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Abstract

Micro- and nanoplastic contamination is becoming a growing concern for environmental protection and food safety.
Therefore, analytical techniques need to produce reliable quantification to ensure proper risk assessment. Raman
microspectroscopy (RM) offers identification of single particles, but to ensure that the results are reliable, a certain number of
particles has to be analyzed. For larger MP, all particles on the Raman filter can be detected, errors can be quantified, and the
minimal sample size can be calculated easily by random sampling. In contrast, very small particles might not all be detected,
demanding a window-based analysis of the filter. A bootstrap method is presented to provide an error quantification with
confidence intervals from the available window data. In this context, different window selection schemes are evaluated and
there is a clear recommendation to employ random (rather than systematically placed) window locations with many small
rather than few larger windows. Ultimately, these results are united in a proposed RM measurement algorithm that computes
confidence intervals on-the-fly during the analysis and, by checking whether given precision requirements are already met,
automatically stops if an appropriate number of particles are identified, thus improving efficiency.
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Introduction

The ubiquitous plastic contamination in the environment,
especially microplastic (MP, 1 um—1 mm) and, more
recently, nanoplastic (< 1 um), is of great concern and has
spawned many efforts to assess the highly diverse aspects
of this topic, ranging from its quantity in environmental
systems [44] or food (e.g., drinking water [25]) to its tox-
icity [6]. All of these investigations, however, depend on
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harmonized analytical methods [16] for which thorough
validation is essential. Thus, there are many advances for
the several established techniques for MP analysis, which
comprise sampling, sample processing, chemical identifica-
tion, quantification and data processing/reporting [34, 37].
Most of them fall in two main groups: thermoanalytical and
spectroscopic methods. The former are based on the anal-
ysis of the thermal decomposition products of the polymer
by gas-chromatography-mass-spectrometry (GC-MS). Two
realizations thereof are pyrolysis-GC-MS [12, 17, 29, 31]
and thermoextraction-desorption-GC-MS [8, 9], which give
the mass content of different polymers but cannot provide
information on the number, size distribution, and morphol-
ogy of the (plastic) particles. Spectroscopic techniques, on
the other hand, comprise mainly Fourier transform infrared
spectroscopy [28, 35] and Raman microspectroscopy (RM)
[2, 3, 24]. Here, the particles are identified by characteris-
tic vibrational “fingerprint” spectra. This paper focusses on
RM, which has been established for the analysis of MP due
to the specific data (size distribution, shape, morphology),
which are provided by the analysis of individual particles
down to 1 um (and even below) [24].

RM analysis of MP is very time consuming and,
until recently, has been also very labor intensive, since
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the particles had to be measured manually [21]. Hence,
substantial advances in its automation have been made,
so that there are now several open source [1, 4, 10] and
commercial [10, 32, 38] softwares. Currently they are
applicable down to the low um range and are dependent
of the maximum image resolution of the RM that was
used (von der Esch et al.: 10 um [10], Brandt et al.: 2—
3 um [4], Ossmann et al.: 1 um [32]). These automated
programs follow the workflow of acquiring an optical
image of the filter, particle recognition, RM measurement
at resulting coordinates, database matching and result
output, where some can control the RM directly [4, 32,
38] and others output the coordinates that have to be
passed to the RM control software [1, 10]. There are some
applications of Raman imaging, i.e., spectral imaging of
entire areas [45]; however, the particle-by-particle approach
seems to be preferable [4, 10]. This progress has effected
an increase in measured particle numbers in more recent
studies (up to several thousand) [2, 39]. Furthermore, the
automatic particle recognition removes the operator bias
when deciding on which particle to measure and also
provides the ratio of MP/non-MP which is an important
quantity as opposed to absolute MP number [2].

Parallel to the advances of automated MP quantification,
the lower um range has been targeted. Since the particle

number increases exponentially [26], it will become nearly
impossible to analyze all particles below a certain size.
Thus, a subset of the complete sample has to be selected,
which in itself is another sampling. This subsampling — as
any sampling — has to satisfy the requirements for correct
sampling as laid out by the Theory of Sampling (TOS),
demanding that each particle has the same probability to be
selected and is not altered [14, 15, 33], and thus, enables a
bias-free quality control.

The automated routines make it possible to acquire
a microscope image of the whole filter and detect all
particles (assuming perfect image recognition), thereby the
whole sample can be subjected to a random sampling.
This equalizes the probability of a particle being selected
and makes the spatial structure of the particles on the
filter irrelevant. Ergo, this random sampling is a correct
sampling and can be modelled statistically (urn model
without replacement) to provide an error quantification (via
confidence intervals (CI)) and to calculate a minimal sample
size such that a certain precision requirement is met [2] (see
box in Fig. 1 and the Appendix in Section 6.1.).

For MP, the random sampling is well applicable down
to 10 um [10]. However, for very small MP and especially
nanoplastic [11, 36, 40, 46], the complete filter cannot be
imaged in a practical manner and the total particle number

be accounted for by a confidence interval.

CI(F) =[fLe]=[f £z sd)],

standard deviation of the ratio estimate is:

Sd(ﬁ)_\/ﬁ(l—f).N—S

S N—-1"

identify with RM can be obtained by

error margin e = r - e,.; beforehand.

Sample size and confidence interval in random sampling (urn model without replacement):
From all N particles on the filter a subset with S particles is selected randomly (each particle has the same probability to

be selected) and identified with RM, yielding S, plastic particles. The ratio r = % of plastic particles N, on the filter
can be estimated from the corresponding ratio in the subset: 7 = S, /S. This estimate 7 might be erroneous, which can

For a given error probability «, one is willing to accept, a (1 — a) confidence interval (CI) is an interval of values around
the estimate 7 which covers the true value r with probability (1 — «):

where e = z - sd(7) denotes the absolute error margin and can be calculated with the (1 — 3 )-quantile z of the normal
distribution (frequently used values are zp.95 = 1.64 for @ = 0.10 and z0.975 = 1.96 for a = 0.05). When reporting the

number of plastic particles on the filter N, = N -7, the CI can be transformed into CI <Np) = N -CI(+#). The (estimated)

By knowing N, assuming a plausible ratio r, and specifying requirements on o and e (only an error probability of « should
be accepted that the ratio estimate 7 deviates more than e from the true ratio r) the minimal number S of particles to

Frequently, the requirement on e is instead expressed by a relative error e,..;, which needs to be transferred to the absolute

A comprehensive, step-by-step formalization of this calculation is given in the appendix in Section 6.1.

(1)

(2)

®3)

Fig.1 Box containing a summary of sample size and confidence interval calculation in random sampling on a completely imaged filter (urn model

without replacement)
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is not accessible; thus, another subsampling method has to
be found. Of course, this problem is not restricted to MP
analysis or a specific size range, it is rather universal and
relevant whenever particles (points) have to be selected from
a two-dimensional surface.

For very small MP (ca. < 10 um) and even subyL plastic
we expect that random sampling may not be feasible due to
the following technical concerns.

The measurement time and the computational resources
to process the resulting amount of data [7, 27] will increase
substantially, due to the fact that smaller particles demand
the use of higher magnification objectives (such as 50x).
For the optical imaging of the complete filter, this leads
to a very high number of images that have to be stitched
together (our RM would need around 12100 images for a
filter with 22 mm diameter, not including image overlap for
stitching). It might even be impossible to generate such large
images with some commercial RM software, such that some
workaround has to be found.

The automated particle measurement critically depends
on the RM’s ability to target the particles at their calculated
locations. This may become difficult for decreasing particle
size, as the deviations by the microscope stage become more
and more detrimental. There are multiple parameters that
characterize the quality of the microscope stage, which are
normed by ISO [23]. From these, there are three that will
inhibit the particle identification: accuracy, repeatability
and drift. Accuracy describes the discrepancy of the target
and the actual position after motion. Repeatability is the
accuracy when sequentially positioning. Drift describes the
slow temporal component of the position stability. It is
usually attributed to temperature fluctuations.

In this application, repeatability [18] is the most pertinent
source for deviations, where the positioning system has
to be fit to accurately target particles with diameters
down to ~ 1 um. For MP samples with up to 10000
measurement points, this deviation can accumulate to a
substantial amount (several um). Position accuracy and drift
over a measurement duration of 2-3 days may, too, be in
the same order of magnitude as the particles of concern
in this study. Aside the precision of the microscope stage,
mosaicking mismatch may also introduce a deviation, since
the image stitching is dependent on the availability and
recognition of common features in the margins of the single
images [7]. The sum of these influences on the deviation is
negligible for larger particles (> 10 wm), but prohibits the
targeting of very small particles for RM identification, when
the images are all taken at once and only then the spectra are
acquired.

The acceptable overall positioning error d. depends on
the particle diameter d and the laser spot size djgser =
%, where X is the wavelength of the laser and N.A. is
the numerical aperture of the objective. Its upper bound is

derr < %(d + %), which implies that the laser barely
touches the particle. As example, a particle with d = 1 um,
measured with a green laser of A = 532 nm and a 50x
objective with N.A. = 0.7 equates to derr = 0.96 pm.

With sub-nanometer applications of, e.g., scanning probe
microscopy in mind, it is obvious that the quality of
high-end positioning systems exceeds the requirement
for this problem in some aspects. However, for high-
throughput and cost efficient analysis, such high-end
technical instrumentation may not be economically feasible.

In this work, we consider the case in which the complete
filter cannot be imaged (e.g., in the context of very small
MP) and present a window subsampling strategy. Window
sampling schemes, although common in MP analysis [5, 13,
19, 22, 32], have the risk of sampling particles incorrectly
(cf. TOS) and, furthermore, lack the information on the
total particle number, such that corresponding confidence
intervals are not analytically accessible. To solve this
problem, we describe a bootstrap method to estimate
confidence intervals in window sampling schemes and
outline that the preferable window scheme uses random
window locations. This allows to correctly subsample on
the filter and to provide error quantifications via estimated
confidence intervals. In the future, this approach can be
implemented in the RM measurement process to adjust the
sample size with the acquired data on-the-fly.

Window selection schemes

If complete optical imaging of the filter is not feasible
(see “Introduction”), RM analysis needs to be restricted
to a set of selected windows on the filter. Indeed, this
approach is used by many MP laboratories in different
varieties (instead of random sampling of all particles). Some
studies choose a number of windows (with differing area
ratios of the filter) at fixed, arbitrary positions (although
referred to as “random”, no randomization was reported and
positions seem to be fixed) [13, 22, 32]. There are other
window placements that follow a specific arrangement, such
as a cross with five [5] and with 19 windows [43]. Other
approaches use a spiral [19] or a stratified random window
placement [41]. These patterns aim to incorporate potential
information about the spatial structure into the window
pattern. Thaysen et al. [41] demonstrated the importance
of taking the spatial structure of the particles on the filter
into account. The resulting information was used to derive a
stratified sampling in rings to account for the radial pattern
of the particles. However, it is extremely difficult to assess
the spatial structure in its entirety, since each statistical
analysis only highlights one aspect of the spatial structure.
Systematic window placement, especially with very few
windows, as our example will show, is a critical source

@ Springer



3628

C. Schwaferts et al.

of bias (Fig. 2a). Thus, we evaluate these two options: a
random window scheme, in which each segment of the filter
has equal probability of being investigated, and a systematic
scheme with similar distances to the next windows, such
that the whole filter is covered by the uniform systematic
pattern. We, further, investigate the effect of the window
size by comparing windows with a size of 1 and 4 fields of
view (FOV), as it might be technically difficult to perform
RM on an exceedingly large amount of windows. These
will be referred to as I-FOV sampling and 4-FOV sampling,
respectively. FOV denotes the size of the microscope image
at the respective magnification, which is dependent on the
individual microscope (e.g., the RM at the authors lab
gives images, i.e., 1-FOV, of 222 um x 139 pum at 50 x
magification). Consequently, 4-FOV is a 2x2 rectangle of
microscope images (444 pum x 278 um). Adapting the
terminology of Minkkinen et al. [30], we denote random
vs. systematic windows as sampling modus and many small

(I-FOV) vs. few large windows (4-FOV) as sampling type.
Elaborations within this section serve mainly as illustration
for the two-dimensional sampling case depicted here and as
basis for further elaborations in the subsequent sections. For
the general treatment of sampling, see [14, 15, 33].

Estimation of the number of plastic particles
Formalization

Formally, the number N, of plastic particles of the filter is
of interest and can be calculated by considering the number
N of all particles on the filter and the ratio r of plastic
particles on the filter: N, = N - r. Both N and r are
unknown and need to be estimated from the window data
consisting of kK windows in total with W particles, of which
W, are plastic particles. It is assumed that all particles in the
windows will be subjected to RM identification (such that
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Fig.2 Sampling modus. Artificial filters with regular (black line) and
Gaussian (blue line) spatial structure have been analyzed with a ran-
dom (solid line) and systematic (dotted line) window scheme. Thus,
the black and solid line represents random windows on the regular
filter. a Bias plot: k vs. E(Np). Only systematic windows on the Gaus-
sian filters have a bias (deviation from the true value N, = 4000
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(horizontal black line)). b Plot of standard deviation: k vs. sd (1(7 »)-
Random windows on the Gaussian filter have increased standard devi-
ation. The horizontal black line at sd (1\7 p) = 243.2 corresponds to
the precision requirement e,,; = 0.1 and @ = 0.1. These are met for
k = 800 and k = 1300 windows for regular and Gaussian filters,
respectively
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W corresponds to the previously used S, see Fig. 1), as the
number of particles per window is expected to be very low
(around 1.6 in the illustrating simulation described below,
with 20 000 particles, multiplied by the ratio of window area
to filter area). The ratio estimate 7 = W, /W (compare box
in Fig. 1) is obtained directly from the window data and
the number of particles on the filter can be extrapolated by
considering the area a(F) of the filter in relation to the area
a(W) of the set of windows:
a(F)

N=W-a(W). 4

Together, the number N, of plastic particles on the filter can
be estimated as

: Lath) Wy _

A a(F)
N,=N-7r=W . =
alW)y W

P a(wy’

&)
Window edge issues

There are some issues if particles overlap with the window
edges and are cut off. In this case they will give a false
particle size and a distortion in the particles number.
Consider Fig. 3, in which many particles overlap the inner
window border. Since some are cut off, the 8 recognized
particles would truly belong in a slightly larger (outer)
window with a larger area, resulting in a lower final estimate
for N, according to Eq. (5). It is even conceivable that
a particle is counted twice, if it laps into two closely put
windows.

However, a solution to these issues can be achieved by
restricting the window-based RM measurement to particles
smaller than a certain limit (e.g., 10 um) and cutting off the
radius (i.e., 5 um) of this limit diameter of each window
border (similar to overlap regions in image stitching [7]).
Only particles that have their center within this smaller
window are of interest. The number of all particles that have
their centers within this smaller window, but are completely
contained within the larger window (e.g., 3 in the example

Fig.3 Schematic filter section
to illustrate window edge issues:
To avoid bias in particle number

due to cut off particles, one FOvV

in Fig. 3) and the area of the smaller window in Eq. (5) will
give an unbiased final estimate.

With regard to our target size range, the window size of
an image with 50x magnification is 222 um x 139 pm,
the smaller window would be 212 um x 129 um which is
still large compared to the size of the particles and should
not lead to other serious issues. Should the analysis target
larger particles, a larger window would need to be applied
(4-FOV sampling), since edge issues are smaller with larger
windows. In that, edge issues need not be a reason to
resign from /-FOV sampling when measuring very small
microplastic particles.

Bias and standard deviation

The final estimate N p is a random variable and might be
erroneous. Potential errors might be systematic or statistical
(random), which can be described by the bias

bias(R,) = E(N,) = N, ©6)

and the standard deviation sd (1(7 p), respectively. The bias

of N p is the deviation of its expected value E (N p) from
the true value N, and should ideally be zero. In that case,
the estimate N p is unbiased, and if not there is a systematic
error that can hardly be controlled in real applications. In
fact, the confidence calculation as outlined in Fig. 1 assumes
that the estimate N p» 1s unbiased, which is the case if random
sampling is used.

By assessing both systematic and statistical error for
different window sampling schemes, the quality of these
schemes can be assessed. However, bias and standard
deviation of the final estimate N p depend on the spatial
influences on the particles on the filter, which are hardly
ever fully known, such that explicit formulas cannot be
provided. Consequently, obtaining confidence intervals and

should only use an inner
window of the whole FOV. Then
only particles that have their
center (magenta) within the
inner window, but are contained
completely within the outer 8
window (FOV), are counted. So,
instead of 8 particles with too
low diameter only three particles
with correct diameter would be
counted
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performing sample size calculations require computational
statistical methods.

Simulation details

To illustrate and elaborate on the questions about sampling
modus and type in the next sections, we generated artificial
filters, which aimed to resemble a typical preprocessed
sample. Since these elaborations target the subsampling on
the filter, the other critical aspects of the MP analysis by
RM, i.e., particle recognition, or Raman identification, are
assumed to be ideal. Method development on these aspects
of the analysis is critical to ensure that these assumptions
are met and potential error is avoided. A total of N = 20000
circular particles, having diameters from 1 um to 200 wm
that follow the power law distribution as reported by Kooi
et al. [26], were randomly placed on a circular surface with
22 mm diameter (similar to an Au-coated polycarbonate
filter, as used in our laboratory), such that no particles
overlap with each other. Out of these particles r = 0.2
(20%) were labeled as plastic, resulting in N, = 4000
plastic particles. This particle number has been chosen with
regard to typical filters in the authors’ lab, onto which an
appropriate aliquot has to be filtrated such that the filter is
not overloaded.

Different influences on the spatial structure of the
particles on the filter can be classified as internal and
external. Internal influences are interactions between the
particles themselves irrespective of their locations on the
filter, such as clustering (particles attract each other)
or regularity (particles repulse each other), and external
influences affect particle (or cluster) locations in general
irrespective of potential particle interactions, e.g., particles
might tend toward the margin or the center of the filter
(for a more comprehensive view on spatial structures
see Supplementary Information Section 6.2). Naturally,
particles on the filter express regularity as they cannot
be in the same place. This is called a hard core and
signifies an area, in which other particles cannot be located.
For the illustration of the external influences, two types
of spatial probability distributions were applied in the
simulation: a uniform, resulting in a regular reference filter
without external influence (Supplementary Information
Figure S2, left), and a Gaussian distribution, resulting in
a filter with external influence that collects the particles
in the center [20] (Supplementary Information Figure S2,
right), similar to the filters by Thaysen et al. [41]. In
this manner, 5000 filters have been generated. Window
sizes were 222 um x 139 um as obtained with the
50x objective lens (Carl Zeiss AG) of our alpha 300R
Raman microspectroscope (Witec GmbH, Germany) (and
444 um x 278 um for evaluating 4-FOV sampling, see

@ Springer

“Sampling type — smaller vs. larger windows”) and
windows were not allowed to overlap with each other.

For each window sampling scheme of interest, the
final estimate N p was calculated within each of the 5000
simulated filters. All of them (together) allow to estimate
its bias bias(l\?,,) and standard deviation sd(ﬁp) as
well as to illustrate effects of external influences on the
minimal required sample size W, and, thus, the required
minimal number k of windows. Technical information
about the simulation is provided within the Supplementary
Information Section 6.3.

Sampling modus — random vs. systematic windows

The impact of the sampling modus (random windows vs.
systematic windows) on the bias and the standard deviation
of the final estimate depends on the number of windows
and the actual spatial structure of the particles. Random
window locations were allowed such that windows might
exceed the margin of the filter, as long as at least some
part of the window was still contained within the filter. This
ensures that each part of the filter has the same probability
to be contained within a window. In contrast, if (random)
windows were restricted to be completely within the filter,
the outer parts of the filter are underrepresented within
the windows, leading to an estimation bias (exemplified
and elaborated on in the Supplementary Information in
Section 6.4). For systematic windows, a sunflower seed
pattern was used, such that the k (systematic) windows fill
the complete filter with similar distances to their neighbors,
trying to cover the area of the filter as uniformly as possible.

Both types of artificial filters (regular and Gaussian) were
analyzed using random windows and systematic windows,
respectively, for varying numbers of windows k. Figure 2a
depicts the expected value E N ), which, if unbiased,
should equal to N, = 4000, and Fig. 2b depicts the standard
deviation sd <1\7 p).

Regarding the bias, Fig. 2a shows that the estimate N »
is unbiased (the true value is N, = 4000) in three cases:
both of the regular filters and the random windows on
the Gaussian filter. The strong oscillation of those lines
for small k reflects only the simulation variance and will
diminish with increasing number of filters analyzed (not
just 5000). Only systematic windows on the Gaussian filters
lead to a biased estimate. This underestimation is caused by
the centralized external influence, which is not adequately
represented by the systematic windows. To illustrate this
point, imagine a square positioning of 9 windows on the
filter. Of these, one lies on the center and 8 lie toward
the border. For our centralized, Gaussian particle pattern,
this would result in only one window covering a large



Which particles to select, and if yes, how many?

3631

amount of particles but 8 covering very few, causing an
underestimation of the particle number. Similarly, if a
spatial structure was present that accumulates particles on
the border (as could occur during filtration due to adhesion
on the glasswares), this misrepresentation would cause an
overestimation of the result.

In general, the strength of this bias depends on the
match between the spatial structure of the particles and the
pattern of systematic windows used. Within our simulation,
this match (Gaussian, centralized structure and sunflower
seed arrangement) gets better with increasing number
k of windows, even nullifying the bias for a certain
value of k (somewhere between 500 and 1000 windows).
This, however, need not be the case in general, and
considerable thought should be given to the pattern of
window locations, if systematic windows are used. Without
any prior information about the spatial structure of the
particles, it is difficult to justify the choice of systematic
window pattern. In the application of RM analysis of MP, it
might however be conceivable to use the spatial information
that is gained from the complete filter optical image (for
larger MP particles) for the generation of a systematic
window scheme for the small size range. Of course, this
incorporates the assumption that the small particles behave
the same as the large particles. To check this assumption,
one might employ an overlap of the size ranges (e.g.,
complete filter: 10-500 um and window sampling: 1-
50 um) and compare the results.

It might seem peculiar, that even for Gaussian filters
random windows will yield an unbiased estimate. This is
because, with random window locations every part of the
filter has the same probability to be covered by a window.
No matter what the spatial structure looks like and which
external influences are present, each characteristic of the
spatial structure will be observed with equal probability and
no spatial characteristic is systematically missed. This also
extends to the case, where plastic particles and non-plastic
particles have different characteristics, i.e., if the ratio r is
not spatially uniform on the filter.

The unbiasedness of random windows, however, comes
with an increase in the standard deviation of the estimate.
Figure 2b shows that — as expected — the standard
deviation decreases with increasing number k of windows.
This decrease is, again, comparable in three cases: both
regular filters and the systematic windows on the Gaussian
filter. Only for random windows on the Gaussian filters,
the standard deviation is higher, because the procedure of
selecting window locations at random introduces additional
randomness on the final estimate. The increase in standard
deviation for random windows becomes apparent when
using the plot to derive a minimal sample size according to
predefined precision requirements for the Gaussian filters,
as shown in Fig. 2b. Here, precision requirements were

specified as e,y = 0.1 and « = 0.1. For N = 20000
and r = 0.2 this demands the absolute error margin to be
smaller than e = N - r - ¢;,; = 400 and, thus, the standard
deviation to be smaller than sd (I\A/ p) = e/z = 243.2 (with
z = 1.64, compare box in Fig. 1). In order to obtain
this standard deviation (y-value) with the Gaussian filters,
random windows require k = 1300 windows, containing
W = 2065 particles to identify in total, and systematic
windows requires k = 800 windows, containing W = 1295
particles to identify in total.

Considering systematic windows on the Gaussian filters,
it can also be seen that the standard deviation is not
affected by the potential bias (see Fig. 2a), emphasizing
that both quantities (bias and standard deviation) behave
independently and a bias in the data cannot be detected by
data processing, as it was laid out in section/chapter “Bias
and standard deviation”.

In summary, two characteristics for the sampling modus
were observed in this simulation analysis: In the presence
of external influences, random windows have an increased
standard deviation and systematic windows might yield
biased estimates. Although the former increases the prob-
ability to obtain a more unrepresentative window sample
(due to the increased randomness), this issue can be tackled
by increasing the number k of windows, however, the latter
might introduce a systematic error of unknown size that
impairs the representativity of the window sample, which
is not controllable in real RM analyses. In that, systematic
windows should only be used if their pattern matches well
with the spatial structure of the particles. However, as the
spatial structures are expected to differ depending on sample
origins (marine or limnic waters, drinking waters, processed
biota, etc.) and different laboratories with different filtration
setups/procedures, such a match needs to be evaluated for
each new study. Besides, in contrast to random windows,
systematic windows do not allow for an easy way to increase
the number of windows adaptively during the analysis,
such that a match of the pattern with the spatial struc-
ture of the particles can be guaranteed for all numbers of
windows.

Sampling type — smaller vs. larger windows

The impact of the sampling type (/-FOV sampling vs. 4-
FOV sampling) on the bias and the standard deviation of the
final estimate depends on the number of windows, the actual
spatial structure of the particles, and the sampling modus.
As described above (see “Simulation details’), window
sizes were 222 um x 139 um as obtained with x 50
magnification for /-FOV sampling, and 444 um x 278 um
for 4-FOV sampling, in order to realistically implement
using four smaller windows with x 50 magnification to
obtain one larger window. For comparing both sampling
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types, the number of windows k denotes the number of
small windows needed to obtain all larger windows in 4-
FOV sampling. As there is no external influence within
the regular filters, every window — no matter how its
location was determined — has the same distribution of
particles or plastic particles. In that, there is no difference
between /-FOV and 4-FOV sampling on regular filters,
such that results (Fig. 4) focus on the Gaussian filters only.
Those were analyzed using both sampling modi (random
vs. systematic) and both sampling types (I-FOV vs. 4-FOV
sampling) for an increasing number k of windows. Again,

the figures depict the expected value E (]\7 p) (Fig. 4a) and

the standard deviation sd (1\7 p) (Fig. 4b). Lines for I-FOV

sampling (dark blue) are the same as in Fig. 2a and 2b.
Figure 4a shows that the bias (deviation from the true

value of N, = 4000) inherent to systematic windows

(compare “Sampling modus — random vs. systematic
windows”) is larger for 4-FOV sampling than for /-FOV
sampling. This is because, /-FOV sampling is able to
capture the external influence better than 4-FOV sampling,
as more different locations of the filter can be observed.
This allows a more comprehensive picture of the different
characteristics of external influences, leading to the lower
bias in /-FOV sampling. Random sampling is still unbiased,
independent of the sampling type.

Analogously, Fig. 4b shows that the increase in standard
deviation inherent to random windows (compare “Sampling
modus — random vs. systematic windows”) is even higher
if 4-FOV sampling is used compared to /-FOV sampling.
Again, this can be explained because 4-FOV sampling uses
fewer window locations than /-FOV sampling, impeding a
comprehensive picture of the different characteristics of the
external influences.
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Fig.4 Sampling type. Artificial filters with Gaussian spatial structure
have been analyzed with a random and systematic window scheme for
both /-FOV (dark blue) and 4-FOV sampling (light blue). The solid
line denotes random windows, the dotted line denotes systematic win-
dows. For 4-FOV sampling, k denotes the number of smaller windows
needed to obtain the large windows. a Bias plot: k vs. E N p). For sys-
tematic windows the bias is more pronounced with 4-FOV sampling
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than with /-FOV sampling. b Plot of standard deviation: k vs. sd N »)-
The standard deviation of random windows is higher for 4-FOV sam-
pling than for /-FOV sampling. Analogue to Fig. 2, the black line at
sd(N),) = 243.2 corresponds to the precision requirements e;o; = 0.1
ando = 0.1
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In summary, 4-FOV sampling amplifies the problems
inherent to random or systematic windows, respectively, in
comparison to /-FOV sampling, and its effect depends on
the strength of the external influences. Therefore, /-FOV
sampling (i.e., maximizing the number of different window
locations) is to be preferred. However, window sizes need
also to consider the particle size range of interest (compare
“Window edge issues”) as well as processing times, which
might be longer for a larger number of smaller windows.
Yet, when employing 4-FOV sampling to reduce processing
time, technical limitations for image stitching have to be
taken into account (see “Introduction”), and the overall
number of particles to identify with RM might be larger than
with I-FOV sampling, due to the increase in variance, which
increases the measurement time.

Confidence interval via bootstrap
Theory

If a certain number of windows on the filter were observed,
their particles identified, and the final estimate calculated
(Eq. (5)), the standard deviation of the final estimate
is of interest to calculate a confidence interval. As this
depends on the spatial structure of the particles, which is
typically not fully known (due to influences of, e.g., the
filtration setup, characteristics of the sample or sample
treatment), it cannot be obtained analytically (i.e., exactly
with a formula). However, bootstrap methods offer a way
to estimate this standard deviation and thus the confidence
interval.

Fig.5 Scheme of bootstrap
analysis. From one original
window data of the filter (left),

B samples of the same size are (I ]
drawn with replacement, each =
providing a final [
bootstrap-sample estimate for .
the number of plastic particles =]

Nb.b=1,.... B (middle).
These are used to calculate a

bootstrap standard deviation 1
sd*(Np) (right), which —

In bootstrap methods (see Fig. 5) new window samples
are drawn from the original window sample with replace-
ment (such that in a new sample some original windows
might occur more often and other original windows might
not occur at all). In a new bootstrap sample, the final esti-
mate might also be calculated (Eq. (5)), thereafter referred
to as final bootstrap-sample estimate.

Such a bootstrap sample might be drawn many times
(e.g., B = 5000 times) from the original sample, leading
to many final bootstrap-sample estimates. The standard
deviation of these many final bootstrap-sample estimates
might then be used as proxy (i.e., a bootstrap-estimate)
for the standard deviation of the final estimate, in order to
calculate a (bootstrap-based) confidence interval.

Formally, denote the bth (b = 1, ..., B) final bootstrap-
sample estimate as N g. Their mean and standard deviation
are (with * indicating the reference to the bootstrap samples)

1 &

N;=§b§ H ™
and

s (8,) = |23 (R -5, ®)

b=1

respectively. The latter can be used as proxy for the standard
deviation sd (Np> = sd* (]\A/p> of the final estimate,
leading to the bootstrap-based confidence interval

cr(8,) = [Ny £2-sa*(8,)] - ©)
final
Z‘:::\St;:sp bootstrap-sample
P estimate
CACEC] 1 )
s R
e [ 72
EII:IEI P standard
EE ~3 deviation
o Y —  sd'(N,)
o VB
NN | | P _

y

together with the final estimate L]
N (bottom left) — can be used . E“:“Il
to estimate a confidence interval original
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final
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v
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In every bootstrap method, the representativity of the
original (window) sample for the population (filter) is of
fundamental importance. Assume, e.g., a Gaussian filter and
that all windows are located near the margin of the filter,
such that there is hardly any particle in any window. Of
course, this window data do not represent the filter well
and any bootstrap method might not yield useful results.
If the original window sample is less representative for
the complete filter, then the bootstrap confidence interval
might be longer or shorter than the true confidence interval.
While longer confidence intervals provide a conservative
error quantification (i.e., the true error probability is smaller
than required), smaller confidence intervals provide liberal
error quantifications (i.e., the true error probability is larger
than required). Typically, the latter is considered far worse
than the former, as there is no guarantee that the required
limit on the error probability can be kept. As outlined above
(“Sampling modus — random vs. systematic windows”),
systematic windows might suffer from a bias, impairing the
representativity of the window sample in an uncontrollable
manner, and random windows express greater variation in
the window samples (increasing the likelihood of randomly
getting less representative window data), which, however,
can be controlled by increasing the number k of windows.

Assessment

A simulation analysis was done to assess the performance
of the bootstrap-based confidence interval estimation w.r.t.
potential impairments due to a lack of representativity and
the additional error introduced by bootstrap estimation.
Three conditions were evaluated: random windows for both
types of filters (regular and Gaussian) and systematic win-
dows for Gaussian filters (the fourth condition was omitted
to save computational resources). Within each condition,
for each of the 5000 simulated filters, a varying number k of
windows were selected. Each of those window data (original
sample) were used to estimate a bootstrap-based confidence
interval as outlined above, using a given error probability
o = 0.10. So, for each value of k and each condition, 5000
bootstrap-based confidence intervals were obtained (each
with B = 5000 bootstrap samples), and Fig. 6 shows the
90%-bands of the corresponding absolute error margins
(these bands include 90% of these error margin values and
exclude the 5% lowest and 5% largest values). Figure 6
also plots the expected absolute error margin obtained with
the simulation discussed in section “Sampling modus —
random vs. systematic windows” (compare Fig. 2b; values
of the absolute error margin relate to those of the standard

deviation by e = z-sd (N p>). This band illustrates the extra

variation that is introduced by using a bootstrap method,
which — as expected — decreases with increasing number
k of windows (the band narrows down).
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Bootstrap based confidence intervals tend to be longer
than the true confidence interval that was obtained with the
previous simulation (the band deviates upwards from the
line), especially for increasing number k of windows. In
that, these bootstrap-based confidence intervals tend to be
conservative, such that the true error probability might be
smaller than the previously specified maximal error prob-
ability «. Within the Gaussian filters, obtaining a liberal
confidence interval becomes unlikely for larger, but rea-
sonable (compare Supplementary Information Section 6.5)
numbers of windows k > 1300 (the lower limits of the
90%-bands surpass the blue line). Although corresponding
numbers of particles to identify might be larger with these
bootstrap intervals, their conservativeness is a very advan-
tageous property, as it reduces the risk of not being able
to meet the requirement on the error probability «, which
is inherent to a bootstrap method if the original sample is
less representative. An analysis of the true error probability
of the bootstrap confidence intervals shows that the given
error probability « could be kept for reasonable numbers k
of windows (see Fig. S4 in the Supplementary Information).

The 90%-bands for random and systematic windows are
quite similar. This illustrates an important characteristic
of bootstrap methods: New bootstrap window-samples are
treated as a random window-sample of the filter, even if
the original window locations were selected according to a
systematic window scheme. Although systematic windows
yield a smaller standard deviation than random windows
(compare “Sampling modus — random vs. systematic
windows”), this is not the case for the bootstrap-estimated
standard deviation. In that, when using bootstrap methods
to estimate confidence intervals, systematic windows are
expected to have no benefit as the standard deviation caused
by random windows now compares to systematic windows,
and only their downside of generating a potential bias
remains.

In summary, bootstrap methods allow to estimate a
confidence interval and, thus, to assess the error within
the final estimate (which is not possible with formulas),
at the cost of introducing an additional source of error.
This error, however, seems to shift results in a conservative
direction, such that the true error rate might be lower
than implied by the results. As a consequence, this
might increase the number of particles to identify, but
tackle potential representativity issues inherent to bootstrap
methods.

Most importantly, a bootstrap confidence interval is
only an estimate of the actual (analytically inaccessible)
confidence interval and might also be erroneous. It should
also be noted that bootstrap methods are not free of critique
(for a first overview about bootstrap in general, see [42]).
However, in the present case, they might offer a way to
check whether the required error margin is roughly reached.
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Fig.6 Bootstrap Confidence Intervals. Plots depict lengths of the con-
fidence intervals (absolute error margin e) for varying numbers k of
windows. While the thick lines depict the “true” length of the confi-
dence intervals as obtained by the simulation (see “Sampling modus
— random vs. systematic windows” and Fig. 2b), the bands depict esti-
mates of the absolute error margins obtained by the bootstrap methods:
For each condition and each number k of windows, 5000 bootstrap
confidence intervals were estimated and the bands include 90% of
the corresponding error margin values, excluding the 5% lowest and
5% largest values. These 90%-bands illustrate the additional varia-
tion introduced via bootstrap. a For both Gaussian (blue) and regular

On-the-fly Raman microspectroscopy
for very small microplastic

Traditional sample size calculations (if the complete filter
is known, see box in Fig. 1) require specifications of the

(black) filters, bootstrap confidence intervals tend to be longer, i.e.,
more conservative, than the “true” confidence interval, especially for
larger number k of windows (the band deviates upwards from the line).
b Bootstrap confidence intervals tend to be similar for random (solid
lines) and systematic (dashed lines) windows (both bands are simi-
lar), although the “true” confidence interval with systematic windows
is shorter than with random windows (see “Sampling modus — ran-
dom vs. systematic windows” and Fig. 2b), illustrating that bootstrap
samples are treated as random representation of the filter, even if the
original windows were placed systematically

number N of particles on the filter and the ratio r of plastic
particles. The latter is not known prior to the analysis and
the former is unknown if window methods are employed.
Therefore, those sample size calculations require initial
guesses for these values. If those deviate from the true

@ Springer



3636

C. Schwaferts et al.

values, then the number of identified particles is too low or
too high. Thus, we want to outline an on-the-fly algorithm
that solves this issue and provides an optimal number
of windows. Here, the RM data is analyzed during the
measurement by computing a bootstrap confidence interval
and assessing whether given precision requirements are
already met. If so, the measurement would stop. This avoids
having an eventually insufficient sample size or measuring
more particles than actually needed.

Procedure

Aside the precision requirements « and e, an initial num-
ber k;,; of windows should be chosen as starting point for
the first bootstrap confidence interval calculation. This is
necessary, as mathematical peculiarities might erroneously
lead to stop the procedure prematurely, if only few windows
were used. In our simulation setup, the average number of
particles per window was around 1.6, such that using 100
windows (for I-FOV or 4-FOV) initially might be a reason-
able choice. With regard to chapter/section “Sampling type
— smaller vs. larger windows”, the window size should
be chosen as small as possible. This number is influenced
by N and r, thus, the sample size calculation of the large
particles (random sampling box in Fig. 1) can inform this
choice, as this is an optimistic “best case” of the window
sampling and displays a lower limit of particles to identify.

After identifying the particles in the k;,; windows,
if the precision requirements were not met, the number
of windows should be increased by an increment k* of
windows. In theory, it is possible to choose kT = 1, but
performing too many bootstrap estimations yields the risk
of erroneously reaching the stopping criterion (because of
the additional randomness inherent to bootstrap methods),
especially when approaching the stopping criterion. For the
examples in this paper, k™ = 50 was used. Examples are
depicted in Fig. 7.

The total number B of bootstrap samples to estimate a
confidence interval should be sufficiently large. Within our
simulation, we used B = 5000, which is comparatively
small, to reduce simulation times. In a real application,
values as B = 10000 or even higher should be easily
manageable.

With these specifications, the on-the-fly procedure is as
follows:

1. Asinitialization, select k;,; window locations randomly
(allowing windows to exceed the filter borders,
compare “Sampling modus — random vs. systematic
windows”).

2. Detect (consider window edge issues, “Window edge
issues”) and analyze all particles within the (newly)
chosen windows with RM.
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3. Using the complete data set, estimate the number N pof
microplastic particles on the filter using formula (5).

4. Estimate the standard deviation sd* (Np) of this
estimate via bootstrap:

(a) Forb=1,.., B:

— Draw a bootstrap sample by drawing k
windows from the original sample (consisting
of the original kK windows) with replacement.

— Calculate the final bootstrap-sample estimate
N ﬁ within this bootstrap sample using formula

(5).
(b) Use all B final bootstrap-sample estimates to cal-
culate their standard deviation sd* (Z\Af p> (Eq. (8)).

5. For the given significance level «, calculate the
bootstrap confidence interval (Eq. (9)) and determine
the (absolute or relative) error margin.

6. If this (absolute or relative) error margin is larger than
the desired (absolute or relative) error margin, select
another k™ windows randomly and return to step 2, else
stop the RM analysis.

Within the application of the on-the-fly procedure,
random windows were used. In theory, it is possible to use
systematic windows as well, however, it might be difficult
to find a pattern of windows that allows to increase the
number of windows sequentially, such that the structure of
the systematic windows stays the same. Further, even if such
a pattern was found and employed, the benefit in reducing
the standard deviation (see “Sampling modus — random
vs. systematic windows” and Fig. 2b) is mitigated by using
bootstrap methods for estimating confidence intervals (see
“Assessment”). Nevertheless, a potential and uncontrollable
bias might be introduced by systematic windows, compared
to random windows, that might impair the representativity
of the window samples in an unknown manner and cannot
be controlled by (subsequently) increasing the number of
windows. Moreover, it is conceivable that the ratio of MP
r also exhibits a spatial structure, whose influence is easily
circumvented by the random window sampling.

Sample size considerations depend on N and r, and
when using window-based sampling or bootstrap estimation
methods this number will be even higher, compared to the
random sampling. Our simulation-based illustration uses
N = 20000 and r = 0.20; however, values in real
applications cover a very wide range. If the plastic ratios r
is smaller or the particle number N is larger, the sample size
may be exceedingly large, such that it may not be possible
to identify this amount of particles in reasonable time. In
this case, the on-the-fly procedure should have a predefined
stopping point. Then, of course, it would not meet the
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Fig. 7 On-the-fly procedure: Exemplary runs. For each number k of
windows, with k;,; = 100 and k* = 50, the point represents the final
estimate with the vertical bar depicting the bootstrap confidence inter-
val (with B = 5000, and o = 0.10). The procedure is stopped after
the relative error margin (numbers below each confidence interval)
fell below e,y = 0.1, after which the subsequent confidence interval

precision requirements and it should be considered if
some other, less strict precision requirements are agreeable.
Furthermore, the experimentator can opt to perform an

would not be available in a real application but is depicted here for
illustrative purposes (grayed out). The black line depicts the true value
N, = 4000. a The on-the-fly procedure misses the true value of N,
(due to the statistical error). b and ¢ The algorithm yields a correct

result

enrichment step (e.g., density separation) to increase the
ratio of MP r or, ultimately, decide on a different technique
(e.g., thermoanalytical), which of course will trade off the
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in-depth information of RM for measurement speed (see
“Introduction’).

Examples and assessment

Figure 7 shows three different runs of the on-the-fly
procedure on the Gaussian filters using k;,; = 100, kT =
50, and B = 5000. For each iteration, the estimate (point)
and its bootstrap-estimated confidence interval (with ¢ =
0.10) are depicted in relation to the true value N, =
4000 (black horizontal line). The last confidence interval
that was estimated (in blue) is characterized by a relative
error lower than the prespecified requirement of e,,; =
0.10, leading to stop the procedure. Figure 7a depicts a
case, in which the final result (estimate plus confidence
interval) does not cover the true value, representing an error
which might be caused randomly by an unrepresentative
window placement. Figure 7b shows an example, where
N p falls too low but recovers and yields a correct result
and Fig. 7c depicts a run that arrives at the true value
directly.

In order to assess the performance of the on-the-fly
procedure, all 5000 filters (of each type) were analyzed
(with differing increment sizes to reduce computation time:
kt = 50 for k < 1000 and k* = 100 for k >
1000). For a significance level of « = 0.10, the first k
with a confidence interval with ¢,,; < 0.10 was used as
result.

The resulting number of windows for regular filters
ranged from 650 to 1100 with a mean of 872 £ 108 and
for Gaussian filters from 1300 to 2100 with a mean of
1665 £ 69 (respective distributions are depicted in the
Supplementary Information Figure S5). This tends to be
higher than the minimal number of windows as obtained by
the simulation (800 and 1300, respectively, see “Sampling
modus — random vs. systematic windows”), which might
result from the tendency of the bootstrap estimation to
extend confidence intervals in this setup (see “Sampling
modus — random vs. systematic windows”).

Of all on-the-fly runs on regular and Gaussian filters, only
8.58% and 5.2% yielded confidence intervals that do not
cover the true value N, = 4000, respectively, indicating
the conservativeness of bootstrap-based on-the-fly results,
as an error probability of « = 0.1 was allowed in this
simulation. In that, the higher window number of bootstrap
is counterbalanced by the profit of reducing the true error
probability.

In summary, the on-the-fly procedure with the bootstrap-
based confidence interval provides an algorithmic imple-
mentation of error quantification and sample size consid-
erations into window-based RM analyses. By its nature,
this adaptive procedure tackles typical specification issues
inherent to classic sample size calculations (box in Fig. 1),
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however, still tending toward conservative results, which, in
turn, counteracts potential representativity issues of boot-
strap methods. Here, the question about sampling modus
is clearly answered: random windows should be employed,
as the only benefit of systematic windows (lower stan-
dard deviation) seems to get lost by using bootstrap
methods.

Conclusion

Microplastic assessment demands reliable quantification
from the analytical techniques, among which RM is able
to cover very small particles. Providing quality control
to its data has previously been enabled for particles >
10 wm, where random sampling can be applied [10]. Since
the smaller particles are more difficult to analyze, a new
window-based selection scheme is proposed, for which
— as for random sampling — confidence intervals can
be obtained. This approach is illustrated on two kinds
of spatial structures on the filter: a random distribution
with the only stipulation that particles cannot lie within
each other, and a Gaussian structure where the particles
tend toward the center of the filter. Comparing random
and systematic window placement, it is demonstrated that
systematic windows are prone to bias, random windows,
however, pay for the unbiasedness with increased variance
(i.e., standard deviation) and, in turn, number of particles
to identify. Further, the importance of using as many small
windows as possible rather than few large windows is
shown, since the latter amplifies the bias of systematic
windows and the variance of random windows, respectively.
To achieve a confidence interval for the estimate of the
plastic particle number, a bootstrap method was used. Here,
the representativity of the sample taken is essential, and
random windows are clearly to be preferred. Moreover,
due to the random resampling in the bootstrap method,
the variance benefit of systematic windows compared to
the random windows is lost, nullifying its advantage for
this application. Finally, these results were unified in the
projection of an on-the-fly RM measurement protocol, in
which increments of particles are selected, identified and
the result instantly subjected to a bootstrap calculation.
Its resulting confidence interval then informs the decision
to either stop or continue the measurement. This iterative
approach solves the problem that an initial sample size
calculation requires information on the particle number and
MP content, which are only available after the analysis.
Therefore, an automated RM analysis could generate MP
quantification within a required precision for particles in
this very low size range, while also being efficient with
measurement time by stopping after the required precision
has been reached.
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