Skip to main content
Log in

Probing of multidrug ABC membrane transporters of single living cells using single plasmonic nanoparticle optical probes

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Currently, molecular mechanisms of multidrug ABC (ATP-binding cassette) membrane transporters remain elusive. In this study, we synthesized and characterized purified spherically shaped silver nanoparticles (Ag NPs) (11.8 ± 2.6 nm in diameter), which were stable (non-aggregation) in PBS buffer and inside single living cells. We used the size-dependent localized surface plasmon resonance (LSPR) spectra of single Ag NPs to determine their sizes and to probe the size-dependent transport kinetics of the ABC (BmrA, BmrA-EGFP) transporters in single living cells (Bacillus subtilis) in real time at nanometer resolution using dark-field optical microscopy and spectroscopy (DFOMS). The results show that the smaller NPs stayed longer inside the cells than larger NPs, suggesting size-dependent efflux kinetics of the membrane transporter. Notably, accumulation and efflux kinetics of intracellular NPs for single living cells depended upon the cellular expression level of BmrA, NP concentrations, and a pump inhibitor (25 μM, orthovanadate), suggesting that NPs are substrates of BmrA transporters and that passive diffusion driven by concentration gradients is the primary mechanism by which the NPs enter the cells. The accumulation and efflux kinetics of intracellular NPs for given cells are similar to those observed using a substrate (Hoechst dye) of BmrA, demonstrating that NPs are suitable probes for study of multidrug membrane transporters of single living cells in real-time. Unlike fluorescent probes, single Ag NPs exibit size-dependent LSPR spectra and superior photostability, enabling them to probe the size-dependent efflux kinetics of membrane transporters of single living cells in real-time for better understanding of multidrug resistance.

Probing of efflux functions of single multidrug transporters using single plasmonic nanoparticles

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Jones PM, George AM (2004) The ABC transporter structure and mechanism: perspectives on recent research. Cell Mol Life Sci 61:682–699, and references therein

    Article  CAS  Google Scholar 

  2. Rees DC, Johnson E, Lewinson O (2009) ABC transporters: the power to change. Nat Rev Mol Cell Biol 10:218–227, and references therein

    Article  CAS  Google Scholar 

  3. Linton KJ, Higgins CF (1998) The Escherichia coli ATP-binding cassette (ABC) proteins. Mol Microbiol 28:5–13

    Article  CAS  Google Scholar 

  4. Quentin Y, Fichant G, Denizot F (1999) Inventory, assembly and analysis of Bacillus subtilis ABC transport systems. J Mol Biol 287:467–484

    Article  CAS  Google Scholar 

  5. Borst P, Elferink RO (2002) Mammalian ABC transporters in health and disease. Annu Rev Biochem 71:537–592

    Article  CAS  Google Scholar 

  6. Riordan JR, Rommens JM, Kerem B, Alon N, Rozmahel R, Grzelczak Z, Zielenski J, Lok S, Plavsic N, Chou JL et al (1989) Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science 245:1066–1073

    Article  CAS  Google Scholar 

  7. Gottesman MM, Ambudkar SV (2001) Overview: ABC transporters and human disease. J Bioenerg Biomembr 33:453–458, and references therein

    Article  CAS  Google Scholar 

  8. Gottesman MM, Ambudkar SV, Xia D (2009) Structure of a multidrug transporter. Nat Biotechnol 27:546–547, and references therein

    Article  CAS  Google Scholar 

  9. Higgins CF (2001) ABC transporters: physiology, structure and mechanism—an overview. Res Microbiol 152:205–210, and references therein

    Article  CAS  Google Scholar 

  10. Hung LW, Wang IX, Nikaido K, Liu PQ, Ames GF, Kim SH (1998) Crystal structure of the ATP-binding subunit of an ABC transporter. Nature 396:703–707

    Article  CAS  Google Scholar 

  11. Locher KP, Lee AT, Rees DC (2002) The E. coli BtuCD structure: a framework for ABC transporter architecture and mechanism. Science 296:1091–1098

    Article  CAS  Google Scholar 

  12. Davidson AL, Chen J (2004) ATP-binding cassette transporters in bacteria. Annu Rev Biochem 73:241–268, and references therein

    Article  CAS  Google Scholar 

  13. Holland IB, Blight MA (1999) ABC-ATPases, adaptable energy generators fuelling transmembrane movement of a variety of molecules in organisms from bacteria to humans. J Mol Biol 293:381–399

    Article  CAS  Google Scholar 

  14. Kunst F, Ogasawara N, Moszer I, Albertini AM, Alloni G, Azevedo V, Bertero MG, Bessieres P, Bolotin A, Borchert S, Borriss R, Boursier L, Brans A, Braun M, Brignell SC, Bron S, Brouillet S, Bruschi CV, Caldwell B, Capuano V, Carter NM, Choi SK, Codani JJ, Connerton IF, Danchin A et al (1997) The complete genome sequence of the gram-positive bacterium Bacillus subtilis. Nature 390:249–256

    Article  CAS  Google Scholar 

  15. van Dijl JM, Buist G, Sibbald MJJB, Zweers JC, Dubois JYF, Tjalsma H (2007) Ins and Outs of the Bacillus subtilis Membrane Proteome. In: Graumann P (ed) Bacillus: Cellular and Molecular Biology. Caister Academic Press, Norfolk, pp 289–332

    Google Scholar 

  16. Aguilar C, Vlamakis H, Losick R, Kolter R (2007) Thinking about Bacillus subtilis as a multicellular organism. Curr Opin Microbiol 10:638–643, and references therein

    Article  CAS  Google Scholar 

  17. Völker U, Hecker M (2005) From genomics via proteomics to cellular physiology of the Gram-positive model organism Bacillus subtilis. Cell Microbiol 7:1077–1085

    Article  Google Scholar 

  18. Morjani H, Aouali N, Belhoussine R, Veldman RJ, Levade T, Manfait M (2001) Elevation of glucosylceramide in multidrug-resistant cancer cells and accumulation in cytoplasmic droplets. Int J Cancer 94:157–165

    Article  CAS  Google Scholar 

  19. Mortimer PG, Piddock LJ (1991) A comparison of methods used for measuring the accumulation of quinolones by Enterobacteriaceae, Pseudomonas aeruginosa and Staphylococcus aureus. J Antimicrob Chemother 28:639–653, and references therein

    Article  CAS  Google Scholar 

  20. Orelle C, Gubellini F, Durand A, Marco S, Levy D, Gros P, Di Pietro A, Jault JM (2008) Conformational change induced by ATP binding in the multidrug ATP-binding cassette transporter BmrA. Biochemistry 47:2404–2412

    Article  CAS  Google Scholar 

  21. Steel C, Wan Q, Xu XHN (2004) Single live cell imaging of chromosomes in chloramphenicol-induced filamentous Pseudomonas aeruginosa. Biochemistry 43:175–82

    Article  CAS  Google Scholar 

  22. Xu XHN, Brownlow WJ, Huang S, Chen J (2003) Real-time measurements of single membrane pump efficiency of single living Pseudomonas aeruginosa cells using fluorescence microscopy and spectroscopy. Biochem Biophys Res Commun 305:79–86

    Article  Google Scholar 

  23. Cosa G, Focsaneanu KS, McLean JRN, McNamee JP, Scaiano JC (2001) Photophysical properties of fluorescent DNA-dyes bound to single- and double-stranded DNA in aqueous buffered solution. Photochem Photobiol 73:585–599

    Article  CAS  Google Scholar 

  24. Serysheva II, Ludtke SJ, Baker ML, Cong Y, Topf M, Eramian D, Sali A, Hamilton SL, Chiu W (2008) Subnanometer-resolution electron cryomicroscopy-based domain models for the cytoplasmic region of skeletal muscle RyR channel. Proc Natl Acad Sci USA 105:9610–9615

    Article  CAS  Google Scholar 

  25. Huang T, Nallathamby PD, Gillet D, Xu XHN (2007) Design and synthesis of single nanoparticle optical biosensors for imaging and characterization of single receptor molecules on single living cells. Anal Chem 79:7708–7718

    Article  CAS  Google Scholar 

  26. Huang T, Nallathamby PD, Xu XHN (2008) Photostable single-molecule nanoparticle optical biosensors for real-time sensing of single cytokine molecules and their binding reactions. J Am Chem Soc 130:17095–17105

    Article  CAS  Google Scholar 

  27. Kreibig U, Vollme M (1995) Optical properties of metal clusters. Springer, Berlin

    Google Scholar 

  28. Kyriacou SV, Brownlow WJ, Xu XHN (2004) Using nanoparticle optics assay for direct observation of the function of antimicrobial agents in single live bacterial cells. Biochemistry 43:140–147

    Article  CAS  Google Scholar 

  29. Nallathamby PD, Lee KJ, Xu XHN (2008) Design of stable and uniform single nanoparticle photonics for in vivo dynamics imaging of nanoenvironments of zebrafish embryonic fluids. ACS Nano 2:1371–1380

    Article  CAS  Google Scholar 

  30. Xu XHN, Brownlow WJ, Kyriacou SV, Wan Q, Viola JJ (2004) Real-time probing of membrane transport in living microbial cells using single nanoparticle optics and living cell imaging. Biochemistry 43:10400–10413

    Article  CAS  Google Scholar 

  31. Xu XHN, Chen J, Jeffers RB, Kyriacou SV (2002) Direct measurement of sizes and dynamics of single living membrane transporters using nano-optics. Nano Lett 2:175–182

    Article  CAS  Google Scholar 

  32. Browning LM, Lee KJ, Huang T, Nallathamby PD, Lowman J, Xu XHN (2009) Random walk of single gold nanoparticles in zebrafish embryos leading to stochastic toxic effects on embryonic developments. Nanoscale 1:138–152

    Article  CAS  Google Scholar 

  33. Lee KJ, Nallathamby PD, Browning LM, Osgood CJ, Xu XHN (2007) In vivo imaging of transport and biocompatibility of single silver nanoparticles in early development of zebrafish embryos. ACS Nano 1:133–143

    Article  CAS  Google Scholar 

  34. Xu XHN, Song Y, Nallathamby PD (2007) Probing Membrane Transport of Single Live Cells Using Single Molecule Detection and Single Nanoparticle Assay. In: Xu XHN (ed) New Frontiers in Ultrasensitive Bioanalysis: Advanced Analytical Chemistry Applications in Nanobiotechnology, Single Molecule Detection, and Single Cell Analysis. Wiley, New Jersey, pp 41–65

    Google Scholar 

  35. Nallathamby PD, Xu XHN (2010) Study of cytotoxic and therapeutic effects of stable and purified silver nanoparticles on tumor cells. Nanoscale doi:10.1039/c0nr00080a

  36. Drew D, Sjostrand D, Nilsson J, Urbig T, Chin CN, de Gier JW, von Heijne G (2002) Rapid topology mapping of Escherichia coli inner-membrane proteins by prediction and PhoA/GFP fusion analysis. Proc Natl Acad Sci USA 99:2690–2695

    Article  CAS  Google Scholar 

  37. Gandlur SM, Wei L, Levine J, Russell J, Kaur P (2004) Membrane topology of the DrrB protein of the Doxorubicin transporter of Streptomyces peucetius. J Biol Chem 279:27799–27806

    Article  CAS  Google Scholar 

  38. Shukla S, Saini P, Smriti JS, Ambudkar SV, Prasad R (2003) Functional characterization of Candida albicans ABC transporter Cdr1p. Eukaryot Cell 2:1361–1375

    Article  CAS  Google Scholar 

  39. Abe-Dohmae S, Ikeda Y, Matsuo M, Hayashi M, Okuhira K, Ueda K, Yokoyama S (2004) Human ABCA7 supports apolipoprotein-mediated release of cellular cholesterol and phospholipid to generate high density lipoprotein. J Biol Chem 279:604–611

    Article  CAS  Google Scholar 

  40. Steinfels E, Orelle C, Fantino JR, Dalmas O, Rigaud JL, Denizot F, Di Pietro A, Jault JM (2004) Characterization of YvcC (BmrA), a multidrug ABC transporter constitutively expressed in Bacillus subtilis. Biochemistry 43:7491–7502

    Article  CAS  Google Scholar 

  41. Xu XHN, Huang S, Brownlow WJ, Salatia K, Jeffers R (2004) Size and temperature dependence of surface plasmon absorption of gold nanoparticles induced by Tris(2, 2'-Bipyridine)Ruthenium(II). J Phys Chem B 108:15543–15551

    Article  CAS  Google Scholar 

  42. Kyriacou SV, Nowak ME, Brownlow WJ, Xu XHN (2002) Single live cell imaging for real-time monitoring of resistance mechanism in Pseudomonas aeruginosa. J Biomed Opt 7:576–586

    Article  CAS  Google Scholar 

  43. Xu XHN, Wan Q, Kyriacou SV, Brownlow WJ, Nowak ME (2003) Direct observation of substrate induction of resistance mechanism in Pseudomonas aeruginosa using single live cell imaging. Biochem Biophys Res Commun 305:941–949

    Article  CAS  Google Scholar 

  44. Berney M, Hammes F, Bosshard F, Weilenmann HU, Egli T (2007) Assessment and interpretation of bacterial viability by using the live/dead baclight kit in combination with flow cytometry. Appl Environ Microbiol 73:3283–3290

    Article  CAS  Google Scholar 

  45. Ocaktan A, Yoneyama H, Nakae T (1997) Use of fluorescence probes to monitor function of the subunit proteins of the MexA-MexB-OprM drug extrusion machinery in Pseudomonas aeruginosa. J Biol Chem 272:21964–21969

    Article  CAS  Google Scholar 

  46. Steinfels E, Orelle C, Dalmas O, Penin F, Miroux B, Di Pietro A, Jault JM (2002) Highly efficient over-production in E. coli of YvcC, a multidrug-like ATP-binding cassette transporter from Bacillus subtilis. Biochim Biophys Acta 1565:1–5

    Article  CAS  Google Scholar 

  47. Hochman Y, Carmeli S, Carmeli C (1993) Vanadate, a transition state inhibitor of chloroplast CFl-ATPase. J Biol Chem 268:12373–12379

    CAS  Google Scholar 

  48. Urbatsch IL, Tyndall GA, Tombline G, Senior AE (2003) P-glycoprotein catalytic mechanism: studies of the ADP-vanadate inhibited state. J Biol Chem 278:23171–23179

    Article  CAS  Google Scholar 

  49. Kyriacou SV (2003) Real-time study of multidrug resistance mechanism in Pseudomonas aeruginosa using nanoparticle optics and single live cell imaging, Thesis, Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA, USA

  50. Vaidyanathan R, Kalishwaralal K, Gopalram S, Gurunathan S (2009) Nanosilver—the burgeoning therapeutic molecule and its green synthesis. Biotechnol Adv 27:924–937, and references therein

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported in part by NSF (NIRT: BES 0507036) and NIH (R01 GM076440). Ding, Nallathamby, Browning, and Lee are grateful for the support of Dominion Scholar Fellowship, NIH-GRAS (R01 GM076440S1), and NSF-GRAS (CBET 0940923), respectively. We thank J.-M. Jault for providing us with ΔBmrA (ΔYvcC) cells, and CharFac of University of Minnesota (a NNIN site funded by NSF) for their assistance in characterizing Ag nanoparticles using HRTEM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Hong Nancy Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, K.J., Browning, L.M., Huang, T. et al. Probing of multidrug ABC membrane transporters of single living cells using single plasmonic nanoparticle optical probes. Anal Bioanal Chem 397, 3317–3328 (2010). https://doi.org/10.1007/s00216-010-3864-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-010-3864-8

Keywords

Navigation