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Abstract
We combine multi-reference ab initio calculations with UV–VIS action spectroscopy to study photochemical activation of 
 CO2 on a singly charged magnesium ion,  [MgCO2(H2O)0,1]+, as a model system for the metal/ligand interactions relevant in 
 CO2 photochemistry. For the non-hydrated species, two separated  Mg+ 3s–3p bands are observed within 5.0 eV. The low-
energy band splits upon hydration with one water molecule. [Mg(CO2)]+ decomposes highly state-selectively, predominantly 
via multiphoton processes. Within the low-energy band,  CO2 is exclusively lost within the excited state manifold. For the 
high-energy band, an additional pathway becomes accessible: the  CO2 ligand is activated via a charge transfer, with pho-
tochemistry taking place on the  CO2

– moiety eventually leading to a loss of CO after absorption of a second photon. Upon 
hydration, already excitation into the first and second excited state leads to  CO2 activation in the excited state minimum; 
however,  CO2 predominantly evaporates upon fluorescence or absorption of another photon.
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1 Introduction

The accurate theoretical description of electronically excited 
states remains a very difficult but important task for many 
applications including photocatalysis, [1] light harvesting, 
[2] photostability, [3, 4] photosensitizers, [5–9] and many 
more [10]. Already the description of absorption spectra 
might represent a challenge, e.g., when Rydberg states or 
charge-transfer excitations are encountered [10]. The com-
plexity is further enhanced outside the Franck–Condon 
(FC) region, where single-reference methods become insuf-
ficient due to state crossings and more demanding multi-
reference methods are needed [10–12]. Accurate description 

of conical intersections (CIs) represents an important task 
for the understanding of photochemical processes [13–16]. 
Another layer of difficulty is added in the case of theoretical 
investigations of metal complexes due to the presence of 
near-degenerate electronic states and relativistic effects [17].

Catalysis on metals has become a large focus in research 
due to their importance in, e.g., ammonia and methanol syn-
thesis, [18, 19] but also for photoactivation [1, 20]. Due to 
its atmospheric relevance, especially activation and trans-
formation of carbon dioxide are addressed in an increas-
ing number of recent studies [21–23]. The direct charge 
transfer of an electron onto  CO2 forming an activated bent 
 CO2

– could be a key step in the activation process. How-
ever, the  CO2

– ion itself is metastable [24–27] and has to 
be hydrated or attached to a metal center to gain stability 
[28–31]. Only recently, we revealed that hydration of only 
three water molecules already leads to activation of carbon 
dioxide forming a  CO2

– ligand on a  Mg2+ core [32, 33]. The 
combination of theory and UV–VIS spectroscopy provides a 
powerful tool for characterization of complicated processes 
in ionic metal complexes upon excitation [34]. With this 
approach, we investigated copper formate clusters relevant 
for carbon dioxide activation on copper centers in the ground 
state as well as electronically excited states [35–37].

Due to their intriguing charge-transfer chemistry in the 
ground state, hydrated magnesium ions  Mg+(H2O)n have 
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been studied extensively by theory and experiment [38–46]. 
Photodissociation spectroscopy of hydrated magnesium 
ions,  Mg+(H2O)n, provides a suitable model system and 
benchmark tool for theoretical calculations to investigate the 
hydrogen production on metal centers [47–51]. Theoreti-
cal investigations of  Mg+ complexes go back to 1991 [52, 
53]. Already in 1993, the group of Duncan found partial CO 
loss in [Mg(CO2)]+ after excitation within one of the two 
separated 3s–3p excitation bands of  Mg+, pointing toward 
activation of carbon dioxide within the excited state [54–56]. 
Whereas the character, vibrational assignment and splitting 
of these bands was well understood, the photochemical pro-
cess leading to the activation of the  CO2 ligand remained 
unclear due to computational limitations.

Here, we combine investigation of the excited state PES 
with photodissociation experiments in the gas phase to ana-
lyze the photochemical activation of  CO2 on a  Mg+ core 
with and without an additional water molecule.

2  Experimental and theoretical methods

The experimental gas-phase action spectra are obtained 
using FT-ICR mass spectrometry with the cell cooled to 
the temperature of about 80 K, see Supporting Informa-
tion for details. For quantum chemical calculations, we 
used the molecular structures published in Ref. [32] as a 
starting point. Structures in the ground electronic state are 
modeled using the Coupled Cluster Singles and Doubles, 
CCSD/aug-cc-pVDZ, level of theory. For excited state 
calculations, Equation of Motion CCSD, EOM-CCSD/
def2TZVP, and Multi-reference Configuration Interaction, 
MRCI/def2TZVP, single-point calculations are applied. The 
def2TZVP basis set is sufficient to describe the orbitals par-
ticipating in the photochemistry of the system as no Rydberg 
states are observed among the low-lying excitations. An 

active space of seven electrons in nine orbitals (7,9) was 
employed. It includes the valence 3s electron of  Mg+ and 
six electrons of the  CO2 ligand which are important for 
description of the bending coordinate; nine orbitals allow 
for inclusion of up to six doublet electronic states. Relaxed 
excited state potential energy surface scans are performed on 
the Complete Active Space Self-Consistent Field, CASSCF/
def2TZVP, level of theory. In comparison with EOM-CCSD, 
optimization on the CASSCF(7,9)/def2TZVP level of theory 
yields reasonable structures with similar minima. MRCI(7,9) 
single-point calculations are performed to include dynamic 
correlation.

For spectra modeling, we used Franck–Condon simula-
tions [57, 58] as well as the linearized reflection principle 
within the harmonic approximation [59–61] at the EOM-
CCSD/aug-cc-pVDZ level of theory. The Gaussian 16 soft-
ware was employed for CCSD and EOM-CCSD calculations 
[62], the Molpro software package for CASSCF and MRCI 
calculations [63, 64].

3  Results and discussion

3.1  UV/VIS spectroscopy

We start our analysis with the spectrum of [Mg(CO2)]+ from 
the group of Duncan illustrated in Fig. 1a. At 3.66 eV, a 
vibrationally resolved absorption band was observed, along 
with the flank of a second peak at about 4.66 eV [54, 56]. 
With our tunable OPO system, we have spectral access to 
the full second absorption, for which we observe a band 
with a maximum at 4.88 eV, which is fitted very well with 
a single Gaussian. The resolved vibrational progression in 
the low-energy band indicates excitation into a bound state 
while the structureless high-energy band suggests no excited 
state minimum in the vicinity of the Franck–Condon point in 

Fig. 1  Experimental photodis-
sociation and modeled absorp-
tion spectra for (a) [Mg(CO2)]+ 
and (b) [Mg(CO2)(H2O)]+. For 
modeling, Franck–Condon sim-
ulations shifted by 0.046 eV are 
used for the low-energy band 
in (a), the linearized reflec-
tion principle otherwise. The 
EOM-CCSD/aug-cc-pVDZ//
CCSD/aug-cc-pVDZ approach 
was employed. Data for the blue 
curve in (a) are taken from Ref. 
[54]
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this state. Based on these assumptions, we modeled the spec-
trum in Fig. 1a. The calculated bands are shifted to slightly 
lower energies by about 0.05 eV. The vibrational resolution 
due to the  CO2 stretching vibration at 360 cm−1 in the low-
energy band yields a very good agreement between experi-
ment and theory in the population of states even within the 
harmonic approximation. The width of the high-energy peak 
is well reproduced within the linearized reflection principle 
approximation.

Figure 1b shows spectral changes upon hydration in the 
[Mg(CO2)(H2O)]+ ion. Weak fragment signals correspond-
ing to loss of  CO2 were obtained in the range from 2.8 to 
4.2 eV, where two well-separated bands with similar intensi-
ties are observed with maxima around 3.2 and 3.7 eV. Their 
shape is rather broad, which does not suggest excitation into 
a bound state near the FC point. Modeling of the spectra 
based on the linearized reflection principle at T = 0 K yields 
good agreement in excitation energies, with discrepancies 
smaller than 0.1 eV. However, the experimental width is 
significantly larger, almost by a factor of two. This points 
toward thermal effects playing an important role, with a 
more floppy ground state minimum compared to the case of 
bare [Mg(CO2)]+. To improve spectrum modeling, path inte-
gral molecular dynamics simulation on the CCSD potential 
energy surface would be possibly needed, lying beyond the 
scope of the present study.

3.2  Photochemistry

Decomposition pathways in [Mg(CO2)]+ highly depend on 
the investigated band. While for the first band, only  CO2 
loss (reaction (1) in Table 1) was reported by the group of 
Duncan [54–56], CO loss was observed additionally (reac-
tion (2)) in the flank of the high-energy band. Here, the 
branching ratio shifted in favor of  [MgO]+ and reaction (2) 
toward higher energies [54]. In line with this observation, 

we only detected the CO loss channel for the high-energy 
band, suggesting it is the predominant decomposition chan-
nel. Presumably due to the poor signal-to-noise ratio in our 
experiment, we could not detect the competing  Mg+ frag-
ment reported by Duncan.

Upon hydration, excitation within the first two absorption 
bands leads only to  CO2 molecule loss, reaction (3). This is 
energetically the most favorable decomposition channel in 
the ground state, which suggests internal conversion. When 
the pulse energy is tripled and the number of laser pulses is 
doubled, [Mg(CO2)(OH)]+, [MgO(H2O)]+ and [Mg(OH)]+ 
fragments are observed in smaller amounts starting at about 
3.6 eV, see Figure S1. The respective reactions (4–6) would 
be accessible in the ground state with the available energy 
after internal conversion. However, the energetically pre-
ferred water evaporation is not observed, reaction (7). The 
observed pulse energy dependence and missing water loss in 
the experiment thus suggest the involvement of multiphoton 
processes.

We start our theoretical photochemical investigation with 
the linear [Mg(CO2)]+ complex. In the FC point, the sin-
gly occupied molecular orbital in the ground state is the 3s 
orbital of  Mg+ which is slightly perturbed by the  CO2 ligand 
(Fig. 2a). The first excitations correspond to the excitation of 
the 3s electron into 3px,y orbitals of  Mg+ with a vertical exci-
tation energy of 3.70 eV (MRCI(7,9)/def2TZVP//CCSD/
aug-cc-pVDZ) in the FC point. These are shifted from 
three 3s–3p transitions of bare  Mg+ at 4.31 eV (MRCI(1,4)/
def2TZVP) due to destabilization of the 3s orbital upon 
binding of  CO2. The excitation at 4.93 eV (MRCI(7,9)/
def2TZVP//CCSD/aug-cc-pVDZ) corresponds to excitation 
into the significantly perturbed 3pz orbital of  Mg+, which is 
collinear with the  CO2 ligand. This is consistent with previ-
ous interpretation and the similar case of [Mg(H2O)]+ [47, 
49, 54–56].

To investigate whether the observed dissociation path-
way involving CO loss can be explained by electron transfer 
from  Mg+ to the  CO2 molecule, we performed a relaxed 
scan along the  CO2 angle for the  D1 and  D3 states on the 
MRCI(7,9)/def2TZVP//CASSCF(7,9)/def2TZVP level of 
theory in Fig. 2a, b, respectively.

The  D1 minimum in the direct vicinity of the FC point 
lies only 0.08 eV below the  D1 excitation energy, still with 
a linear  CO2 molecule and minimal structural changes. This 
minimum is well separated with a barrier of about 0.48 eV 
from an energetically lower-lying  D1 minimum where  CO2 
is activated with an O–C–O angle of about 130°. Here, the 
electron is transferred from the  Mg+ center to the antibond-
ing π* orbital of the  CO2 ligand. During the charge trans-
fer, the originally degenerate 3px,y orbitals split. According 
to the vibrationally resolved experimental spectrum for 
 D1, the  D1 minimum with bound linear  CO2 is the target 
state. However, fluorescence from this minimum can only 

Table 1  Possible decomposition channels shown in Fig. 1 and Figure 
S1 with the calculated reaction energy ∆E 

*Denotes the first excited state. Calculated at the CCSD/aug-cc-
pVDZ level along with excitations at the EOM-CCSD/def2-TZVP 
level of theory

Reaction Reactant Products ∆E/eV

(1) [Mg(CO2)]+ Mg+ + CO2 0.65
(1*) Mg*+ + CO2 4.97
(2) [MgO]+ + CO 4.52
(3) [Mg(CO2)(H2O)]+ [Mg(H2O)]+ + CO2 0.48
(3*) [Mg(H2O)]*+ + CO2 3.98
(4) [Mg(CO2)(OH)]+ + H 2.16
(5) [MgO(H2O)]+ + CO 2.51
(6) [Mg(OH)]+ + H + CO2 3.58
(7) [Mg(CO2)]+ + H2O 1.10
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provide an energy of 0.12 eV, which is insufficient for the 
 CO2 loss observed according to reaction (1). Similarly, 
 CO2 loss within the excited state via reaction (1*) lies too 
high in energy, requiring 4.97 eV in total. The ground and 
the excited state manifold are well separated, and no curve 
crossing seems to be accessible.

However, a  D1 minimum can be reached after excitation 
into the  D3 state without any barrier (Fig. 2b), which cor-
responds to a charge-transfer complex between an activated, 
bent  CO2

– radical anion and  Mg2+. This observation is con-
sistent with the experimental structureless absorption band 
suggesting a dissociative shape of the PES around the FC 
point for excitation into  D3. Orbital analysis of the relaxed 
structure in Fig. 2b confirms that the singly occupied 3pz-
orbital of  Mg+ mixes with the antibonding π* orbital of the 
carbon dioxide ligand upon bending. In the  D1 minimum, 
the electron is fully transferred from  Mg+ to the antibonding 
π* orbital of the  CO2 molecule, the C–O bonds are slightly 
weakened (the one next to Mg from 1.19 to 1.27 Å) while the 
Mg–O bond is significantly strengthened (from 2.12 to 1.73 
Å). However, for dissociation of the CO molecule according 
to reaction (2), the electron still needs to be transferred to 
one of the two isoenergetic p orbitals of the oxygen ligand 
in  [MgO]+. Optimization of a conical intersection toward 
these states suggests that this process costs about 5.7 eV 
(EOM-CCSD/def2TZVP), see Figure S2 for the respective 
interpolation. Thus, the electron transfer along this decom-
position channel is not accessible with the energy available 
upon excitation into  D3. The dissociation of  CO2 within the 
excited state, reaction (1*), is likely inaccessible, given the 

thermal energy calculated as 0.03 eV at 80 K. Curve cross-
ings into the ground state seem unattainable with the avail-
able energy as well.

In planar [Mg(CO2)(H2O)]+, the weakly bound  CO2 
ligand is oriented end-on on the same side of the  Mg+ core 
as the more strongly bound water molecule. The 3s and two 
3p orbitals are perturbed by the ligands (Fig. 3a), only the 
3p orbital perpendicular to the molecular plane stays unper-
turbed: The excitations into the  D1 and  D3 states are shifted 
to lower energies of 3.28 and 4.70 eV, respectively, the exci-
tation into the  D2 state remains almost unshifted at 3.78 eV.

To investigate how the hydration changes the photo-
chemical activation of  CO2 in the excited state, relaxed  CO2 
angle scans for the  D1 and  D2 states are shown in Fig. 3a, 
b. For  D1, multiple minima are found again, with an almost 
linear and a bent  CO2 molecule (note that another minimum 
with bent  CO2 and a very similar energy in  D1 exists with a 
flipped  CO2 bending angle, see Figure S3 for the respective 
scan). The  D1 minimum with linear  CO2 has a dramatically 
different structure compared to the FC point. After promot-
ing the electron from the 3s to the 3p orbital of  Mg+, the 
ion linearizes analogously to [Mg(H2O)2]+ [47, 49] and the 
water molecule rotates by 90° to maximize the interaction 
of the positively charged hydrogen atoms with the electron 
in the 3p orbital of  Mg+, gaining 0.53 eV of internal energy. 
Contrary to the case without the water ligand, the bent 
minimum with an activated  CO2

– ligand is now accessible 
with the energy available after excitation. CO loss from this 
minimum would only require 2.51 eV for the hydrated case, 
reaction (5). However, the charge transfer into the p orbital 

Fig. 2  Relaxed PES scan of the  CO2 angle in [Mg(CO2)]+ for (a)  D1 
and (b)  D3 states at the CASSCF(7,9)/def2-TZVP and MRCI(7,9)//
CASSCF(7,9)/def2-TZVP levels. FC point transition energies are 
given at the MRCI(7,9)/def2-TZVP//CCSD/aug-cc-pVDZ level. 

EOM-CCSD/def2-TZVP//CASSCF(7,9)/def2-TZVP energies are pro-
vided around the minima in (a). The structures and the most impor-
tant singly occupied orbitals according to CASSCF CI vectors are 
shown for selected points
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of the oxygen to access this decomposition channel from  D1 
is still very expensive with at least 5.45 eV (EOM-CCSD/
def2TZVP), similar to the case without water, see Figure 
S4 for the respective interpolation. Likewise, decomposi-
tion within the excited state manifold is not accessible with 
the available energy of a single photon, see reaction (3*). 
Contrary to the case without the water ligand, the gained 
internal energy after fluorescence from any  D1 minimum is 
enough for  CO2 evaporation, see reaction (3).

After excitation into  D2, the  D1/D2 conical intersection 
can be reached barrierlessly, see Fig. 3b. Again, the anti-
bonding π* orbital of the carbon dioxide ligand mixes with 

the occupied 3p orbital from  Mg+ in the optimized state 
upon bending. Afterward, access to a similar bent minimum 
involving a  CO2

– ligand in the  D1 state can be expected and 
similar access to decomposition channels with the available 
energy.

We also investigated the reaction pathways after excita-
tion into the  D3 state and found pathways for direct internal 
conversion into  D2 and  D1 states (see Fig. 3c, d for interpola-
tions). In both cases, the PES leads monotonically downhill 
from the FC point to the conical intersections. The orbital 
analysis of the CIs in Fig. 3c, d shows that for the  D3/D2 
CI, the water molecule and  CO2 rearrange to perturb the 

Fig. 3  Relaxed PES scan of the  CO2 angle in [Mg(CO2)(H2O)]+ for 
(a)  D1 and (b)  D2 at the CASSCF(7,9)/def2-TZVP and MRCI(5,8)//
CASSCF(7,9)/def2-TZVP along with the FC point excitation ener-
gies at the MRCI(5,8)/def2-TZVP//CCSD/aug-cc-pVDZ level of the-

ory. The structures and the most important singly occupied orbitals 
according to CASSCF CI vectors are shown for selected structure and 
states. Interpolation between the FC point and the conical intersection 
of (c)  D3/D2 and (d)  D2/D1
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3p orbital of  Mg+ which is occupied in  D2 while providing 
more space for the 3p orbital populated in  D3. For the CI 
into  D1, the two ligands rearrange to provide space for two 
3p orbitals perpendicular to the molecular axis. However, 
the ground state is well separated in all scans. The excita-
tion energy into  D3 is sufficient to evaporate a  CO2 molecule 
from  Mg*+ via reaction (3*).

The PES scheme in Fig. 4 summarizes our findings. For 
[Mg(CO2)]+, excitation into  D1,2 leads to a bound state 
where it can only absorb another photon in order to decom-
pose. From the linear  D1 minimum, several higher lying 
states are resonantly accessible with an excitation energy 
of 3.2–4.0 eV (EOM-CCSD/aug-cc-pVTZ). These transi-
tions mostly correspond to excitation of the electron into 
the empty 3d orbitals of  Mg+. Internal conversion finally 
leads to  CO2 loss. Formation of  MgO+ can happen through 
an intermediate step after excitation from the ground state 
into  D3. Here, an electron can be transferred from Mg*+ 
to the  CO2 molecule, weakening the C–O bond. However, 
the observed CO loss is hindered by a significant barrier. 
Decomposition after internal conversion into the ground 
state of [Mg(CO2)]+ can be ruled out as reaction (1) was not 
observed in the high-energy band in our experiment which 
should have a significant contribution otherwise. Further-
more, the states are well separated in calculations. There-
fore, the CO loss rather takes place photochemically through 
absorption of an additional photon from the  D1 minimum 
involving the  CO2

– unit. With the excitation energy, higher 
lying states are accessible around an excitation energy of 
about 4.6–4.9 eV (EOM-CCSD/aug-cc-pVTZ). Contrary to 
the multiphoton excitation in the  D1 minimum with a linear 
 CO2 molecule, we excite here directly a lone pair electron 
in the  CO2

– ligand to its out of the bending plane π* orbital 
while  Mg2+ plays a minor role. This explains the different 
photochemical decomposition pathways in the two experi-
mental bands. Fluorescence or multiphoton excitation into 
3pz, which requires about 4.5 eV (EOM-CCSD/aug-cc-
pVTZ) in the bent  D1 minimum, can explain the partially 

observed  CO2 loss in the flank of the high energy band previ-
ously observed by the group of Duncan [54].

In [Mg(CO2)(H2O)]+,  CO2 loss can already happen after 
fluorescing a photon in the linear  D1 minimum or the  D1 
minima with a bent  CO2. Upon excitation into  D2, a CI into 
 D1 can be accessed allowing similar decomposition path-
ways. Direct decomposition via CO loss is hindered again by 
a barrier. Decomposition after internal conversion into the 
ground state can be ruled out because water loss (reaction 
(7)) is not observed in our cooled experiment and the ground 
state is separated from the excited state manifold. Therefore, 
the [Mg(CO2)(OH)]+, [MgO(H2O)]+ and [Mg(OH)]+ frag-
ments observed only with significantly higher laser power 
and with shifting branching ratios, see Figure S1, occur via 
multiphoton processes. Excitations into higher lying states 
are accessible with resonant excitation energies of about 3.6 
and 3.5–4.2 eV (EOM-CCSD/aug-cc-pVTZ) in the bent  D1 
minimum of Fig. 3a and its flipped version in Figure S3, 
respectively.

Furthermore, formation of [Mg(OH)]+ as the second most 
intense channel likely occurs sequentially by absorption of 
the predominant [Mg(H2O)]+ fragment as it has an intense 
absorption band in this range and loses an H atom [47, 49]. 
Additionally, H loss from the comparable [Mg(H2O)2]+ case 
happens via a multiphoton-process, in line with our inter-
pretation [47, 49].

4  Conclusion

We investigated the photochemistry of [Mg(CO2)]+ and 
[Mg(CO2)(H2O)]+ as model systems for the role of metal/
ligand interactions in the photochemical activation of  CO2 by 
a combination of ab initio calculations and mass spectrom-
etry experiments in the gas phase. The observed decomposi-
tion channels are highly state selective. [Mg(CO2)]+ loses 
the  CO2 ligand in the low-energy 3s–3px,y band via a mul-
tiphoton excitation into the Mg 3d shell. With the provided 

Fig. 4  Simplified reaction 
scheme illustrating the predomi-
nantly observed experimental 
dissociation channels in Fig. 1 
for (a) [Mg(CO2)]+ and (b) 
[Mg(CO2)(H2O)]+
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energy of the high-energy 3s–3pz band,  CO2 is activated 
through a charge transfer from Mg*+ in the excited state 
manifold and forms a bent  CO2

– ligand on a  Mg2+ center. 
This leads to predominant CO loss after absorption of an 
additional photon by the  CO2

– ligand.
Upon hydration with one water molecule,  CO2 is acti-

vated already in the low-energy 3s–3p band. The rearrange-
ment in the  D1 minima provides enough internal energy for 
 CO2 loss through fluorescence in addition to the previous 
multiphoton process. The [Mg(CO2)(OH)]+, [MgO(H2O)]+ 
and [Mg(OH)]+ fragments in the  D2 band arise from an addi-
tional excitation in  D1 minima in combination with sequen-
tial fragmentation of [Mg(H2O)]+ to [Mg(OH)]+. For the 
third 3s–3p transitions, we predict direct funneling into the 
first excited state, providing enough energy to directly evap-
orate a  CO2 molecule on the excited state PES.
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