = 300)

2062 Caniglia G. et al.
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If the silicon nitride AFM probe (used in this study) is 
immersed in an aqueous solution, the tertiary amine  Si3N 
produces silanol and amine sites according to the following 
reactions [46, 47]:

Since Reactions 1 and 2 are known to be kinetically very 
fast [46], it was assumed that the silanol and the secondary 
amine are the dominant species present at the AFM tip, and 
are responsible for the charge regulation of the AFM probe 
[46, 48], i.e., are involved in the adsorption and desorption 
of hydronium ions. Depending on the pH, silanol and amine 
groups may dissociate or protonate according to the follow-
ing chemical equilibria [48, 49]:

It has been shown by X-ray photoelectron spectroscopy 
that a significant amount of SiOH+

2
 sites are present at a 

very low acidic pH (lower than 2), while the deprotonation 
of the silanol groups is expected at a slightly alkaline pH 
(higher than 8) [50]. Therefore, in the pH range investigated 
during the present studies (pH 3 to 10), the surface charge 
of the silicon nitride AFM probe may be influenced by the 
equilibria shown in Reactions 3 and 5, respectively (Fig. 1).

Thus, the low adhesion detected at acidic pH (Fig. 2a and 
b) is a consequence of a high electrostatic repulsion between 
the AFM probe and the e-PDA surface, due to the interaction 
between the −NH+

3
 groups of the AFM probe and the posi-

tively charged groups derived principally from the protona-
tion of indoline and indole motifs of the e-PDA (Fig. 1a), 
which pKa is approximately 5.5 [22, 51]. The significant 
increase in adhesion at pH values close to 6 is then due to the 
deprotonation of the amine groups of e-PDA and the silicon 
nitride AFM probe, decreasing the probe-sample repulsion, 
as shown in Fig. 1b. This change is also revealed by the 
higher dispersion of the adhesion values at a pH between 
6 and 7 (broad histogram shown in Fig. 2c), which may 
be related to the presence of protonated and deprotonated 
groups. This abrupt change in adhesion is thus interpreted 
as an approximation to the pKa of the e-PDA surface groups, 
which is pKa = 6.3 ± 0.2 (first inflection point of the double 
Boltzmann sigmoidal fit in Fig. 2a). This data is consist-
ent with the predicted dissociation constants of amine and 
imine groups present in the polymer ( pKa = 5.8 for indoline-
quinones and pKa = 5.4 for indole-quinones) [22, 51]. The 

(1)Si
3
N + H

2
O ⇆ Si

2
NH + SiOH

(2)Si
2
NH + H

2
O ⇆ SiNH

2
+ SiOH

(3)SiOH ⇆ −SiO− + H+

(4)SiOH + H+
⇆ SiOH+

2

(5)SiNH
2
+ H+

⇆ SiNH+
3

slight variation of the dissociation constant obtained by the 
force titration ( pKa = 6.3) in comparison to the predicted 
values ( pKa = 5.8 and 5.4) is explained by the presence of 
deprotonated carboxyl and semiquinone groups of e-PDA 
( pKa = 3.6 and 4.7, respectively) [19]. These negatively 
charged functional groups contribute to the total probe-
sample interaction, thereby increasing the adhesion force.

At pH values > 8 (Fig. 2a and d), a decrease in adhesion 
would have been expected due to the deprotonated silanol 
groups of the AFM probe, which would interact with the 
negatively charged quinone groups of the e-PDA surface. 
However, the interaction of the −SiO− group with the coun-
terions present in the solution (i.e., Na+ derived from the 
NaOH added to the solution) may reduce the concentration 
of the negatively charged silanol moieties [52]. The forma-
tion of hydrogen bonds between −SiO− , neutral −SiOH , and 
−SiNH

2
 groups present on the surface of the AFM probe 

may further decrease the negative charges at the surface of 
the AFM probe and increase the electrostatic interaction 
with the e-PDA surface (Fig. 1c).

Point of zero charge of e‑PDA

The surface charge density and the point of zero charge of 
e-PDA were obtained using AFM-based force spectroscopy 
[24, 25, 53]. If the AFM cantilever approaches a surface 
immersed in a solvent, the deflection response depends on 
the forces experienced by the tip. These forces consist of 
short- and long-range interactions including van der Waals, 
electrostatic (electrical double layer, EDL), and hydrody-
namic interactions, and are a function of the probe-sur-
face distance. For an AFM probe with a radius larger than 
20 nm [54] (used in the presented studies) — i.e., larger 
than the Debye length of the system [53, 54] — the probe-
surface system can be considered an ideal sphere-flat sur-
face system. In this ideal system, the interaction forces are 
described using the Derjaguin, Landau, Verwey, and Over-
beek (DLVO) theory [55], and the surface charge density of 
the sample and the AFM probe are extracted by solving the 
linearized Poisson-Boltzmann equation (PBE) [56]. In the 
present study, it is assumed that (i) the surface charge of the 
probe and the sample remains constant during the approach 
of the AFM probe (constant charge condition), and (ii) the 
major contribution arises from the EDL interaction, neglect-
ing van der Waals forces since the probe-surface system was 
studied at a distance greater than the Debye length [57].

The surface charge density of the e-PDA was extrapolated 
by fitting the AFM force-distance approach curves with the 
PBE, shown in Eq. 1,

(1)

FEDL =
2�R�D

��
0

[

2�S�Texp

(

−
d

�D

)

+
(

�
2

S
+ �

2

T

)

exp

(

−
2d

�D

)]
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where � and �
0
 are the dielectric constant of the medium 

and the vacuum permittivity, R the AFM probe radius, �S and 
�T the surface densities of the samples and AFM probe, d the 
probe-surface distance, and �D the Debye length, defined as 
�D =

(

��
0
�BT∕e

2C
0

)2 , where �B is the Boltzmann constant, 
T  the absolute temperature, e the elementary charge, and C

0
 

the electrolyte concentration [58]. Since the surface charge 
density of the e-PDA and the AFM probe are unknown, the 
values of the surface charge density of the AFM probe have 
been taken from the literature [59], performing the study 
under the same experimental conditions, i.e., using a silicon 
nitride AFM probe and adjusting the pH with HCl and KOH 
solutions.

The approach curves (see Fig. 3) were obtained on e-PDA 
via AFM-based force spectroscopy and were fitted to the 
PBE assuming constant charge. This allows determining 
the surface charge density of e-PDA as a function of the 
pH. Representative force-distance approach curves (dotted 
lines) acquired on e-PDA and the corresponding fittings (red 
curves) are shown in Fig. 3a–c. To minimize the influence of 
short-range forces such as hydration forces (< 2 nm), which 
are not included in the mathematical model, the limit for the 
fitting was set to a tip-surface distance equal to 5 nm (blue 
dotted lines). The resulting pH dependency of the surface 
charge density of PDA is depicted in Fig. 3d. The obtained 

point of zero charge (PZC = 5.37 ± 0.06) is in good agree-
ment with the ionic state of the functional groups of the 
e-PDA, and was confirmed by force titration. At a pH range 
between 3.5 and 5.7, indole and indoline groups of e-PDA 
are positively charged due to the presence of protons in the 
medium and are responsible for the charge regulation of the 
polymer. Thus, PDA is positively charged, as confirmed in 
Fig. 3d. At pH higher than 4.0, a slight decrease in the sur-
face charge is evident. This behavior arises from the contri-
bution of a minor amount of negatively charged carboxylate 
groups ( pKa = 3.6), which may be generated during the 
electro-polymerization of dopamine [19, 41].

Anti‑biofouling studies on e‑PDA

AFM force spectroscopy

The anti-biofouling properties of PDA are reported in litera-
ture mainly related to the presence of antimicrobial active 
functional groups, such as amine, amide, and radicals motifs 
[4, 5, 7, 60]. After the determination of the point of zero 
charge of e-PDA, these films were inoculated with E. coli 
suspensions (at a concentration of  108 CFU  mL−1) at three 
different pH values to investigate the adhesion behavior of 
bacteria grown at positively (pH 5), neutral (pH 5.5), and 

Fig. 3  Fitting of exemplary 
force-distance approach curves 
assuming constant charge con-
ditions at (a) pH 3.27, (b) pH 
4.80, and (c) pH 7.30. (d) Effect 
of the pH on the surface charge 
density of e-PDA at 25 °C. 
Fitting parameters: curvature 
radius of the AFM probe R = 
20 nm, surface charge of the 
AFM probe − 0.010 C  m−2 < �

T

<  + 0.015 C  m−2 [59], Debye 
length  10−7 m < �

D
  <  10−9 m 

depending on the pH. For each 
pH value, 20 approach curves 
were used to extrapolate the 
surface charge density. The 
point of zero charge of e-PDA is 
also indicated
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negatively charged (pH 7.0) e-PDA films. AFM imaging, 
AFM-based force spectroscopy, and ATR-FTIR measure-
ments have been performed to characterize bacterial growth. 
pH values below 5 and above 7 have been excluded in this 
study to avoid bacterial stress due to extreme pH conditions.

The density of bacteria in contact with the e-PDA at dif-
ferent pH values does not show any statistically significant 
difference, as shown in the AFM images in Fig. S3.

Nonetheless, bacterial adhesion is strongly affected by 
the surface charge density of e-PDA. E. coli exhibits adhe-
sion values of 11.6 ± 0.5 nN, if e-PDA is positively charged 
as shown in Fig. 4 (red bar chart). The cell adhesion values 
drop to 4.2 ± 0.6 nN, if e-PDA reaches the point of zero 
charge (Fig. 4 green bar chart). The rather high bacterial 
adhesion obtained at positively charged e-PDA is consist-
ent with the intrinsic characteristics of the bacterial surface, 
which is known to be negatively charged. The negative 
charge of E. coli arises from the composition of the bacterial 
outer membrane (OM). The OM is a protective and selective 
barrier, characteristic of gram-negative bacteria, which sur-
rounds the cytoplasmatic membrane [61]. One of the char-
acteristics of the OM is the presence of phospholipids at the 
inner leaflet, and of lipopolysaccharides at the outer leaflet, 
which results in a net negative charge of the bacterial sur-
face [61, 62]. Thus, the electrostatic attraction between the 
negatively charged cells and the positively charged e-PDA 
at pH close to 5 is responsible for the observed high bac-
terial adhesion. The adhesion is additionally increased by 
the hydrophobic nature of the bacterial OM and the e-PDA 
film [61]. E. coli grown on negatively charged e-PDA and 
neutral e-PDA exhibit similar adhesion forces as shown in 
Fig. 4 (green and blue bars). A decrease in adhesion force at 

negatively charged e-PDA was expected; however, a higher 
contribution of the attractive hydrophobic forces in compari-
son to the repulsive electrostatic forces between the bacteria 
and the e-PDA surface might take place, increasing the adhe-
sion force. Thus, the electrostatic repulsion between E. coli 
and negatively charged e-PDA prevents bacterial attachment, 
while the hydrophobic interactions overcome the repulsive 
forces in turn promoting bacterial adhesion. Representative 
force curves recorded at E. coli are shown in Fig. S4.

ATR‑FTIR studies

To validate the behavior of bacteria inoculated at differently 
charged e-PDA surfaces, ATR-FTIR experiments were per-
formed. To evaluate only the vibrational signatures attrib-
uted to E. coli without overlapping features of e-PDA and 
LB medium, three additional e-PDA samples were prepared 
serving for recording background spectra that were only 
immersed in LB medium without bacteria present. Otherwise, 
these samples were treated the same way as the bacterial sam-
ples. It should be noted that using the e-PDA immersed in 
LB as background avoids the band overlapping not only of 
the LB medium, but also of PDA, which has characteristic 
vibrational features at ~ 1590  cm−1 (C = C of the aromatic 
ring) and at ~ 1650  cm−1 (C = N stretching imine and N–H 
bending amine vibrations) [15, 63], which may interfere with 
the amide I and amide II bands originating from the bacteria.

A qualitative comparison of the bacterial behavior at each 
e-PDA surface in dependence on the pH value is exemplarily 
shown by the three IR spectra in Fig. 5a. Furthermore, to ensure 
that the measurements were representative for the entire sam-
ple surface, for each of the e-PDA samples inoculated with 
bacteria, six different locations with a spot size of approx. 3 
 mm2 were investigated, as shown in Fig. 5b–d for the different 
pH values. To validate the presence of bacteria, three different 
spectral regions were evaluated: (i) the range between 1750 
and 1600  cm−1 (amide I band), (ii) the range between 1600 and 
1500  cm−1 (amide II band), and (iii) the range between 1140 
and 1000  cm−1 (EPS region reflecting the presence of poly-
saccharides secreted during the biofilm formation [64]). The 
spectral range 1470–1380  cm−1 and 1270–1200  cm−1 (C = O 
symmetric stretching vibration indicating fatty acids and the 
presence of phospholipids) was not taken into account for the 
spectral interpretation herein, as these bands are not a direct 
indicator of biofilm formation and bacterial attachment [26].

The distinct appearance of amide I (1750–1600  cm−1) 
and amide II (1600–1500  cm−1) bands [65–67] suggests 
the presence of bacteria at the e-PDA surface. In this wave-
length regime, C = O stretching vibrations (amide I) and 
out-of-phase N–H and C-N stretching vibrations (amide 
II) are located, and are characteristic of α-helix and β-sheet 
structures of proteins present within the bacterial cell mem-
brane [65–67]. By comparing the amide bands at different 

Fig. 4  Bar chart of the measured adhesion forces of E. coli grown on 
e-PDA at different pH values (error bars reflect the measurements of 
at least 4 cells and 300 force curves)
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pH values, it was shown that at the positively charged e-PDA 
film (Fig. 5b, red spectra), the amide bands are equally dis-
tributed across the investigated surface locations. At the 
neutral sample (Fig. 5c, green spectra), bacteria are appar-
ently more inhomogeneously distributed, suggested by a 
change in intensity of the characteristic vibrational signa-
tures generated by E. coli at the different investigated loca-
tions. At the negatively charged PDA sample (Fig. 5d, blue 
spectra), again, the bacteria seem to attach more homoge-
neously across the investigated areas of the e-PDA film. 
Furthermore, the spectra recorded at positively charged and 
neutral e-PDA samples reveal the presence of both amine I 
and II bands, while for the negatively charged e-PDA sam-
ple (Fig. 5a, blue line), the amide II band is absent or not 
detectable, yet amine I and EPS bands are present. Such a 
change in amide bands without correlated changes of the 
EPS band has been previously reported [26, 68–70], and 
has been suggested as a consequence of a loss of bacterial 
proteins due to a lack of nutrients or a hostile environment. 
In these situations, bacteria might consume inherent energy 
resources, i.e., their proteins to survive or start detaching 
from the surface. Consequently, the corresponding amide 
bands may decrease or disappear.

The spectral region 1140–1000  cm−1 (EPS band) encom-
passes the C = O, C = O-C, and P = O-C vibrations arising 
from carbohydrates, polysaccharides, and nucleic acids, 
which are associated with the presence of EPS secreted by the 

bacteria during adhesion and biofilm formation [65–67]. The 
EPS band is present in the spectra recorded at three inocu-
lated e-PDA samples, and suggests that bacteria tend to form 
biofilms independently of the surface charge, albeit at differ-
ent magnitudes. The evolution of the biofilm at negatively 
charged e-PDA appears favored by hydrophobic interactions 
between the bacterial cells and the surface leading to the for-
mation of EPS. However, electrostatic repulsion due to nega-
tively charged e-PDA may promote an early detachment of 
bacteria, and an associated decrease of the amide II band [71].

Conclusions

In the present study, the adhesion properties of E. coli have 
been investigated in dependence of the pH using AFM-based 
force spectroscopy and force titration. For the first time, it 
was shown that the relation of the adhesion properties and 
the pH follows a double Boltzmann sigmoidal curve, from 
which an acidic dissociation constant of e-PDA equal to pKa 
= 6.3 ± 0.2 was derived. This value is in accordance with the 
proposed structure of e-PDA, which suggests the presence 
of functional groups such as indoline-quinones and indole-
quinones, whose pKa is approx. 5.5. The investigation of 
the surface charge density of e-PDA in dependence on the 
pH led to a point of zero charge equal to 5.37 ± 0.06. Since 
the point of zero charge of a surface plays a significant role 

Fig. 5  a ATR-FTIR spectra 
of E. coli biofilms grown at 
positively (red), neutral (green), 
and negatively (blue) charged 
e-PDA films. (b–d) ATR-FTIR 
spectra recorded at six different 
locations across an individual 
sample of E. coli grown at (b) 
positively (red), (c) neutral 
(green), and (d) negatively 
(blue) charged e-PDA sur-
faces. A 7-point FFT filter has 
been applied to all spectra; no 
baseline correction has been 
performed
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during bacterial attachment, the anti-biofouling properties 
of e-PDA were studied as a function of the pH, i.e., as a 
function of the surface charge density of the polymer. Adhe-
sion force studies of E. coli grown at positive, neutral, and 
negative e-PDA films confirmed that the negatively charged 
bacterial cell wall of E. coli grown at positively charged 
e-PDA leads to higher adhesion forces in comparison to 
bacteria grown at neutral and negatively charged e-PDA. 
Finally, ATR-FTIR studies confirmed this trend indicating 
the spectroscopically more pronounced presence of bacteria 
at the positively charged polymer surface.
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