Skip to main content
Log in

Identification of acetylated derivatives of zearalenone as novel plant metabolites by high-resolution mass spectrometry

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Zearalenone (ZEN) major biotransformation pathways described so far are based on glycosylation and sulfation, although acetylation of trichothecenes has been reported as well. We investigated herein the ZEN acetylation metabolism route in micropropagated durum wheat leaf, artificially contaminated with ZEN. We report the first experimental evidence of the formation of novel ZEN acetylated forms in wheat, attached both to the aglycone backbone as well as on the glucose moiety. Thanks to the advantages provided by high-resolution mass spectrometry, identification and structure annotation of 20 metabolites was achieved. In addition, a preliminary assessment of the toxicity of the annotated metabolites was performed in silico focusing on the toxicodynamic of ZEN group toxicity. All the metabolites showed a worse fitting within the estrogen receptor pocket in comparison with ZEN. Nevertheless, possible hydrolysis to the respective parent compounds (i.e., ZEN) may raise concern from the health perspective because these are well-known xenoestrogens. These results further enrich the biotransformation profile of ZEN, providing a helpful reference for assessing the risks to animals and humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Berthiller F, Crews C, Dall'Asta C, Saeger SD, Haesaert G, Karlovsky P, et al. Masked mycotoxins: a review. Mol Nutr Food Res. 2013;57:165–86.

    Article  CAS  PubMed  Google Scholar 

  2. EFSA Panel on Contaminants in the Food Chain (CONTAM). Risks for animal health related to the presence of zearalenone and its modified forms in feed, p. 123. EFSA J. 2017;15(7):4851.

    Google Scholar 

  3. Berthiller F, Werner U, Sulyok M, Krska R, Hauser MT, Schuhmacher R. Liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) determination of phase II metabolites of the mycotoxin zearalenone in the model plant Arabidopsis thaliana. Food Addit Contam. 2006;23:1194–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kluger B, Bueschl C, Lemmens M, Michlmayr H, Malachova A, Koutnik A, et al. Biotransformation of the mycotoxin deoxynivalenol in fusarium resistant and susceptible near isogenic wheat lines. Plos One. 2015;10(3):e0119656.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Meng-Reiterer J, Bueschl C, Rechthaler J, Berthiller F, Lemmens M, Schuhmacher R. Metabolism of HT-2 Toxin and T-2 toxin in oats. Toxins. 2016;8:364.

    Article  CAS  PubMed Central  Google Scholar 

  6. Meng-Reiterer J, Varga E, Nathanail AV, Bueschl C, Rechthaler J, McCormick SP, et al. Tracing the metabolism of HT-2 toxin and T-2 toxin in barley by isotope-assisted untargeted screening and quantitative LC-HRMS analysis. Anal Bioanal Chem. 2015;407:8019–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kovalsky Paris MP, Schweiger W, Hametner C, StuÈckler R, Muehlbauer GJ, Varga E, et al. Zearalenone-16-O-glucoside: a new masked mycotoxin. J Agric Food Chem. 2014;62:1188–9.

    Article  CAS  Google Scholar 

  8. Righetti L, Rolli E, Galaverna G, Suman M, Bruni R, Dall’Asta C. Plant organ cultures as masked mycotoxin biofactories: deciphering the fate of zearalenone in micropropagated durum wheat roots and leaves. Plos One. 2017;12(11):e0187247.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. EFSA Panel on Contaminants in the Food Chain (CONTAM). Appropriateness to set a group health-based guidance value for zearalenone and its modified forms. EFSA J. 2016;14(4):4425.

    Google Scholar 

  10. Kowalska K, Habrowska-Górczyńska DE, Piastowska-Ciesielska AW. Zearalenone as an endocrine disruptor in humans. Environ. Toxicol. Pharmacol. 2016;48:141–9.

    Article  CAS  PubMed  Google Scholar 

  11. De Boevre M, Jacxsens L, Lachat C, Eeckhout M, Di Mavungu JD, Audenaert K, et al. Human exposure to mycotoxins and their masked forms through cereal-based foods in Belgium. Toxicol Lett. 2013;218:281–92.

    Article  CAS  PubMed  Google Scholar 

  12. Nathanail AV, Syvahuoko J, Malachova A, Jestoi M, Varga E, Michlmayr H, et al. Simultaneous determination of major type A and B trichothecenes, zearalenone and certain modified metabolites in Finnish cereal grains with a novel liquid chromatography-tandem mass spectrometric method. Anal Bioanal Chem. 2015;407:4745–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. De Boevre M, Vanheule A, Audenaert K, Bekaert B, Diana Di Mavungu J, Werbrouk S, et al. Detached leaf in vitro model for masked mycotoxin biosynthesis and subsequent analysis of unknown conjugates. World Mycotox J. 2014;7:305–12.

    Article  CAS  Google Scholar 

  14. Schmeitzl C, Warth B, Fruhmann P, Michlmayr H, Malachová A, Berthiller F, et al. The metabolic fate of deoxynivalenol and its acetylated derivatives in a wheat suspension culture: identification and detection of DON-15-O-glucoside, 15-acetyl-DON-3-O-glucoside, and 15-acetyl-DON-3-sulfate. Toxins. 2015;7:3112–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Muñoz L, Castro JL, Cardelle M, Castedo L, Riguera R. Acetylated mycotoxins from Fusarium graminearum. Phytochemistry. 1989;28(1):83–5.

    Article  Google Scholar 

  16. Pinton P, Tsybulskyy D, Lucioli J, Laffitte J, Callu P, Lyazhri F, et al. Toxicity of deoxynivalenol and its acetylated derivatives on the intestine: differential effects on morphology, barrier function, tight junction proteins, and mitogen-activated protein kinases. Toxicol Sci. 2012;130:180–90.

    Article  CAS  PubMed  Google Scholar 

  17. Dall'Erta A, Cirlini M, Dall'Asta M, Del Rio D, Galaverna G, Dall'Asta C. Masked mycotoxins are efficiently hydrolyzed by human colonic microbiota releasing their aglycones. Chem Res Toxicol. 2013;26(3):305–12.

    Article  CAS  PubMed  Google Scholar 

  18. Gratz SW, Dinesh R, Yoshinari T, Holtrop G, Richardson AJ, Duncan G, et al. Masked trichothecene and zearalenone mycotoxins withstand digestion and absorption in the upper GI tract but are efficiently hydrolyzed by human gut microbiota in vitro. Mol Nutr Food Res. 2017;61(4):1600680–90.

    Article  CAS  Google Scholar 

  19. Gratz SW. Do plant-bound masked mycotoxins contribute to toxicity? Toxins. 2017;9:85.

    Article  CAS  PubMed Central  Google Scholar 

  20. Eriksen GS, Pettersson H, Lindberg JE. Absorption, metabolism, and excretion of 3-acetyl DON in pigs. Arch Anim Nutr. 2003;57:335–45.

    Article  CAS  Google Scholar 

  21. Dellafiora L, Ruotolo R, Perotti A, Cirlini M, Galaverna G, Cozzini P, et al. Molecular insights on xenoestrogenic potential of zearalenone-14-glucoside through a mixed in vitro/in silico approach. Food Chem Toxicol. 2017;108:257–66.

    Article  CAS  PubMed  Google Scholar 

  22. Dellafiora L, Galaverna G, Dall'Asta C. An in silico perspective on the toxicodynamic of tetrodotoxin and analogues – a tool for supporting the hazard identification. Toxicon. 2017;138:107–18.

    Article  CAS  PubMed  Google Scholar 

  23. Ehrlich VA, Dellafiora L, Mollergues J, Dall'Asta C, Serrant P, Marin-Kuan M, et al. Hazard assessment through hybrid in vitro/in silico approach: the case of zearalenone. ALTEX. 2015;32(4):275–86.

    PubMed  Google Scholar 

  24. Phillips C, Roberts LR, Schade M, Bazin R, Bent A, Davies NL, et al. Design and structure of stapled peptides binding to estrogen receptors. J Am Chem Soc. 2011;133(25):9696–9.

    Article  CAS  PubMed  Google Scholar 

  25. Dellafiora L, Galaverna G, Righi F, Cozzini P, Dall'Asta C. Assessing the hydrolytic fate of the masked mycotoxin zearalenone-14-glucoside – a warning light for the need to look at the “maskedome”. Food Chem Toxicol. 2017;99:9–16.

    Article  CAS  PubMed  Google Scholar 

  26. Baroni M, Cruciani G, Sciabola S, Perruccio F, Mason JS. A common reference framework for analyzing/comparing proteins and ligands. Fingerprints for Ligands and Proteins (FLAP): theory and application. J Chem Inf Model. 2007;47(2):279–94.

    Article  CAS  PubMed  Google Scholar 

  27. Carosati E, Sciabola S, Cruciani G. Hydrogen bonding interactions of covalently bonded fluorine atoms: from crystallographic data to a new angular function in the GRID force field. J Med Chem. 2004;47(21):5114–25.

    Article  CAS  PubMed  Google Scholar 

  28. Kellogg EG, Abraham DJ. Hydrophobicity: is LogP(o/w) more than the sum of its parts? Eur J Med Chem. 2000;37(7/8):651–61.

    Article  Google Scholar 

  29. Cozzini P, Dellafiora L. In silico approach to evaluate molecular interaction between mycotoxins and the estrogen receptors ligand binding domain: a case study on zearalenone and its metabolites. Toxicol Lett. 2012;214(1):81–5.

    Article  CAS  PubMed  Google Scholar 

  30. Cozzini P, Fornabaio M, Marabotti A, Abraham DJ, Kellogg GE, Mozzarelli A. Simple, intuitive calculations of free energy of binding for protein-ligand complexes. 1. Models without explicit constrained water. J Med Chem. 2002;45(12):2469–83.

    Article  CAS  PubMed  Google Scholar 

  31. Ruttkies C, Schymanski EL, Wolf S, Hollender J, Neumann S. MetFrag relaunched: incorporating strategies beyond in silico fragmentation. J Cheminform. 2016;8:3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Katzenellenbogen JA. The 2010 Philip S. Portoghese Medicinal Chemistry Lectureship: addressing the “core issue” in the design of estrogen receptor ligands. J Med Chem. 2011;54(15):5271–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Shier WT, Shier AC, Xie W, Mirocha CJ. Structure–activity relationships for human estrogenic activity in zearalenone mycotoxins. Toxicon. 2001;39(9):1435–8.

    Article  CAS  PubMed  Google Scholar 

  34. Ajandouz EH, Berdah S, Moutardier V, Bege T, Birnbaum DJ, Perrier J, et al. Hydrolytic fate of 3/15-acetyldeoxynivalenol in humans: specific deacetylation by the small intestine and liver revealed using in vitro and ex vivo approaches. Toxins. 2016;8:232.

    Article  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge with gratitude Mr. Dante Catellani from Advanced Laboratory Research (Barilla G.R. F.lli SpA) for his technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chiara Dall’Asta.

Ethics declarations

Conflict of interest

Michele Suman is employee of Barilla G.R. F.lli SpA. Daniele Cavanna has received a PhD grant by Barilla G.R. F.lli SpA. All the other authors declare that they have no conflict of interest.

Additional information

Published in the topical collection Food Safety Analysis with guest editor Steven J. Lehotay.

Electronic supplementary material

ESM 1

(PDF 338 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Righetti, L., Dellafiora, L., Cavanna, D. et al. Identification of acetylated derivatives of zearalenone as novel plant metabolites by high-resolution mass spectrometry. Anal Bioanal Chem 410, 5583–5592 (2018). https://doi.org/10.1007/s00216-018-1066-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-018-1066-y

Keywords

Navigation