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Abstract
Bond orders are attributed a new role in rationalizing the electronegativity equalization (ENE) and maximum hardness 
(MH) rules. The following rules and theorems are formulated for chemical species (atoms, groups, molecules), X, Y, XY, 
their ionization energies, I, electron affinities, A, electronegativity, χ = ½(I + A), and chemical hardness, η = ½ (I − A). Rule 1 
Sanderson’s principle of electronegativity equalization is supported (individual deviations < 10%) by association reactions, 
X + Y → XY, if the ionic bond dissociation energies are equal, D (XY+) = D (XY−), or, equivalently, if the relative bond 
orders are equal, BOrel (XY+) = BOrel (XY−). Rule 2 Sanderson’s principle of electronegativity equalization is supported (indi-
vidual deviations < 10%) by association reactions, X + Y → XY, if the formal bond orders, FBO, of the ions are equal, FBO 
(XY+) = FBO (XY−). Theorem 1 The electronegativity is not equalized by association reactions, X + Y → XY, if the formal 
bond orders of the ions differ, FBO (XY+) − FBO (XY−) ≠ 0. Theorem 2 The chemical hardness is increased by nonpolar 
bond formation, 2X → X2, if (and for atomic X: if and only if) the sum BOrel (X2

+) + BOrel (X2
−) < 2. Rule 3 The chemical 

hardness is decreased, thus the “maximum hardness principle” violated by association reactions, X + Y → XY, if (but not 
only if) BOrel (XY+) + BOrel (XY−) > 2. The theorems are proved, and the rules corroborated with the help of elementary 
thermochemical cycles according to the first law of thermodynamics. They place new conditions on the “structural principles” 
ENE and MH. The performances of different electronegativities and hardness scales are compared with respect to ENE and 
MH. The scales based on valence-state energies perform consistently better than scales based on ground-state energies. The 
present work provides the explanation for the order of magnitude better performance of valence-state ENE compared to 
that of the ground-state ENE. We here show by a new approach that the combination of several fuzzy concepts clarifies the 
situation and helps in defining the range of validity of rules and principles derived from such concepts.

Keywords  Electronegativity · Electronegativity equalization · Chemical hardness · Valence state · Valency · Bond 
dissociation energy · Formal bond order · Relative bond order · Thermochemical cycles · Hardness maximization · 
Structural principle · Conceptual DFT

1  Introduction

Bond orders (BOs) are normally not mentioned in con-
nection with “structural principles,” such as electronega-
tivity equalization (ENE) and maximum hardness (MH). 
An important role is here attributed to bond orders in 

formulating some of the most relevant concepts, rules and 
principles, which describe and predict chemical behavior. 
The aim is a much improved understanding of the ENE and 
MH rules or principles, which are particularly connected 
to density functional theory (DFT) [1–3]. Electronegativity, 
chemical hardness, bond order, valency and valence-state 
energy are not directly measurable properties. Interpreta-
tions are needed to characterize them and attribute quan-
titative scales and values to them. Hence, they are derived 
theoretically from results of measurements.

The formal bond order (FBO) is defined by half the dif-
ference between the number of bonding electrons and that 
of antibonding electrons
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The FBO, also called “chemical bond order” [4], offers 
a quick estimate for the bond strength from valence bond 
structures [5]. It takes on positive integral values for an 
integral number of shared electron pairs between the two 
atoms (groups). Half-integral FBOs arise if an unpaired 
electron is involved in the bond, e.g., in H2

+. The FBO is 
strongly linked to the valencies of the atoms (groups) form-
ing the bond. The valency (V) is defined as the number of 
half-filled (singly occupied) orbitals of the species [6–13]. 
Some atoms in the periodic system of elements are attributed 
several valencies, which depend on the molecular environ-
ment. Thus, a carbon atom in its ground state (GS) is diva-
lent, V (C) = 2, whereas tetravalent carbon is promoted into 
a valence state (VS) with V (CVS) = 4. The electron configu-
ration of the atom in the molecule (AiM) is not that of the 
free atom in its ground state, as already a diatomic molecule 
contains various neutral and/or ionic valence structures. The 
energy of an atom or ion in its Mulliken type VS [6–13] is 
the averaged energy of all spectroscopic states belonging to 
a valence configuration, e.g., the divalent OVS atom in states 
3P and 1D of configuration s2p2p1p1 and the monovalent O+

VS
 

in the states 2D and 2P of configuration s2p2p1 [7, 8]. The 
ground state 4S of trivalent O+

GS
 belongs to the configuration 

s2p1p1p1. The valency is important for Mulliken’s atomic 
electronegativity [6–10] and its molecular generalization, 
the valence-pair-affinity, αVP [11–13]; see “Appendix.” In 
valence states, the valency of X+

VS
 and X−

VS
 is always

This necessary condition is independent of particular 
definitions of the VS energy [6–14]. The VS and GS valen-
cies may be identical, e.g., for V(H) = 1, V(H+) = V(H−) = 0. 
However, they differ for ions, if the neutral atom (group, 
or fragment) contains doubly occupied (“lone pair”) orbit-
als in its highest subshell, e.g., Be, Mg, O, S, F, Cl, etc. In 
such cases, the ionization requiring the lowest energy, I0,v, 
increases the valency by 1, as the electron is removed from 
the doubly occupied orbital. The valency of ground state O+

GS
 

is 3; that of Cl+
GS

 is 2. The VS valencies are V ( O+
VS

) = 1 and 
V ( Cl+

VS
) = 0. The formal bond order of the molecule, XY, 

formed by atoms X and Y is

For molecules and their ions, the strict Wigner–Witmer 
symmetry correlation rules [15, 16] assign the molecular 
state(s) appropriate for the constituent VS atoms and/or ions 
[6–14]. Combined with Eq. (2), the VS formal bond orders 
are reduced by ½

(1)FBO = 1∕2
(
Nbonding − Nantibonding

)

(2)V
(
X+

VS

)
= V

(
X−

VS

)
= V

(
XVS

)
− 1

(3)FBO (XY) = 1∕2 [V(X) + V(Y)]

Again, this is independent of particular definitions of 
the VS energy [6–14]. The difference in the VS and GS 
bond orders is exemplified on Cl2. For the GS, the FBO 
increases by ionization to FBO (Cl2+ GS) = 3/2, as an electron 
is removed from an antibonding molecular orbital (MO). 
The bond dissociation energy, D0 (Cl2

+) = 3.95 eV > D0 
(Cl2) = 2.48 eV, is increased by about 50% [17]. In con-
trast, the VS ionization energy IVS,v (Cl2) = 16.08  eV 
[11–13] removes an electron from the bonding σg MO, 
reduces the formal BO by ½ and weakens the bond to DVS 
(Cl2

+) ≈ 1.50 eV.
The relative bond order, BOrel, of a molecular ion, XY+ or 

XY−, is the bond dissociation energy, D, of the ion divided 
by that of the neutral molecule [18–20]

It will be important to discuss the varieties of BOrel values 
for different states, namely ground states and valence states.

Sanderson’s electronegativity equalization principle [21, 
22] postulates, when atoms combine to a molecule, the 
atomic electronegativities, χ (at), will be equalized to their 
geometric average, 〈χ (at)〉GM,

However, recent large-scale examinations unveiled 
alarmingly large deviations from Eq. (7), if ground-state 
electronegativities are used [11, 12, 23]. The present article 
systematically sheds new light on the reasons for large devia-
tions. Electronegativity is here considered according to: (1) 
Mulliken’s atomic scale, χM = ½ (IVS,at + AVS,at) [6–10], and 
its generalization to molecules αVP = ½ (IVS,mol + AVS,mol) 
[11–13] (here both symbolized by χVS), where IVS and AVS 
are valence-state ionization energies and electron affinities; 
(2) Parr and coworkers’ [1, 2, 24, 25] scale, χ0 = ½ (I0 + A0), 
taking ground-state values, I0 and A0, which frequently differ 
significantly from Mulliken’s VS data.

Parr and Pearson originally introduced the chemical hard-
ness [3, 26–28] as

It quantifies the resistance to charge flow and provides 
information on the reactivity of atoms and molecules [1, 
3, 12, 26–28]. Pearson found an empirical rule drawn from 
comparisons between different compounds [3, 27, 28]: 
“There seems to be a rule of nature that molecules arrange 
themselves so as to be as hard as possible,” dubbed the maxi-
mum hardness (MH) principle or rule. In chemical reactions, 

(4)FBO
(
XY+

VS

)
= FBO

(
XY−

VS

)
= FBO

(
XYVS

)
− 1∕2

(5)BOrel

(
XY+

)
= D

(
XY+

)
∕D(XY)

(6)BOrel(XY
−) = D(XY−)∕D(XY)

(7)�(mol) = ⟨�(at) ⟩GM

(8)� = 1∕2
(
I0,v − A0,v

)
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atoms and molecules should produce the hardest possible 
species [29]. A formal proof has been obtained only under 
the unrealistic conditions that the electronegativity and the 
external potential, v (r), do not change during the reactions 
[30]. The validity of a “relaxed” version of MH for chemi-
cal reactions has been checked numerically at various DF 
approximation (DFA) levels by comparing the average hard-
ness values of the reactants to those of the products [31, 
32]. However, the computed hardness changes drastically, 
as one changes the DFA level [31, 32]. Therefore, the pros 
and cons could not be rationalized as yet. The difference 
between the molecular hardness η (mol) and the arithmetic 
mean of atomic hardness, 〈η (at)〉AM, values is denoted as 
hardness increase

The chemical hardness is here considered both in Pear-
son’s and Parr’s original ground-state scale [1, 3, 26, 27], 
η0 = ½ (I0,v − A0,v), and its equivalent, the valence-state hard-
ness, ηVS = ½ (IVS,v − AVS,v) [9, 11–13]. For details of the 
derivations, see “Appendix.” For the formulation of general 
rules and theorems, the subscripts VS and 0 are omitted, 
unless they are needed. Thus, χ stands for χ0, χM and αVP, as 
discussed in “Appendix.”

2 � Theorems and rules based 
on thermodynamic cycles

We specify the conditions for (1) electronegativity equali-
zation and (2) hardness increase in exothermic association 
reactions, X + Y → XY, using thermochemical cycles based 
on the first law of thermodynamics. Consider atoms or 
groups as reactants, R = {X, Y}, and their products, P = {X2, 
XY}, with corresponding cations, P+, and anions, P−. Fig-
ure 1 illustrates the bond formation between X and Y and 
displays the “ingredients” needed to discuss the ENE and 
MH rules. Thermochemical cycles connect the bond disso-
ciation energies, D (P), D (P+) and D (P−) to the ionization 
energies, I, and electron affinities, A, of the reactants and 
their product. We use I (X) ≤ I (Y) and A (X) ≤ A (Y) and 
thus Δχ (R) = χ(Y) − χ(X) ≥ 0 and focus on two cycles

The sum of Eqs. (10) and (11)

(9)Δ� = �(mol) − ⟨�(at)⟩AM = �(mol) − n−1
�

�(at)

(10)Ia(P) + D
(
P+

)
− I(X) − D(P) = 0

(11)Aa(P) + D(P) − A(Y) − D(P−) = 0

(12)2�a(P) + D
(
P+

)
− I(X) − A(Y) − D(P−) = 0

determines the product’s adiabatic electronegativity, χa 
(P) = ½[Ia (P) + Aa (P)], which normally is close to the ver-
tical electronegativity, χv (P) ≈ χa (P), since Ia (P) ≤ Iv (P), 
but Aa (P) ≥ Av (P)

We have a positive Δη (R) = η(Y) − η (X) ≥ 0, due to Δχ 
(R) ≥ 0, and the high-quality linear relationship between χ 
(at) and η (at), found by Bratsch for the main group elements 
[33], is

It is important that the bond dissociation energy D (P) 
of the neutral product cancels out by adding Eqs. (10) and 
(11). The thermochemical cycles provide essential support 
for the new rules.

Rule 1 reads: Sanderson’s principle is supported (individ-
ual deviations: < 10%) by association reactions, X + Y → XY, 
if the ionic dissociation energies are equal, D (XY+) = D 
(XY−), or, equivalently, if the relative bond orders are equal, 
BOrel (XY+) = BOrel (XY−).

The arithmetic mean 〈χ(R)〉AM differs from the product’s 
adiabatic electronegativity by

(13)

�a(P) = 1∕2
�
D(P−) − D

�
P+

�
+ �(X) + �(X) + �(Y) − �(Y)

�

= 1∕2
�
D(P−) − D

�
P+

��
+ ⟨�(R)⟩AM − 1∕2Δ�(R)

(14)�(at) = (0.60 ± 0.11)�(at)

Fig. 1   Thermochemical cycles illustrating the bond formation 
between the chemical species, X and Y, see Eqs. (10)–(12) and (23). 
Adiabatic Ia(XY) and Aa(XY), I(X) and A(Y) values of reactants, and 
bond dissociation energies, D(XY), D(XY+), and D(XY−)
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As Sanderson’s principle emphasizes the geometric aver-
age, 〈χ(R)〉GM, we consider approximations to the classi-
cal AM–GM inequality [34, 35], which are most frequently 
used in applications of economics and finance. Most of them 
involve the variance, σ2, and/or the standard deviation, σ [34, 
35]. Accordingly, for the sample size, n ≥ 2, we have

Some applications in economics and finance even 
replace ≥ by “approximately equal” (≈) [34, 35]. For two 
reagents R, n = 2, the result is

In support, consider the relation

which rearranges to Eq. (17).
Based on Eq. (14), we consider Δη (R) ≈ 0.60 Δ χ (R), 

replace Δχ (R) > 0 by the smaller Δη (R) > 0 and reduce the 
amount of inequality to ca. 60%. Then, Eqs. (14) and (19) 
combine to

Assuming χv (P) ≈ χa (P), we present a new criterion for 
testing Sanderson’s postulate of geometric electronegativity 
equalization

As explained in [12], the VS electronegativity does not 
even require vertical I and A values; thus, we may directly 
use χVS,a (P) as well. As a rule, the geometric average of 
the reactant electronegativities, 〈χ(R)〉GM, is larger than the 
product´s electronegativity, χv (P), by approximately half 
the difference of the ionic bond dissociation energies, ½[D 
(P+) − D (P−)]. Rule 1 follows from Eq. (21), Sanderson’s 
principle is supported (individual deviations: < 10%) in 

(15)

⟨�(R)⟩
AM

− �a(P) = 1∕2
�
D
�
P
+
�
− D(P−)

�

+ 1∕2Δ�(R) ≥ 1∕2
�
D
�
P
+
�
− D(P−)

�

(16)⟨�⟩GM ≥ ⟨�⟩AM − (n − 1)
1∕2�

(17)⟨�(R)⟩GM ≥ ⟨�(R)⟩AM − 1∕2Δ�(R)

(18)

�
⟨�(R)⟩

AM

�2
−
�
⟨�(R)⟩

GM

�2

= 1∕4
�
�(Y) + �(X)

�2
− �(Y)�(X)

= 1∕4
�
�(Y) − �(X)

�2
=

�
1∕2Δ�(R)

�2

(19)

⟨�(R)⟩
AM

− ⟨�(R)⟩
GM

≤

��
⟨�(R)⟩

AM

�2
−
�
⟨�(R)⟩

GM

�2�1∕2
= 1∕2Δ�(R)

(20)

⟨�(R)⟩
GM

− �a(P) ≈ ⟨�(R)⟩
AM

− 1∕2Δ�(R)

− �a(P) ≈
1∕2
�
D
�
P
+
�
− D(P−)

�

(21)

Δ� = ⟨�(R)⟩
GM

− �v(P) ≈ ⟨�(R)⟩
GM

− �a(P)

≈ 1∕2
�
D
�
P
+
�
− D(P−)

�

association reactions, if D (P+) = D (P−). This is equivalent 
to BOrel (P+) = BOrel (P−), according to Eqs. (5) and (6).

Let us consider the role of formal bond orders (FBOs) 
as rough estimates of the bond strength for Rule 2 and 
Theorem 1. Rule 2 reads: Sanderson’s principle is sup-
ported (individual deviations: < 10%) by association reac-
tions, X + Y → XY, if the formal bond orders, FBO, of the 
ions are equal, FBO (XY+) = FBO (XY−). Theorem 1: The 
electronegativity is not equalized by association reactions, 
X + Y → XY, if the formal bond orders of the ions differ, 
ΔFBO = FBO (XY+) − FBO (XY−) ≠ 0. Can FBOs give addi-
tional insight and support for ENE?

Yes, firstly, because FBO (P+) = FBO (P−) is a precondi-
tion for D (P+) = D (P−). With the exception of the alkali 
hydrides, the case ΔFBO ≠ 0 occurs only if (1) an electron 
is removed from an antibonding MO of the product, e.g., 
of O2 or the halogen dimers, or (2) an additional electron is 
placed into a bonding MO of the P−, e.g., of B2

− or C2
−. In 

both cases (1) with P+ and (2) with P−, the bond dissocia-
tion energy of the GS molecular ion largely surpasses that 
of the ion carrying the opposite charge, (1) D (P+) > D (P−) 
in halogen dimers, or (ii) D (P−) > D (P+) for B2 and C2. The 
latter cases are discussed in detail in Refs. [11, 12].

Secondly, FBOs give additional support, because they are 
easier and more often available than the quantitative relative 
bond orders. For relevant BOrel values, the bond dissocia-
tion energies, D (P+), D (P−) and D (P), are all required. 
However, for unstable anions, the D (P−) is not known to 
the required accuracy, while the FBO (P−) can be assigned, 
e.g., FBO (H2

−) = ½.
Table 1 focusses on the accuracy of ENE in diatomic 

molecules with bond dissociation energies, D (P), D (P+), 
D (P−), and their wide range of FBO values, 0 ≤ FBO ≤ 3. 
Many more, in fact 89 diatomic and polyatomic molecules 
can be discussed for ENE along these lines based on the 
tables published in [11–13]. Table 1 also includes the dif-
ferences ΔFBO, Δχ and the percentage difference δχ = 100 
{[〈χ(R)〉GM/χv (P)] − }. The χ values are obtained from 
the extended lists of atomic and molecular GS and VS 
data (Iv, Av, χ, η) in Refs. [11–13]. In Table 1, we docu-
ment the necessary condition for ENE that the formal bond 
orders have to be equal: FBO (P+) = FBO (P−). Note that 
the two Rules and Theorem 1 are valid for LiH, in spite 
of the cation LiH+ being exceptional. LiH+ is practically 
unbound and best described as a H-atom polarized by Li+, 
thus FBO = 0. The H3C–CH3 σ-bond in methane is assessed 
just by FBO values, without needing dissociation energies. 
The methyl radical R = ∙CH3 (Iv = 9.85 eV, Av = − 0.01 eV, 

(22)
Δ� ≈ 0, if

[
D
(
P+

)
− D(P−)

]
= BOrel

(
P+

)
− BOrel(P

−) = 0
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χ = 4.92 eV [11]) serves as the group forming the homo-
nuclear bond, H3C–CH3 (Iv = 12.1  eV, Av = − 2.05  eV, 
χ = 5.02 [11]). This value is the VS bond electronegativity, 
not the 〈χGS (at)〉GM = 6.94 eV of all GS atoms of methane. 
The latter average is 38% higher than the here equalized χ 
(R) = 4.92 eV.

As already documented using the original definitions of 
χVS and χ0, the overall accuracy of valence-state ENE (VS-
ENE) is about an order of magnitude better than that of the 
ground-state ENE (GS-ENE) [11, 12]. For the large set of 89 
molecules in [11], the mean unsigned deviations (MUD) in 
% are 2.55% for VS-ENE, compared to 21.95% for GS-ENE. 
The corresponding increase in accuracy amounts to the fac-
tor 8.6 [11]. The present work provides the general explana-
tion for these results. Conceptual DFT has been unable to 
explain the significant χ0 changes that occur on homonuclear 
bond formation [1, p. 93]. Theorem 1 classifies precisely: 
χ0 (X2) ≠ χ0 (X), if the formal bond orders of the ions dif-
fer, FBO (X2

+)GS − FBO (X2
−)GS ≠ 0. Remarkably, the large 

changes of the external potential, v(r), during bond forma-
tion neither affect the Rules and Theorem 1, nor the accuracy 
of VS-ENE. Thus, the constancy of v(r) is not required. In 
addition, if the changes of the external potential were the 
main reason for many exceptions to GS-ENE, it would be 
hard to explain, why GS-ENE is so well realized, if χ0 = χVS, 
as, e.g., in H2.

We now turn to Theorem 2: The chemical hardness is 
increased by nonpolar bond formation, 2X → X2, if (for 
atomic X: if and only if) the sum BOrel(X2

+) + BOrel(X2
−) < 2.

While the bond dissociation energy, D (P), of the neu-
tral product does not enter in Eqs. (12)–(22), it assumes an 
important role in discussing hardness changes, Δη (P) = η 
(P) − 〈η (R)〉AM. In proving Theorem 2, take the difference 
of Eqs. (10) and (11) to obtain the adiabatic hardness, ηa, 
of the product

and focus on the following difference in bond dissociation 
energies

The role of ΔD for the MH rule in connection with 
ground-state hardness η0 has been first recognized by Pal 
et al. [36, 37]. ΔD is also very important in connection with 
ΔηVS [12]. On the right-hand side of Eq. (23), I(X) − A(Y) 
is now expressed by 〈η(R)〉AM and the electronegativity dif-
ference, Δχ (R) ≥ 0

(23)
2�a(P) = Ia(P) −Aa(P) = 2D(P) − D

(
P+

)
− D(P−) + I(X) − A(Y)

(24)ΔD(P) = 2D(P) − D
(
P+

)
− D(P−)

(25)

I(X) −A(Y) = �(X) + �(X) −
�
�(Y) − �(Y)

�

= 2⟨�(R)⟩
AM

− Δ�(R)

Table 1   Formal bond orders, FBO, the difference ΔFBO = FBO (P+) − FBO (P−), ionic bond dissociation energies, D (P+), D (P−), their differ-
ence ½[D (P+) − D (P−)], the electronegativity difference, Δχ = 〈χ(R)〉GM − χv (P), and percentage difference δχ = 100 {[〈χ(R)〉GM/χv (P)] − 1}

The energies and electronegativities are given in electron Volt units (eV). Unless identical, ground-state (GS) and valence-state (VS) data are 
assigned

P FBO(P) FBO (P+) D (P+) FBO(P-) D (P−) ΔFBO ½[D (P+) − D (P−)] Δχ δχ (%) [11, 12]

H2 1 ½ 2.65 ½ n. a. 0 n. a. 0.19 3
Li2 1 ½ 1.44 ½ ≈ 0.90 0 0.27 0.20 7
Na2 1 ½ 0.96 ½ ≈ 0.44 0 0.26 0.07 3
LiNa 1 ½ 0.99 ½ ≈ 0.69 0 0.15 0.12 4
LiH 1 0 0.114 ½ 2.003 − ½ − 0.944 0.60 15
N2 3 GS:2½ 8.71 2½ ≈ 7.53 GS:0 0.63 GS:0.61 9

VS:2½ 7.61 VS:0 ≈ 0.04 VS:0.00 0
NO 2½ GS:3 10.85 2 5.05 GS:1 2.90 GS:2.86 64

VS:2 4.44 VS:0 − 0.30 VS:− 0.12 − 1.4
O2 2 GS:2½ 6.66 1½ 4.09 GS:1 1.28 GS:1.19 19

VS:1½ 4.03 VS:0 − 0.03 VS:− 0.01 0
S2 2 GS:2½ 5.37 1½ 3.95 GS:1 0.71 GS:0.79 15

VS:1½ 3.52 VS:0 − 0.21 VS:− 0.07 −1
F2 1 GS:1½ 3.34 ½ 1.28 GS:1 1.03 GS:1.70 20

VS:½ 1.37 VS:0 0.05 VS:0.77 7
Cl2 1 GS:1½ 3.95 ½ 1.26 GS:1 1.35 GS:1.91 30

VS:½ 1.50 VS:0 0.12 VS:0.30 8
IBr 1 GS:1½ 2.42 ½ 1.1 GS:1 0.65 GS:1.42 25

VS:½ 1.08 VS:0 − 0.01 VS:0.64 8
H3C–CH3 1 ½ n. a. ½ n. a. 0 n. a. VS:− 0.10 − 2
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We obtain the hardness increase Δη (P) = η (P) − 〈η 
(R)〉AM ≥ ηa (P) − 〈η (R)〉AM = Δηa (P) as

Due to the first law of thermodynamics, Eq. (26) is strictly 
valid for all association reactions. Theorem 2 deals with 
P = X2 in the bond formation, 2X → X2, characterized by Δχ 
(R) = 0. In this case, the division of Eq. (26) by D (X2) > 0 
gives the relative bond orders on the right-hand side

Equation (27) proves Theorem 2 that the chemical hard-
ness is increased by nonpolar bond formation, 2X → X2, if 
the sum BOrel(X2

+) + BOrel(X2
−) < 2.

When is η (X2) − η (X) found to be positive? In general, 
if VS hardness values are used. The situation is significantly 
different, if ground-state (GS) quantities are used. According 
to the examples shown in Table 2, the ground states of X2

+ 
and X2

− can give BOrel(X2
+) + BOrel(X2

−) > 2 and thus lead 
to violations of the MH rule. This is the case, when (1) an 
electron is removed from an antibonding MO to form X2

+, 
or (2) the additional electron on X2

− is placed into a bond-
ing MO. Nitrogen, N2, is an interesting case with respect to 
ionization, as both the GS and VS ionizations weaken the 

(26)
Δ�(P) ≥ Δ�a(P) = 1∕2ΔD(P) − 1∕2Δ�(R) ≤ 1∕2ΔD(P)

(27)Δ�
(
X2

)
∕D

(
X2

)
≥ 1∕2

[
2 − BOrel

(
X+

2

)
− BOrel

(
X−

2

)]

bond, reduce D and stretch the bond length, although by 
different amounts. 

Rule 3 The chemical hardness is decreased, Δη < 0, thus 
the “maximum hardness principle” violated by association 
reactions, X + Y → XY, if BOrel (XY+) + BOrel (XY−) > 2, 
that is, if ΔD < 0. The essential support follows directly from 
Eq. (26). If ΔD turns negative, it is further reduced by Δχ 
(R) > 0. Thus, the adiabatic change Δηa (XY) is definitely 
negative. Admittedly, with the vertical Δη (XY) ≥ Δηa (XY), 
exceptions could occur, for which Δη (XY) ≥ 0. Neverthe-
less, no exception to Rule 3 is known to the author. With-
out any valid exception, Rule 3 could be transformed into a 
Theorem 3. The reactions shown in Table 2 document the 
validity of both Theorem 2 and Rule 3.

Table 2 evidences that Pearson’s maximum hardness 
(MH) principle is supported, if VS quantities are considered. 
The notable exception is LiH, for which the Rule 3 clearly 
holds, but hardness decreases, and the MH rule fails, in spite 
of using the VS values. Forming alkali hydride molecules 
(AH) from the atoms significantly reduces the hardness and 
contradicts MH. The large negative electronegativity dif-
ferences, − 5.00 < Δχ(R) < − 4.17 eV, overcompensate the 
positive bond energy differences ΔD(AH) > 0, themselves 
due to the extremely weak AH+ bonds, D(AH+) ≈ 0.05 eV 
[38, 39]. Other exceptional properties of the alkali hydrides 

Table 2   Formal bond orders, FBO, bond dissociation energies, D (P), D (P+), D (P−), their change, ΔD/D (P) = 2 − BOrel (P+) − BOrel (P−), and 
the hardness increase (from Ref. [13]) Δη (P) = η (P) − 〈η (R)〉AM

The energy and hardness are given in electron Volt units (eV); subscript a stands for adiabatic and subscript v for vertical. Unless identical, 
ground-state (GS) and valence-state (VS) data are assigned

P FBO (P) D (P) FBO (P+) D (P+) FBO (P-) D (P−) ΔD/D(P) Δηa; Δηv

H2 1 4.48 ½ 2.65 ½ n. a. n. a. 1.29 a; 2.76 v
Li2 1 1.046 ½ 1.44 ½ ≈ 0.88 − 0.22 − 0.11 a; + 0.05 v
Na2 1 0.737 ½ 0.96 ½ ≈ 0.44 0.10 0.02 a; 0.05 v
LiNa 1 0.87 ½ 0.99 ½ ≈ 0.69 0.07 − 0.04 a; + 0.02 v
LiH 1 2.425 0 0.114 ½ 2.003 + 1.13 − 0.63 a; − 0.64 v
N2 3 9.78 GS: 2½

VS: 2½
8.73
7.61

2½ ≈ 7.53 GS: + 0.34
VS: + 0.45

+ 1.63 v
+ 3.17 v

NO 2½ 6.50 GS: 3
VS: 2

10.85
4.44

2 5.05 GS: − 0.45
VS: + 0.54

− 1.98 v
+ 1.76 v

O2 2 5.116 GS: 2½
VS: 1½

6.663
4.03

1½ 4.094 GS: − 0.103
VS: + 0.41

− 0.262 v
+ 1.054 v

S2 2 4.37 GS: 2½
VS: 1½

5.37
3.52

1½ 3.95 GS: − 0.133
VS: + 0.29

− 0.29 v
+ 0.64 v

F2 1 1.602 GS: 1½
VS: ½

3.34
1.37

½ 1.28 GS: − 0.89
VS: 0.549

− 0.72 v
+ 0.95 v

Cl2 1 2.48 GS: 1½
VS: ½

3.95
1.50

½ 1.26 GS: − 0.10
VS: + 0.89

− 0.13 v
+ 1.10 v

IBr 1 1.82 1½
½

2.42
1.08

½ 1.12 GS: + 0.05
VS: + 0.87

+ 0.31 v
+ 1.18 v

C2H6 1 3.87 ½ n. a. ½ n. a. VS: n. a.  + 2.15 v
(see text)



Theoretical Chemistry Accounts (2020) 139:54	

1 3

Page 7 of 9  54

have been already documented by Pauling [40]. The impact 
of the electronegativity difference between the reactants on 
the MH rule is discussed quantitatively in [13]. The MH rule 
is not well fulfilled in terms of GS hardness in association 
reactions. On the contrary, the MH rule is violated, as soon 
as (1) by generating P+ the electron is removed from an anti-
bonding MO, or (2) the additional electron on P− is placed 
into a bonding MO, which is unoccupied in neutral P, e.g., 
B2

− and B2. The rules and theorems presented here allow to 
understand the reasons of the successes and failures of both 
the maximum hardness and the electronegativity equaliza-
tion rules.

3 � Summary

Theoretical chemistry has been built on three pillars: quan-
tum mechanics, thermodynamics and statistical mechanics 
[41]. We here emphasize the role of thermodynamics in gen-
erating new rules and theorems. New combinations of the 
fuzzy concepts of bond order, valence states, electronegativ-
ity and chemical hardness improve the understanding of the 
concepts in their contexts and the structural rules and princi-
ples connected to them. To broadly validate electronegativ-
ity equalization (ENE) and maximum hardness (MH), it is 
necessary to involve the concepts of bond order and valence 
states; otherwise, confusions and doubts are generated and 
too many exceptions to the rules are found. Conceptual DFT 
should accommodate valence-state energies as planned long 
ago by Parr and Yang [1]. Changes in external potential, v 
(r), during the reaction are absorbed in the thermochemical 
cycles and do not interfere with the ENE and MH rules. 
Therefore, a restriction to vertical ionization energies and 
electron affinities in the context of these rules is not manda-
tory. The present work explains why the overall accuracy 
of valence-state ENE is about an order of magnitude bet-
ter than that of the ground-state ENE. The thermochemical 
cycles further show that the reduction in the bond order by 
ionization is an important condition for hardness increase in 
association reactions, X + Y → XY.
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Appendix

Electronegativity, the power of an atom in the molecule 
(AiM) to attract electrons to itself, [40, 42] represents the 
most frequently applied ordering concept of chemistry. The 
electron configuration of the AiM differs from that of the 
free atom in its ground state, e.g., a diatomic molecule, XY, 
can contain various neutral and/or ionic valence structures. 
The structures must fulfill the strict Wigner–Witmer cor-
relation rules, which establish symmetry constraints on 
bond formation and breaking [15, 16]. The electron pair 
bond between two atoms, X and Y, is described by three 
valence structures, a covalent structure, X:Y, where the 
pair is equally shared between the atoms, and the two ionic 
structures, X+ :Y− and X:− Y+, with the pair fully shifted 
to the respective anion, :Y− or X:−. Thereby, the valencies 
V of the AiM’s, X and Y, are each reduced to V − 1. This 
characterizes the Mulliken’s VS ionization energy from a 
half-filled atomic orbital, IVS(X, i), and the electron affinity, 
AVS(X, i), the energy gained by adding a second electron to 
the same half-filled orbital i [6–13]. The bond energy, D, is 
partitioned in contributions by ionic and covalent structures 
with the weights cj

2 (j = 1–3)

Mulliken postulated the absolute atomic electronega-
tivities as equal, χ (X) = χ (Y), if and only if c1

2 = c2
2 ≠ 0. 

The postulate defines Mulliken’s absolute electronegativity 
(“electroaffinity”) [6–13] for the AiM, X, as

The concept of charge-dependent electronegativity, which 
is equalized by bond formation and charge transfer, has been 
launched by Sanderson [21, 22]. It has been further devel-
oped and expressed in terms of the VB and MO theories 
[8–13, 23–25, 33, 43–45]. In the concept of charge-depend-
ent orbital electronegativity, the energy, EVS(X, ni), of an 
AiM is differentiable with respect to the orbital occupation 
number, ni,

At ni = 1, the value is identical to Mulliken’s expression 
[6]

(28)
D(X − Y) = c2

1
D
(
X+ ∶ Y−

)
+ c2

2
D
(
X ∶− Y+

)
+ c2

3
D(X ∶ Y)

(29)�M(X) =
[
IVS(X) + AVS(X)

]

(30)�VS

(
X, ni

)
= −[�EVS

(
X, ni

)
∕ �ni]

(31)
�VS

(
X, ni = 1

)
= −

[
�E

(
X, ni

)
∕ �ni

]
n=1

=
[
IVS(X, i) + AVS(X, i)

]

http://creativecommons.org/licenses/by/4.0/
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Generalizing Eq. (30) to molecules, Parr and others [1–3, 
24–26] considered the N0 electrons of a neutral chemical 
species, S, in its ground state. The negative value of the 
electronic chemical potential, μ (S), itself the partial deriva-
tive of the total electronic energy, EGS (S, N, v(r)), has been 
postulated as the “absolute electronegativity” of S

The total electronic energy can be treated as a continuous 
function of the electron number, N, if and only if the external 
potential, v(r), is held constant by clamping the nuclei at 
fixed positions [1–3, 24–28]. Parr and others approximated 
the total GS electronic energy, EGS, by a simplified DFT 
model [1–3, 24–28] dubbed the ground-state parabola (GS 
parabola) [25]

where Q = N0 − N is the net charge of S. The “absolute” 
ground-state electronegativity, χ0 (S), is here the negative 
of an operational chemical potential, µop (S),

and I0,v (S) and A0,v (S) are the vertical GS ionization energy 
and electron affinity, respectively. Conceptual DFT is hereby 
directly based on measurable ground-state properties of 
isolated atoms and molecules. For atoms, there is no dif-
ferentiation between vertical (v) and adiabatic (a) values. 
For molecules, vertical values are essential in DFT models, 
as only vertical processes keep the external potential, v(r), 
frozen as required by DFT [1–3, 24–28]. Extended lists of 
atomic and molecular ground-state data (I0,v, A0,v, χ0, η0) are 
available in Refs. [1, 3, 6–12, 46–48]. Parr et al.’s far reach-
ing generalization [1–3, 24–26] of Sanderson’s principle 
postulates, when atoms of initially different �0(S) combine 
to a molecule, their electronegativities will be equalized to 
an average value, preferably their geometric average, 〈〉GM,

The generalized principle has been called the Sander-
son–Parr principle [11, 23]. However, recent large-scale 
empirical examinations unveiled alarmingly large deviations 
from ground-state ENE (GS-ENE) [11, 12, 23]. The main 
text of the present article sheds new light on the reasons for 
the large deviations. Conceptual DFT should accommodate 
the VS energies as planned long ago by Parr and Yang [1].

Parr and Pearson originally defined the chemical hardness 
of a species S by

(32)�(S) = −�(S) = −
[
�EGS(S, N, v(�)) ∕ �N

]
v(�), No

(33)EGS(S, Q) = EGS

(
S, N0

)
+ �0(S)Q + 1∕2�0(S)Q

2

(34)�0(S) =
1

2

[
I0,v(S) + A0,v(S)

]
= −�op(S)

(35)�0

(
Smol

)
=

⟨
�0

(
Sat

)⟩
GM

(36)
�0(S) = 1∕2

(
�2EGS(S, N) ∕ �N

2
)
v(�), No

= 1∕2
[
I0,v(S) − A0,v(S)

]

as the companion parameter to GS electronegativity χ0 (S) 
[1, 3, 26–28]. The factor ½ has been later frequently omitted, 
but is kept here for better comparison with the VS hardness.

Recently, the exclusively atomic VS electronegativity—
presented in Eq. (31)—has been extended to molecules, XY 
[11, 12]. In reference to Mulliken’s “electroaffinity scale,” 
the new scale is called “valence-pair-affinity,” VPA, sym-
bolized by αVP [11–13]. The VPA is a charge-dependent 
pair sharing power based on Ruedenberg’s bond theory 
[14] emphasizing the role of electron pair population. For 
given VS atoms and their ions as reactants, the relevant 
product states of XY, XY+ and XY− are determined by the 
Wigner–Witmer symmetry rules [15, 16]. The energy differ-
ence between, say, XY and XY+ is obtained from (1) theo-
retical calculations, e.g., [46, 47], (2) molecular photoelec-
tron spectra, e.g., [46–49]. The vertical ionization energy 
is assigned to the electron removal from a particular bond, 
b, and denoted Ib,v (XY, b). The bond may be specified in 
complex molecules as σ-, π-, δ-bond, according to the local 
symmetry behavior with respect to the particular bond. The 
molecular A0,v (XY) values are also defined in agreement 
with the Wigner–Witmer constraints. The valence-pair-
affinity, αVP(XY, b), of a bond, b, formed by the orbitals i of 
X and j of Y, is the VS counterpart of χ0 (XY)

The VPA function is thus a specific charge-dependent 
generalization of Mulliken’s χVS to bonds. The companion 
parameter of the valence-pair-affinity is the VS hardness

The factor ½ is an intrinsic difference between the second 
partial derivatives of VS and GS energies.
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