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Abstract
The performance of the recently developed multi-reference extension of ring coupled cluster doubles is investigated for 
dispersion energy calculations, applied to the generalized valence bond wave function. The leading-order contribution to 
the dispersion energy is shown to have the correct asymptotic behaviour. Illustrative calculations on noble gas dimers are 
presented.
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1  Introduction

Calculation of dispersion energy between atoms or mol-
ecules is a long-standing problem of quantum chemistry. 
Physically, dispersion interaction arises from the charge den-
sity fluctuations of the subsystems, leading to weakly bound 
states between, for example, closed-shell partners even if 
they lack permanent electric moments. The importance of 
dispersion interaction in both chemical and biological sys-
tems cannot be overemphasized.

For two subsystems at a large separation distance R, the 
asymptotic dispersion energy is manifested as [1]

provided that R is not large enough for retardation effects 
to become noticeable. The dispersion coefficient C6 can be 
expressed in terms of the frequency-dependent polarizabil-
ity (FDP) of each subsystem. Providing an equally accurate 
description of dispersion both in the equilibrium and in the 
asymptotic regime has remained a challenge for electronic 
structure methods to this day.

Mean-field methods, such as Hartree–Fock (HF), cannot 
even qualitatively account for dispersion; such phenomena 
are usually introduced via correlation corrections, obtained, 
for example by perturbation theory (PT). Szabo and Ost-
lund showed [2] that a supermolecular Møller–Plesset PT2 
(MP2) calculation gives rise to dispersion energy exhibiting 
the correct asymptotic behaviour [i.e. conforming (1)], but 
with C6 calculated only at the level of uncoupled HF [3]. An 
alternative of the supermolecule approach is the symmetry-
adapted perturbation theory (SAPT) of Jeziorski et al. (see 
Ref. [4] and references cited therein), in which the intersys-
tem interaction is treated as perturbation. The relationship 
between supermolecular MP and SAPT has been investi-
gated in detail [5].

The quality of the supermolecular approach can be 
improved by applying corrections more involved than MP2, 
e.g. the all-order inclusion of direct ring-type Goldstone dia-
grams (and possibly certain kinds of exchange ring diagrams) 
[6]. In the random phase approximation (RPA), the effect of 
these diagrams can be easily taken into account. Different vari-
ants of RPA (distinguished by the different degrees of includ-
ing exchange diagrams) improve quantitatively on the MP2 

(1)Edisp. ≈ −
C6

R6
,
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results, but not all of them lead to a correct expression for the 
dispersion coefficient [2, 7].

Another way to include higher-order diagrams in the energy 
is through coupled cluster (CC) [8, 9]. The CC method with 
single, double and perturbative triple excitations (CCSD(T)) 
[10] yields essentially exact results for intermolecular inter-
actions and is often used as benchmark in such cases. The 
CC model also provides a way to sum up only ring diagrams. 
The ring CCD (rCCD) approach, originally introduced by 
Čížek [11], is a computationally less demanding alternative to 
CCSD(T), scaling as O(n6) (in some cases O(n5) [12]) instead 
of O(n7) (n being the number of basis functions). The formal 
equivalence of certain kinds of RPA and rCCD methods has 
been noticed by many [6, 11–13].

RPA and rCCD have recently seen a renewed interest in the 
context of density functional theory [14–16], since correlation 
energy functionals derived from RPA can serve to construct 
post-Kohn–Sham models [17] and can account for dispersion 
effects. Development of new methods (e.g. RPA+SOSEX 
[18, 19] or renormalized PT2 [20]) and refinement of exist-
ing ones (e.g. inclusion of explicitly correlated terms in rCCD 
[21]) have been reported. The combination of range-separated 
hybrid functionals with RPA/rCCD has also proved to be a 
successful method for calculating dispersion energy [22, 23].

Dispersion interaction is a result of the dynamic (weak) part 
of electron correlation. It is still interesting to investigate the 
performance of multi-reference (MR) methods (developed to 
give reasonable results for strongly correlated systems) when 
it comes to calculating weak interactions. This is the purpose 
of the present study.

MR methods assume a multi-determinantal reference func-
tion. The reference function we are concerned with in this 
work is the antisymmetrized product of strongly orthogo-
nal geminals (APSG) [24]. The APSG wave function for an 
N-electron singlet system (N being even) is constructed using 
two-electron functions (geminals) with a handful of orbitals 
assigned to each of them. The strong orthogonality condition 
implies the mutually disjoint distribution of orbitals among 
the geminals [25]. The wave function takes a product form:

with

Here, �vac⟩ is the true vacuum, a†
p�

 is the creation operator of 
spatial orbital �p with spin � and P is the index of the gemi-
nal �p belongs to. We arrive at a particularly simple wave 
function if each geminal consists of at most two orbitals; this 
choice defines the generalized valence bond (GVB) method 

�APSG⟩ =
N∕2�

P=1

�
†

P
�vac⟩,

�
†

P
=
∑

p∈P

cpa
†
p�
a
†

p�
.

[26]. We work on the basis of natural orbitals diagonaliz-
ing the one-particle reduced density matrix. The geminal 
coefficients obey the relation |cp|2 = np , where np ∈ [0, 1] 
is the occupation number. For later use, we also introduce 
the hole occupation number n̄p = 1 − np . During an APSG 
calculation, geminal coefficients and orbitals are optimized 
simultaneously. The intrageminal part of electron correlation 
is taken into account, while the intergeminal interaction is 
treated in a mean-field manner. While APSG usually pro-
vides a good starting point for the description of left–right 
correlation, it is no better at calculating dispersion energy 
than HF. Various correction schemes applied to APSG can, 
however, tackle this problem. The APSG-based linearized 
CC of Zoboki et al. was shown to give very accurate results 
for a He dimer [27]. The extended RPA for APSG (APSG-
ERPA) developed by Pernal et al. [28, 29] was also shown 
to account for a great portion of dispersion energy; later this 
approach was further refined by electron-groups embedding 
[30, 31].

We presented our approach to GVB-based correction 
methods in Ref. [32]: an MR extension of rCCD, formu-
lated in the internally contracted (ic) MR-CC framework of 
Mukherjee et al. [33]. The method greatly improves on GVB 
results in various scenarios (bond breaking, conformational 
barriers, etc.) and gives results somewhat similar to ERPA, 
although the formal RPA-rCCD correspondence does not 
hold anymore [34]. In this paper, we assess GVB-rCCD on 
the example of calculating interaction energy between noble 
gas atoms.

The rest of the paper is organized as follows: in Sect. 2, 
we demonstrate that in leading order the spin-orbital GVB-
rCCD energy shows the correct asymptotics, according to 
(1), and argue that the full rCCD energy correction shows a 
similar decay. In Sect. 3, a brief review of spin-free GVB-
rCCD is given, and numerical results are presented for the 
interaction energy of He2 and Ne2 . Conclusions are drawn 
in Sect. 4.

Atomic units are used throughout the paper.

2 � Asymptotic behaviour of GVB‑rCCD

Our ic-MR-CC formalism is based on the MR extension of 
the generalized normal ordering (denoted by  ::) and the cor-
responding generalized Wick theorem (MR-GWT) of Kut-
zelnigg and Mukherjee [35]. The correlated ground-state 
wave function is parametrized by a normal-ordered expo-
nential wave operator, originally proposed by Lindgren [36]:

where �Φ⟩ can be—in principle—any MR wave function, and

(2)�Ψ⟩ =∶ exp(T) ∶ �Φ⟩,
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with aAB
IJ

= a
†

A
a
†

B
aJaI . Indices I, J, K, L and A, B, C, D cor-

respond to arbitrary core/active and active/virtual spin 
orbitals, respectively (excluding a few ill-defined cases; see 
Sect. 3). The working equations are obtained by plugging 
(2) in the Schrödinger equation and projecting with ⟨Φ� , and 
⟨Φ� ∶ aIJ

AB
∶ . The resulting formulae are to be evaluated using 

the MR-GWT, leading to an expansion in terms of density 
cumulants. Due to the incredibly large number of terms gen-
erated by the MR-GWT, it is virtually impossible to pro-
ceed without further approximations. A way of arriving at a 
manageable set of equations is given by the MR extension 
of the ring approximation. Following the same procedure 
as in Ref. [32], one arrives at the spin-orbital variant of the 
MR-rCCD equations:

where AIJ = I − PIJ is the antisymmetrizing operator. The 
MR-rCCD equations (3) and (4) formally look just like their 
single-reference (SR) counterparts, but contain “dressed” 
one- and two-particle vertices F and V instead of “bare” 
vertices f (the Fockian) and ṽ (the antisymmetrized two-elec-
tron integral). The explicit form of these vertices is given in 
“Appendix 1”. The dressed vertices are functions of density 
cumulants and therefore contain a zeroth-order description 
of static electron correlation ( �Φ⟩ being MR). If �Φ⟩ happens 
to be a single Slater determinant, then all cumulants vanish, 
the dressed vertices fall back to bare ones, and the usual SR-
rCCD formulae are retrieved. Setting �Φ⟩ = �GVB⟩ defines 
GVB-rCCD.

Using the SR-like energy denominator

to solve (4) iteratively and plugging back the iterations into 
(3) leads to a PT-like expansion for the energy correction:

T =
1

4

∑

I,A
J,B

tIJ
AB

aAB
IJ
,

(3)
ΔE =

1

4

∑

I,A
J,B

VAB
IJ

tIJ
AB

nInJn̄
An̄B,

(4)

0 = VI J
AB

−
∑

K

AIJ
(
FJ
K
tIK
AB

)
nK +

∑

C

AAB

(
FC
B
tIJ
AC

)
n̄C

+
∑

K,C

(
VIC
AK

tKJ
CB

+ VJC
BK

tKI
CA

)
nKn̄

C

+
∑

K,C
L,D

tIK
AC

VCD
KL

tLJ
DA

nKnLn̄
Cn̄D,

(5)𝜖A
I
= n̄AFA

A
− nIF

I
I

(6)ΔE = −
1

4

∑

I,A
J,B

VAB
IJ

VI J
AB

𝜖A
I
+ 𝜖B

J

nIn̄
AnJn̄

B +⋯

Because of its formal similarity to a second-order PT energy, 
we shall refer to the first term on the rhs of (6) as E(2) . The 
connectedness of the formulae and the vertices ensures the 
extensivity of the method, provided that intersystem cumu-
lants vanish (which is always the case for closed-shell sub-
systems [37]).

The spin-orbital SR-rCCD energy correction is known to 
be somewhat “incomplete”: in its diagrammatic expansion, 
ring-type antisymmetrized Goldstone diagrams beyond sec-
ond order contain an extra factor of 1/2. This factor would 
be cancelled by the crossed-ring terms (with, for example, 
amplitudes tIK

CB
 ) missing in rCCD. An easy way to make the 

diagrams complete (without double counting E(2) ) is through 
the modified energy formula [6, 38] ΔẼ = 2ΔE − E(2) . The 
same reasoning applies to our spin-orbital MR-rCCD energy; 
however, we shall not pursue this question any further.

Most RPA/rCCD-like methods do not give a satisfactory 
description of long-range dispersion interactions [2, 23]: while 
they produce the correct ∼ 1∕R6 decay, the dispersion coef-
ficient C6 can rarely be expressed in terms of FDPs. We show 
here that the leading-order contribution of the GVB-rCCD 
energy exhibits the correct asymptotics and its dispersion coef-
ficient can be expressed in terms of FDP-like quantities. We 
believe that this result gives valuable insight into how cancel-
lations occur in the dressed vertices. We also argue that the 
∼ 1∕R6 decay holds for the complete GVB-rCCD energy as 
well, but without the correct form of C6 . The derivation follows 
closely the MP2 analysis of Szabo and Ostlund [2, 7] and can 
be thought of as a possible MR extension.

We start from E(2) , the leading-order energy in (6), and con-
sider singlet systems. After breaking up the spin-orbital indices 
to a spatial and a spin part (e.g. A = a� ), and using relations 
ni ∶= ni� = ni� and (27), one finds that the energy denomina-
tor is spin-independent: �a

i
∶= �a�

i�
= �

a�

i�
 . The summation over 

the remaining spin degrees of freedom can be then easily per-
formed with the help of (28). Utilizing the spin-free two-par-
ticle vertex Vab

ij
 (given in “Appendix 1”), E(2) takes the form:

We now consider a supersystem composed of two closed 
shell, electrically neutral atoms � and � separated at a large 
distance R. Orbitals are assumed to be localized on either � 
or � . Based on this, indices in (7) can be categorized, result-
ing in two intrasystem terms ( i, j, a, b ∈ � or i, j, a, b ∈ � ) 
and the remaining intersystem term:

Turning to the dispersion energy, the differential overlap of 
the subsystems is exponentially small, making most of the 

(7)E(2) = −
1

12

∑

i,j,a,b

Vab
ij

(
2V

ij

ab
+ V

ij

ba

)

𝜖a
i
+ 𝜖b

j

nin̄
anjn̄

b.

E(2) = E
(2)

�
+ E

(2)

�
+ E

(2)

disp
.
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intersystem integrals negligible. Intersystem cumulants also 
vanish due to the strongly orthogonal geminals being local-
ized on subsystems. Therefore, cases like (i, j ∈ �; a, b ∈ �) 
or (i, j, a ∈ �; b ∈ �) can be safely neglected. The only 
remaining cases are of the form

The expression of vertex Wab
ij

 is given as

and

Using the partial trace relation [39, 40]

it is easy to see that Ωa
i
(r) integrates to zero for all i, a:

Quantities Wij

ab
 , Ωi

a
(r) appearing in the asymptotic limit of 

V
ij

ab
 can be obtained analogously to the above. Based on 

“Appendix 1”, the relation of Vij

ab
 and Vab

ij
 is Hermitian con-

jugation, and the same holds for Wij

ab
 and Ωi

a
(r).

Substituting (8), (9) and their Hermitian conjugate into 
(7) gives

We shall now make use of the multipole expansion of the 
Coulomb potential:

with n being a unit vector parallel to R = R
�
− R

�
 and 

r = r
�1 − r

�2 being the difference of electronic coordinates 
measured from the nuclei.

(8)(i, a ∈ �; j, b ∈ �) → Vab
ij

≈ 4Wab
ij
,

(9)(j, a ∈ �; i, b ∈ �) → Vab
ij

≈ −2Wab
ji
.

(10)

Wab
ij

= vab
ij
+

1

2

∑

p,q

(
1

nin̄
a
v
bq

jp
Λ

ap

iq
+

1

njn̄
b
v
aq

ip
Λ

bp

jq

)

+
1

4

1

nin̄
anjn̄

b

∑

p,q,r,s

vqs
pr
Λ

ap

iq
Λbr

js

= ∫ d3r1 ∫ d3r2

Ωa
i
(r1)Ω

b
j
(r2)

|r1 − r2|
,

Ωa
i
(r) = 𝜙∗

i
(r)𝜙a(r) +

1

2nin̄
a

∑

p,q

Λ
ap

iq
𝜙∗
p
(r)𝜙q(r).

∑

p

Λ
ap

ip
= −2𝛿a

i
nin̄

a,

(11)∫ d3rΩa
i
(r) = 𝛿a

i
+

1

2nin̄
a

∑

p

Λ
ap

ip
= 0.

(12)E
(2)

disp
≈ −4

∑

i,a∈�
j,b∈�

Wab
ij
W

i j

a b

𝜖a
i
+ 𝜖b

j

nin̄
anjn̄

b.

(13)

1

|r1 − r2|
=

1

|r − R| =
1

R
+

n ⋅ r

R2
+

3(n ⋅ r)2 − r2

2R3
+O(R−4),

Inserting (13) into (10), the appearance of anomalous terms 
proportional to 1/R or 1∕R2 in Wab

ij
 is prevented by (11). Keep-

ing only the first non-vanishing term yields

where � = I − 3n⊗ n is a symmetric matrix ( ⊗ being the 
dyadic product of the 3-vectors) and �a

i
 can be interpreted 

as the transition dipole moment with a cumulant correction:

In the above, Ea
i
= aa�

i�
+ a

a�

i�
 is a spin-free excitation opera-

tor. As before, the cumulant-corrected transition dipole �j

b
 

is the Hermitian conjugate of �b
j
.

Substituting (14) and its Hermitian conjugate into (12), we 
have E(2)

disp
≈ −C6∕R

6 , with the coefficient C6 given by

Assuming the positivity of �a
i
 (as argued in “Appendix 3”), 

we can use the identity

to obtain the final form of C6 , reading as

where orbitals were taken to be real for simplicity, and we 
introduced the FDP-like quantities:

For isotropic subsystems, �
�
(i�) must be proportional to 

the unit tensor: �
�
(i�) = �

�
(i�)I . Using this together with 

Tr[�2] = 6 allows us to write (16) as

The obtained expressions are formally similar to the PT-
based formulae of Szabo and Ostlund [2], but involve cumu-
lant-dependent quantities, such as �a

i
 or �

�
(i�).

As it was demonstrated in this section, dressed verti-
ces show the proper asymptotic behaviour, just like their 

(14)Wab
ij

≈
1

R3
�
a
i
��

b
j
,

(15)

�
a
i
= −∫ d3r� Ωa

i
(r�)r� =

1

2nin̄
a

⟨
GVB|� ∶ Ea

i
∶ |GVB

⟩
.

C6 = 4
∑

i,a,∈�
j,b∈�

nin̄
anjn̄

b

𝜖a
i
+ 𝜖b

j

(�a
i
��

b
j
)(�i

a
��

j

b
).

1

𝜖 + 𝜖�
=

2

𝜋

∞

∫
0

d𝜔
𝜖𝜖�

(𝜖2 + 𝜔2)(𝜖�2 + 𝜔2)
(𝜖, 𝜖� > 0),

(16)C6 =

∞

∫
0

d�

2�
Tr
[
�
�
(i�)��

�
(i�)�

]
,

�
�
(i𝜔) = 4

∑

i,a∈�

𝜖a
i
nin̄

a

(𝜖a
i
)2 − (i𝜔)2

�
a
i
⊗ �

i
a
.

C6 =
3

�

∞

∫
0

d��
�
(i�)�

�
(i�).
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bare counterparts. Based on this, one could continue the 
analysis and investigate the asymptotics of the full rCCD 
equations (3) and (4); while the ∼ 1∕R6 decay could be 
argued this way, the coefficient C6 would not exhibit the 
form of (16) involving FDPs.

3 � Numerical results for noble gas dimers 
in spin‑free formalism

Numerical applications presented in this work adopt a 
spin-free formulation of GVB-rCCD facilitated by the 
Unitary Group Approach (UGA) [41], as described in Ref. 
[32]. The SR ring approximation is not invariant to the 
various alternative treatments of spin during the derivation 
of equations. The situation is analogous in the MR case, 
spin-orbital and UGA parametrizations of GVB-rCCD 
being non-equivalent. The major findings of Sect. 2, how-
ever, hold for the UGA case as well, the only difference 
being that the second-order approximation of the disper-
sion energy is 5/4 times that of (12). In the following, 
we give a brief account of GVB-rCCD(UGA) used for 
obtaining the pilot results. The cluster operator is para-
metrized as

with tij
ab

= t
ji

ba
 . Indices i, j, k, l and a, b, c, d belong to core/

active and active/virtual spatial orbitals, respectively. The 
energy formula reads:

and the amplitude equation takes the form:

where

The algebraic expressions of spin-free vertices are given in 
“Appendix 1”.

There are two technical issues to address when solving 
(19). The first is the redundancy of excited states used for 
projection, which is presently handled based on the concept 
of frames [42, 43]. The associated numerical threshold for 
identifying zero eigenvalues of the overlap matrix is set to 

(17)T =
1

2

∑

i,j,a,b

t
ij

ab

∑

�,��

aa�b�
�

i�j�� =
1

2

∑

i,j,a,b

t
ij

ab
Eab
ij
,

(18)ΔE =
∑

i,j,a,b

Bab
ij

t
ij

ab
ninjn̄

an̄b,

(19)

0 = B
i j

a b
+ 2

∑

k,c

(
tik
ac
A
cj

kb
+ Aic

ak
t
kj

cb

)
+ 4

∑

k,c,l,d

tik
ac
Bcd
kl
t
lj

db
nknln̄

cn̄d,

Bab
ij

=
1

2
Vab
ij
,

A
aj

ib
=

1

2

(
F a

b
𝛿
j

i
n̄a − F

j

i
𝛿a
b
ni + V

aj

ib
nin̄

a
)
.

smin = 10−10 . The second issue concerns the removal of cer-
tain kinds of excitations which could otherwise make the 
vertices and thus the amplitudes singular. To prevent this, an 
excitation selection scheme has been set up: excitation Eab

ij
 

is allowed in (17) only if 

	 (i)	 nin̄
a > 1∕4 for i ≠ a and I = A ,

	 (ii)	 nin̄
b > 1∕4 for i ≠ b and I = B ,

	 (iii)	 njn̄
a > 1∕4 for j ≠ a and J = A ,

	 (iv)	 njn̄
b > 1∕4 for j ≠ b and J = B ,

	 (v)	 ni > 1∕2 for i = j ,
	 (vi)	 n̄a > 1∕2 for a = b ,

calligraphic letters denoting geminal indices. All other exci-
tations (including spectators, such as Eaj

ij
 ) are allowed. The 

above constraints can be introduced in the results of Sect. 2 
without any problem. Restricting the excitations this way 
does not violate size consistency.

GVB-rCCD(UGA) dispersion energy curves are pre-
sented for He2 and Ne2 . The results are compared to the 
GVB-ERPA method of Pernal et  al. [28, 29], and HF-
CCSD(T) is used as benchmark. Calculations based on the 
GVB reference were performed by the Budapest version of 
the MUNGAUSS program package [44], and HF-CCSD(T) 
was calculated with the Gaussian 09 software [45]. Calcu-
lations were carried out using the Dunning aug-cc-pVDZ 
atomic basis set [46] (with five d-orbitals).

All calculations assume GVB natural orbitals, with gem-
inals consisting of two orbitals, except for core geminals 
(having only one orbital).

In reporting the results, Edisp stands for the total energy 
of the supersystem minus total energies of the subsystems, 
computed according to the Boys–Bernardi scheme [47]. 
Total energy is calculated as the sum of the GVB energy 
and ΔE of (18).

Equilibrium atomic distances and the corresponding 
dispersion energies are given in Table 1, while Figs. 1 
and 2 show the dispersion energy curves for He2 and Ne2 , 
respectively. Just like HF, GVB cannot describe disper-
sion interactions, resulting in non-bonding energy curves. 
GVB-ERPA and GVB-rCCD(UGA) improve significantly 
on this situation, although the results are far from per-
fect. While GVB-ERPA underestimates the dispersion 
energy in both cases, GVB-rCCD(UGA) overestimates it, 
although to a somewhat lesser extent. A more significant 
difference shows up in the equilibrium atomic distances: 
GVB-ERPA overshoots by 0.4 bohr in each case, while 
GVB-rCCD(UGA) reproduces the benchmark CCSD(T) 
value to the digits displayed in Table 1.

Deficiencies of GVB-ERPA have been noted before in 
describing weak interaction, and electron-groups embed-
ding has been suggested as a cure (GVB-EERPA) [30, 31]. 
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It was also demonstrated that GVB-EERPA represents a 
significant improvement over GVB-ERPA in such situa-
tions. Comparison with GVB-ERPA is warranted here, 
since this unamended version represents the theory paral-
leling GVB-rCCD which is of prime interest in this study.

4 � Conclusions

A recently proposed GVB-rCCD method built with dressed 
vertices (20) and (21) has been investigated concerning the 
calculation of dispersion interactions of noble gas dimers. An 
analytical inspection has revealed that the GVB-rCCD dis-
persion energy follows the correct ∼ 1∕R6 asymptotic decay, 
and in the leading order of the energy, the dispersion coeffi-
cient can be expressed in terms uncoupled FDPs that involve 
a dressing taking into account the MR character of the refer-
ence function. Pilot numerical tests of full GVB-rCCD result in 
dispersion energies and equilibrium atomic distances in fairly 
good agreement with benchmark data.

Analysis of the R → ∞ asymptotics of the full GVB-rCCD 
scheme is warranted as a continuation of this study since an 
expression of the form of (16) may arise with improved FDPs 
[2, 15], depending on the incorporation of exchange terms in 

the equations. Our current formulation is not favourable in this 
respect. Investigation in the line of GVB-rCCD variants yielding 
a C6 expressed with coupled FDPs is deferred to a follow-up study.

Improving upon the correlation content of the equations, 
i.e. stepping beyond the ring approximation, is a further line of 
research for the future. This can be done by a systematic inclu-
sion of a couple of types of non-ring diagrams, expressed with 
dressed vertices. Derivation and testing of these more involved 
MR-CC schemes shall be the subject of a forthcoming paper.
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Table 1   Equilibrium atomic distances and interaction energies 
Eint = Edisp(Rmin) for He2 and Ne2 , calculated on the aug-cc-pVDZ 
basis set

He
2

Ne
2

R
min

/bohr E
int

/mE
h

R
min

/bohr E
int

/mE
h

HF-CCSD(T) 6.0 – 0.0186 6.4 – 0.0461
GVB-ERPA 6.4 – 0.0101 6.8 – 0.0248
GVB-rCCD(UGA) 6.0 – 0.0244 6.4 – 0.0529

Fig. 1   Dispersion energy of He
2
 , calculated on the aug-cc-pVDZ 

basis set

Fig. 2   Dispersion energy of Ne
2
 , calculated on the aug-cc-pVDZ 

basis set
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Appendix 1: Vertices appearing 
in the MR‑rCCD equations

T h e  b a r e  v e r t i c e s  a r e  f
q��

p� = f
p
q �

��

�
 a n d 

ṽ
q𝜎�s𝜎���

p𝜎r𝜎�� = v
qs
pr𝛿

𝜎�

𝜎
𝛿𝜎

���

𝜎�� − v
qs
rp𝛿

𝜎�

𝜎��𝛿
𝜎���

𝜎
 , with

Indices p, q, r, s correspond to arbitrary spatial orbitals.
The spin-orbital dressed vertices read at the one-par-

ticle level:

and at the two-particle level:

f q
p
= hq

p
+
∑

r

v̄qs
pr
nr,

hq
p
= ∫ d3r𝜙∗

p
(r)

(
−
1

2
∇2 −

∑

�

Z
�

|r − R
�
|

)
𝜙q(r),

vqs
pr
= ∫ d3r1 ∫ d3r2 𝜙

∗
p
(r1)𝜙

∗
r
(r2)

1

|r1 − r2|
𝜙s(r2)𝜙q(r1),

v̄qs
pr
= 2vqs

pr
− vqs

rp
.

(20)

𝜁U𝜁
XFX

U
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Xf X
U
−
∑

P,Q

f
Q

P
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−
1
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𝜁Xṽ

XQ

PR
𝜆PR
UQ

+ 𝜁Uṽ
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𝜆
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)

−
1

4

∑

P,Q,R,S

ṽ
QS

PR
𝜆PRX
QSU

,

(21)

𝜁
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+
∑

P

[
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)
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U
f
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+
1
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W
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−
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A
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(
𝜁
U
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)

+
1
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ṽ
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PR
𝜆PR
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∑
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ṽ
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A
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(
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−
1

2
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ṽ
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[
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(
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)
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(
𝜆PR
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∑

P,Q

f
Q

P
𝜆XYP
UWQ

+
1

2
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[
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(
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.

Indices P, Q, R, S correspond to arbitrary spin orbitals, and 
� denotes the spin-orbital cumulants [35, 39]. In this paper, 
we distinguish between indices corresponding to core/active 
(I, J, K, L) and active/virtual (A, B, C, D) orbitals. Differ-
ent dressed vertices belong to the different combination of 
indices, distinguished by the values � takes:

The spin summation of (20) and (21) yields the spin-free 
dressed vertices:

and

(22)𝜁U =

{
−nU if U ∈ {I, J,K, L}

n̄U if U ∈ {A,B,C,D}.

(23)

�u�
xFx
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= �u�

x
∑

�
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= 2�u�
xf x
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−
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,

(24)
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p
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Function � in the above is the analogue of (22), with all 
orbital indices in lower case. Spin-free cumulants are 
denoted by Λ ; see “Appendix 2” for the corresponding 
formulae.

In order to make the arguments of “Appendix 3” easier to 
follow, we give the explicit formulae for F  with both indices 
being either core/active or active/virtual type:

For singlet systems, the relation between spin-orbital tensors 
invariant under spin rotations and their spin-free counter-
parts was established by Shamasundar (originally discussed 
in the context of density matrices and cumulants) [40, 48]. 
The same kind of formulae is applied to the dressed vertices 
as well:

and

The vertices are invariant to spin-flip, and they vanish in all 
spin non-conserving cases.

Appendix 2: The structure of spin‑free GVB 
cumulants

The calculation of dressed vertices (23)–(26) requires 
cumulants up to rank four. Computation and storage of 
such a cumulant (having eight indices running through all 
active orbitals) would be computationally too demanding, 
for example, for a CAS-type reference function. Strongly 
orthogonal geminal functions, on the other hand, offer a 
relatively simple and economic way to generate cumulants. 
Strong orthogonality implies the vanishing of all cumulant 
elements with indices belonging to different geminals [39]: 
for GVB, this condition renders the maximal number of 
nonzero elements in ΛK to only N22K−1 . Because of strong 
orthogonality, cumulant terms in (23)–(26) are actually less 

(25)

nin
jF

j

i
= 2nin

jf
j

i
−
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p,q

f q
p
Λ
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+
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pr
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pr
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pr

)

−
1

2

∑
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Λ

prj

qsi
,

(26)
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aFa

b
= 2n̄bn̄

af a
b
−
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p,q

f q
p
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qb
−
∑

p,q,r

(
n̄avaq

pr
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pr
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−
1
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.

(27)Fa�
i�

=
1

2
Fa

i
,

(28)Va�b�
i�j�

=
1
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(
Vab
ij
− Vab

ji

)
, V

a�b�

i�j�
=

1

6

(
2Vab

ij
+ Vab

ji

)
.

expensive to calculate than SR terms, leading to GVB-rCCD 
exhibiting the same computational scaling as SR-rCCD.

Here, we give the spin-free expressions of GVB cumulants 
up to rank three:

The expression of the rank four cumulant ( Λ4 ) is too lengthy 
to be presented; it can be, however, easily manipulated with 
the aid of symbolic algebra codes.

Appendix 3: On the positivity of �a

i

In Sect. 2, when expressing C6 in terms of FDP-like quantities 
(see (16)) we assumed the positivity of �a

i
 (defined in (5)), 

a statement supported by numerical results for GVB, tested 
in various (e.g. bond breaking) scenarios. While we cannot 
prove this statement in an exact way, we can provide some 
formal rationalization based on certain reasonable assump-
tions concerning the diagonal elements of the GVB Fockian: 
f
p
p  is assumed to be negative if orbital p is strongly occupied 

( np ≲ 1 ) and positive (or negative with a very small absolute 
value) if p is weakly occupied ( np ≳ 0 ). Furthermore, GVB 
geminals consist of two orbitals, here denoted as i, i� ∈ I  and 
a, a� ∈ A , so that ni + ni� = na + na� = 1 . With the help of 
(27), �a

i
 of (5) can be written equivalently as

Using the explicit form of the GVB �2 and �3 given by (29) 
and (30), one can express (25) and (26) as

(29)
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In the above, we made use of the fact that the coefficients of 
orbitals i and i′ have opposite signs (the same applying to a 
and a′ ). Real orbitals are assumed.

We shall analyse these expressions in two limiting cases: 
the HF-like case (one orbital in the geminal is strongly occu-
pied, and the other is weakly occupied) and the case of the 
dissociating geminal (both orbitals in the geminal having the 
same occupation). We have:

We used the fact that in the dissociating regime f i
i
≈ f i

�

i�
 and 

vii
ii
≈ vi

�i�

i�i�
≈ vii

�

ii�
 (and similar relations for a). Note that in the 

weakly interacting case considered in this paper, geminals 
are localized on subsystems. A dissociating geminal is 
assumed to be part of the subsystem, e.g. a molecule with 
stretched geometry. In this paper, the case ni ≈ 1∕2 does not 
appear, all subsystems being closed-shell atoms.

All two-electron integrals appearing in (31)–(36) are posi-
tive. The two-electron contribution is small compared to the 
Fockian part around equilibrium geometry, while it is the other 
way around in the dissociating regime. Based on these equa-
tions and our initial assumption concerning the sign of f pp  , 
one can argue the positivity of �a

i
 . In, for example, (32), 2f i′

i′
 

is expected to give the (large negative) dominant contribu-
tion. The positivity of the dominant contribution in (35) can 
be argued similarly, leading to the positivity of �a

i
 , despite �i 

and �a being weakly and strongly occupied, respectively. As 
a further example, let us assume a dissociating geminal with 
I = A , i ≠ a and ni ≈ na ≈ 1∕2 . Then i� = a and a� = i . Using 
(33) and (36), �a

i
 reads:

(31)ni ≈ 1 →

1

2
niF

i
i
≈ f i

i
,

(32)ni ≈ 0 →

1

2
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i
i
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i
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�
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−
(
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)
,

(33)
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+
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−
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(
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)
,

(34)n̄a ≈ 1 →

1

2
n̄aFa

a
≈ f a

a
,

(35)
n̄a ≈ 0 →

1

2
n̄aFa

a
≈ −f a

a
+ 2f a

�

a�
+
(
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�a�

a�a�
+ vaa
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,

(36)
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→
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�a
i
≈ vii

ii
+ vaa

ii
≥ 0.
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