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Abstract Investigations into Drosophila mutants with im-
paired vision due to mutations in the transient receptor
potential gene (trp) initiated a systematic search for TRP
homologs in other species, finally leading to the discovery
of a whole new family of plasma membrane cation channels
involved in multiple physiological processes. Among the
recently discovered TRP cation channels two homologous
proteins, TRPM6 and TRPM7, display unique domain com-
positions and biophysical properties. These remarkable genes
are vital for Mg2+ homeostasis in vertebrates and, if dis-
rupted, lead to cell death or human disease.
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Introduction

Genetic screening in Drosophila melanogaster for proteins
involved in light-induced Ca2+ influx into photosensitive
cells resulted in the discovery of the transient receptor
potential (TRP) cation channel family (Hardie 2001; Minke
and Cook 2002; Montell 2001; Montell et al. 2002a).
According to primary sequence similarity, the members of
the TRP gene family are classified into six subfamilies:
TRPCs (seven canonical or classical TRPs), TRPVs (six
vanilloid receptor and related proteins), TRPMs (eight
TRP proteins homologous to the first cloned mamma-
lian subfamily member, melastatin; Montell et al. 2002a,b;
Clapham et al. 2003), TRPA (a single gene is present in

mammalian genomes, ANKTM1; Tominaga and Caterina
2004), and two groups of more distantly related proteins,
TRPMLs (three proteins defined by the initially discovered
gene mucolipin 1; Slaugenhaupt 2002) and TRPPs (poly-
cystic kidney disease 2 related proteins; Cantiello 2004).
The current manuscript focuses on recent progress made in
the field of TRPM cation channels. In particular, we high-
light recent data obtained for two unique proteins, the chan-
nel-kinases TRPM6 and TRPM7. Other aspects of TRP
cation channels were recently addressed in a number of
excellent review articles cited above.

Heteromerization of TRPC and TRPV channel
subunits as an intrinsic mechanism for diversification
of channel function

Significant progress has been made to define biophysical
properties, regulation and compositions of TRPC and TRPV
channel complexes. It is commonly accepted now, that the
three Drosophila TRP proteins, TRP, TRPL, TRPγ and
their mammalian TRPC relatives mediate cation entry in
response to phospholipase C activation (Clapham 2003;
Gudermann et al. 2004a,b; Moran et al. 2004; Nilius and
Voets 2004). Recently, evidence has been obtained that
TRPL may also be critical for fluid transport byDrosophila
Malpighian (renal) tubules (Macpherson et al. 2005). The
TRPV1-4 subfamily members represent Ca2+-permeable
cation channels involved in the perception of physical and
chemical stimuli, such as temperature, pH and mechanical
stress (Benham et al. 2003; Clapham 2003; Nilius and Voets
2004). TRPV5 and TRPV6 have been identified as channels
responsible for transcellular Ca2+ transport in the small
intestine, kidney and placenta (den Dekker et al. 2003; Peng
et al. 2003).

Despite their disparate biophysical and regulatory prop-
erties, TRP channel complexes share a common architec-
ture similar to that of voltage-gated cation channels
(Hofmann et al. 2000). Firstly, TRP proteins contain six
transmembrane domains (S1–S6) flanked by cytoplasmic
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N- andC-termini. Secondly, TRPC andTRPV subunits form
homo- and heterotetramers, thereby contributing a hydro-
phobic loop between the S5–S6 segments of each subunit to
a common putative channel pore.

Most notably, TRP channel subunits do not associate
arbitrarily. Two labs have independently demonstrated that
mammalian TRPCs assemble exclusively within two sub-
families, TRPC3/6/7 and TRPC1/4/5, irrespective of wheth-
er they are expressed heterologously or studied in native
environments like brain synaptosomes (Strübing et al. 2001;
Goel et al. 2002; Hofmann et al. 2002; Schaefer et al. 2002).
In contrast to these findings, Strübing et al. described a
more complex mode of TRPC assembly in microsomes
from rat embryonic brain (Strübing et al. 2003). It was found
that TRPC3 or TRPC6 subunits assemble with TRPC1, 4,
or 5 in embryonic brain (Strübing et al. 2003). Moreover,
the presence of TRPC1 appears to be essential for the
assembly of TRPC(1+4/5+3/6) complexes (Strübing et al.
2003).

There is evidence that within the TRPV subfamily, het-
eromeric interactions are only detectable between TRPV1
and TRPV2, and between TRPV5 and TRPV6 subunits,
while TRPV3 and TRPV4 assembly is restricted to homo-
oligomeric complexes (Hoenderop et al. 2003; Hellwig
et al. 2005).

The molecular mechanisms governing the assembly of
functional TRP protein complexes are still elusive. The
following domains have been suggested to be required for
oligomerization:

1. The highly conserved TRP domain, located in the
intracellular C-terminus immediately downstream of
the S6 transmembrane helix as shown for TRPV1
(Garcia-Sanz et al. 2004)

2. The third and fourth ankyrin repeats positioned in N-
terminus of TRPV6 (Erler et al. 2004)

3. The N- and C-termini for TRPV5 and TRPV4 com-
plexes (Chang et al. 2004; Hellwig et al. 2005)

4. The transmembrane segments for TRPV1 subunits
(Hellwig et al. 2005)

At present, a unifying structural principle underlying TRP
channel multimerization still remains elusive.

The physiological relevance of heteromultimerization
among TRP proteins is only incompletely understood. The
biophysical characterization ofD.melanogasterTRP/TRPL,
TRPL/TRPγ complexes andmammalian TRPV5/6, TRPC1/
5 or TRPC1/4 oligomers displayed novel and unique prop-
erties when compared to their homomultimeric counterparts
(Hoenderop et al. 2003; Strübing et al. 2001, 2003; Xu et al.
1997, 2000). Yet, genetic analyses inD.melanogaster andC.
elegans have highlighted an essential role of heteromeriza-
tion of TRPV subunits for an appropriate subcellular tar-
geting of their complexes in polarized sensory cells (Gong
et al. 2004; Hardie, 2001; Tobin et al. 2002; Xu et al. 2000).
Taken together, an increasing body of experimental data
indicates that heteromerization of channel subunits is an
important mechanism for the regulation of TRP channel
function in vivo.

The TRPM subfamily: a diverse group of cation channels

The first member of the TRPM gene subfamily, gon-2, was
identified during the characterization of loss-of-function
alleles in Caenorhabditis elegans with impaired post-em-
bryonic mitotic cell division of gonadal precursor cells
(Sun and Lambie 1997; Church and Lambie 2003; West
et al. 2001). Interestingly, C. elegans contains two other
gon-2-like genes (GTL-1, GTL-2) and a group of more
distantly related proteins (Fig. 1), while D. melanogaster,
as well as other insects, are equipped with only one copy of
the melastatin-related gene (Fig. 1). The biological func-
tions of these invertebrate TRPMs are still elusive.

Themammalian TRPM subfamily consists of eight genes
(TRPM1–8 respectively). Like TRPC and TRPV channel
subunits, TRPMs contain six putative transmembrane he-
lices. Surprisingly, the long (more than 800 amino acids)
intracellular N-termini of TRPMs do not display any ob-
vious sequence similarity to other proteins. Moreover, three
members of the TRPM family, i.e., TRPM2, TRPM6 and
TRPM7, differ from other ion channels because they harbor
enzyme domains in their C-termini and represent prototypes
of a new protein family of enzyme-coupled ion channels.
Thus, the NUDT9 domain in TRPM2 was shown to have
ADP-ribose pyrophosphatase activity (Perraud et al. 2001),
while the C-termini of TRPM7 and TRPM6 contain a
serine/threonine protein kinase domain resembling that
of elongation factor 2 (eEF-2) kinase and other α-kinases
(Chubanov et al. 2004; Drennan and Ryazanov 2004;
Nadler et al. 2001; Riazanova et al. 2001; Runnels et al.
2001, 2002; Schlingmann et al. 2002; Walder et al. 2002;
Yamaguchi et al. 2001).

Fig. 1 Phylogenetic analysis of vertebrate channel kinases, and re-
lated proteins in C. elegans and D. melanogaster. The phylogenetic
family tree was obtained by multiple sequence alignment (Clustal al-
gorithm,DNAstar) for TRPM6 and TRPM7proteins ofHomo sapiens,
Gallus gallus, Fugu rubripes (hsTRPM6, hsTRPM7, ggTRPM6,
ggTRPM7, frTRPM6, and frTRPM7 respectively), D. melanogaster
TRPM (dmTRPM) and C. elegans TRPM-related proteins (Gon-2,
GTL-1, GTL-2, F56F11.5, W03B1.2, Y38C1AB.6, F13B12.3, and
CED-11). The ggTRPM6, ggTRPM7, frTRPM6, and frTRPM7 genes
are annotated in the Ensemble database as ENSGALG00000015154,
ENSGALG00000005835, SINFRUG00000143648 and SINFRUG
00000141791 respectively. The relevant accession numbers of the
Swiss–Prot database are shown in parentheses when available.
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The TRPMs are characterized by very special ion perme-
ation properties and modes of regulation (Fleig and Penner
2004). Thus, TRPM2, TRPM3 and TRPM8 are Ca2+ per-
meable nonselective cation channels, which differ substan-
tially with respect to their activation stimuli (Chuang et al.
2004; Grimm et al. 2003; Hara et al. 2002; Lee et al.
2003; McKemy et al. 2002; Peier et al. 2002; Perraud et
al. 2001; Sano et al. 2001; Wehage et al. 2002). TRPM8
is activated by low temperature (Chuang et al. 2004; Voets
et al. 2004a), while TRPM2 is stimulated by intracellular
ADP-ribose, NAD+and oxidative stress (Hara et al. 2002;
Perraud et al. 2001, 2003). TRPM3 appears to be acti-
vated by hypoosmotic cell swelling, rises of intracellular
Ca2+ and by D-erythro-sphingosine (Grimm et al. 2003,
2004; Lee et al. 2003). Two other TRPM subfamily mem-
bers, TRPM4 and TRPM5, are mainly permeable for mo-
novalent cations, gated by increases in intracellular Ca2+

and exhibit a pronounced voltage modulation (Hofmann et
al. 2003; Launay et al. 2002; Liu and Liman, 2003; Nilius
et al. 2003; Prawitt et al. 2003). Intriguingly, mice with a
genetically disrupted TRPM5 gene display impaired sweet,
bitter and umami taste perception (Zhang et al. 2003b), but
the precise role of TRPM5 in taste receptor cells is still
under debate (Hofmann et al. 2003; Perez et al. 2002;
Prawitt et al. 2003; Zhang et al. 2003b). Compared to the
TRPM proteins mentioned so far, TRPM6 and TRPM7 are
characterized by highly unusual permeation properties in
that they conduct a range of essential and toxic divalent
metal ions including Mg2+ and Ca2+ (Monteilh-Zoller et al.
2003; Nadler et al. 2001). Thus, the current view is that
members of the TRPM subfamily are highly divergent in
domain composition, biophysical properties and activation
mechanisms when compared to their relatives, TRPCs and
TRPVs.

TRPM6 and TRPM7 channel subunits and their
complexes

As briefly mentioned before, two genes of the TRPM sub-
family, channel-kinases TRPM6 and TRPM7, revealed fea-
tures, which are unique within the TRP gene family. The
domain composition of TRPM6 and TRPM7 raises a set of
intriguing questions. Do they primary function in vivo as
cation channels, as kinases, or both? When and why have
these bi-functional proteins been generated during evolu-
tion?A phylogenetic analysis (Fig. 1) demonstrates that none
of the invertebrate relatives of mammalian channel-kinases
harbor amino acid sequence motifs similar to those of other
known enzymes. However, two genes encoding channel-
kinases, orthologs of mammalian TRPM6 and TRPM7,
have been predicted in the genomes of birds (Gallus gallus)
and fish (Fugu rubripes) later in evolution (Fig. 1). Thus,
these two unique genes were generated before the diver-
gence of fish and land vertebrates, i.e., more than 450 mil-
lion years ago.

Another remarkable feature of TRPM6andTRPM7genes
is the expression of alternatively spliced variants lacking
the internal exons coding for the hexahelical transmem-

brane domains (Chubanov et al. 2004; Runnels et al. 2001,
2002). Originally, such a splice variant, containing only the
N-terminus and the kinase domain from TRPM7, was dis-
covered in the course of a yeast two-hybrid screening for
proteins interacting with the C2 domain of PLCβ isoforms
(PLCβ-interacting kinase, PLIK;Runnels et al. 2001, 2002).
A set of splice variants derived from the TRPM6 gene,
homologous to PLIK, has been cloned recently (Chubanov
et al. 2004). The different isoforms were called M6-kinases
1, 2, and 3 due to their homology to melastatin-related
TRP proteins within the N-termini and the presence of a
C-terminal protein kinase domain (Chubanov et al. 2004).
Accordingly, two different classes of proteins can be de-
rived from TRPM6 and TRPM7 genes, TRP-related chan-
nel-kinases and M-kinases. So far, a physiological role for
M-kinases is still unknown. In contrast to TRPM7, the
human TRPM6 gene displays a more complex organisation
of its promoter region: three alternative 5′ exons (1A, 1B
and 1C) are spliced in-frame to a common second exon
(Fig. 2; Chubanov et al. 2004). The close proximity of the 5′
exons within a 700-bp genomic region suggests that a single
core promoter with alternative transcription start sites gov-
erns the expression of TRPM6 isoforms (Fig. 2).

Characterization of TRPM7 in heterologous expression
systems (Fig. 3) revealed that TRPM7 is a constitutively
active cation channel, which is suppressed by intracellular
free Mg2+ ([Mg2+]i) and Mg·ATP ([Mg·ATP]i; Monteilh-
Zoller et al. 2003; Nadler et al. 2001; Runnels et al. 2001;
Schmitz et al. 2003). Consequently, it was postulated that
variations in [Mg2+]i and [Mg·ATP]i are major physio-
logical mechanisms controlling TRPM7 channel activity
(Monteilh-Zoller et al. 2003; Nadler et al. 2001; Schmitz
et al. 2003). TRPM7 is permeable for a broad range of
divalent cations, including trace metals, such as Zn2+,
Co2+, and Mn2+. Importantly, in contrast to other TRPs,
TRPM7 is slightly more permeable for Mg2+ than for Ca2+

(Monteilh-Zoller et al. 2003; Nadler et al. 2001; Schmitz
et al. 2003). In the absence of divalent cations in the ex-
tracellular solution, TRPM7 conducts monovalent cations,
such as Na+ (Monteilh-Zoller et al. 2003; Nadler et al. 2001;
Schmitz et al. 2003). Channel properties of TRPM6 were
found to be indistinguishable from those of TRPM7 (Voets
et al. 2004b).

A recent report provided first evidence that the N-
terminal domain of annexin 1 is a physiological substrate
of the TRPM7 kinase domain (Dorovkov and Ryazanov
2004). Annexin 1 is a member of a conserved family of
Ca2+ and lipid binding proteins. The N-terminal region of
annexins is unique and vital for a specific function of each
family member (Hayes and Moss 2004; Moss and Morgan
2004). In the case of annexin 1, the N-terminus is involved
in a Ca2+-dependent interaction of the proteinwith S100A11
(Moss and Morgan 2004). S100 proteins are essential for
cytoskeletal dynamics, cell proliferation and ion channel
trafficking. Peptides proteolytically derived from the N-ter-
minal sequence of annexin 1 are responsible for its anti-
inflammatory activity (Lewit-Bentley et al. 2000; Moss and
Morgan 2004; Perretti and Flower 2004). Consequently, it
was proposed (Dorovkov and Ryazanov 2004) that the
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TRPM7-mediated phosphorylation of annexin-1 might in-
terfere with such a physiological process.

As mentioned earlier, the kinase domain of TRPM7
directly associates with the C2 domain of phosopholipase
C (PLCβ1-3, and PLCγ1 isoforms; Runnels et al. 2001,
2002). So far, the biological role of this interaction has
remained elusive. According to Runnels et al. phosphati-
dylinositol 4,5-biphosphate (PIP2), the endogenous sub-
strate of PLC, is required for TRPM7 channel activity and
receptor-mediated activation of PLC decreases TRPM7
activity due to local hydrolysis of PIP2 (Runnels et al.
2002). On the contrary, Takezawa et al. demonstrated that

TRPM7, heterologously expressed in HEK293 cells,
abolished activation of PLCβ via muscarinic and thrombin
receptors coupled to Gq proteins (Takezawa et al. 2004).
Moreover, TRPM7 channel activity was found to be pos-
itively modulated by receptors coupled to the Gs/cAMP/
PKA signaling cascade. The kinase domain of TRPM7 was
essential for PKA-dependent potentiation (Takezawa et al.
2004).

Finally, there is recent evidence to show that TRPM7
forms heterooligomeric channel complexeswith the closely-
related TRPM6 protein in different expression systems such
as HEK293 cells and Xenopus oocytes (Chubanov et al.
2004). A number of independent approaches were employed
to demonstrate the biochemical interaction of TRPM6 and
TRPM7. Yet, the most important observation was that
TRPM7 could modulate the subcellular distribution of
TRPM6. Thus, TRPM6 expressed alone was not detectable
on the cell surface, whereas co-expression with TRPM7 re-
sulted in trafficking of TRPM6 to the plasma membrane.
The interaction of TRPM6 with TRPM7 was specific, since
none of the other TRPM channel subunits (TRPM1, 2, 3, 4,
5, 8) revealed any sign of heteromerization with channel-
kinases (Chubanov et al. 2004). It should be noted, how-
ever, that other investigators recently showed that in
heterologous expression systems TRPM6 alone was able
to form homooligomeric channel complexes with biophys-
ical properties identical to those of TRPM7 (Voets et al.
2004b).

TRPM7 was found to be a ubiquitously expressed cation
channel (Nadler et al. 2001; Runnels et al. 2001), while
TRPM6displayed amore restricted expression pattern,which
included epithelial cells of the renal convoluted tubule and
of the intestine (Chubanov et al. 2004; Schlingmann et al.
2002; Voets et al. 2004b; Walder et al. 2002). Therefore,

Fig. 3 Current–voltage relationship of whole-cell currents typically
displayed by TRPM7. A representative current–voltage relationship
of whole-cell currents obtained in HEK293 cells expressing mouse
TRPM7 is shown. TRPM7-mediated currents are characterized by
pronounced outward rectification under the following conditions of
free concentrations: intracellular—10 nM Mg2+ and 10 nM Ca2+,
and extracellular—1 mMMg2+ and 2 mM Ca2+. The outward current
is Cs+-driven.

Fig. 2 Intron–exon structure of
the human TRPM6 gene. In
total, 39 exons (numbered 1–39)
are mapped to the genomic
region of human chromosome 9
according to the TRPM6 cDNA
variants cloned (Chubanov et al.
2004). A gray background
highlights exons, encoding pre-
dicted transmembrane domains
(S1–S6) and the kinase domain.
An insert shows a zoomed ge-
nomic region (780 base pairs),
encompassing the position of
alternative 5′ exons. The se-
quence of exons 1A (70–165
base pairs), 1B (269–358 base
pairs) and 1C (642–758 base
pairs) is depicted in bold.
Amino acid sequences obtained
by translation from the start
ATG codon (underlined) are
shown above the corresponding
nucleotide sequences. Note the
presence of STOP codons (as-
terisks) in the 5′-untranslated
regions of exons 1A and 1B.
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TRPM6 expressionwill invariably occur on the background
of the partner TRPM7 subunits, and the physiological
significance of such a coexpression was revealed by the
analysis of loss-of-function mutations in the human TRPM6
gene diagnosed in patients with hypomagnesemia with sec-
ondary hypocalcemia (HSH) and will be discussed below
(Chubanov et al. 2004). According to primary sequence
similarity, the eight TRPM proteins fall into four distinct
groups: TRPM6/7, TRPM1/3, TRPM4/5, TRPM2/8. Based
on the specific interaction of TRPM6 with TRPM7, it is
tempting to speculate that heteromeric complexes can only
be formed within but not beyond these groups.

A vital role of TRPM6 and TRPM7
for Mg

2+
homeostasis

The unique structural and functional characteristics of TRPM6
and TRPM7 would suggest that their roles in vivo differ
substantially from those of other TRP proteins. In fact, two
independent lines of evidence indicate a vital role of chan-
nel-kinases in Mg2+ homeostasis. Firstly, it was demon-
strated that DT40 chicken lymphocytes lacking the TRPM7
gene are not viable (Schmitz et al. 2003). However, sup-
plementation of the cell culture medium with high levels of
Mg2+ (but not Ca2+) restores the viability of the mutant
DT40 cells (Schmitz et al. 2003). Importantly, the mam-
malian TRPM7 (wild type protein as well as a kinase-dead
mutant) was able to rescue the mutant DT40 cell line cul-
tured in normal, physiologicalMg2+concentrations (Schmitz
et al. 2003). It would be interesting to know whether mam-
malian or chicken TRPM6 can also substitute for the mutant
TRPM7 in DT40 cells.

The second line of evidence stressing the role of channel-
kinases for Mg2+ homeostasis was obtained by analysis of
an autosomal recessive disorder, hypomagnesemia with
secondary hypocalcemia (HSH), characterized by low serum
Mg2+ levels due to defective intestinal absorption and/or
renal Mg2+ wasting (Schlingmann et al. 2002; Walder et al.
2002). It was discovered that HSH is caused by mutations
in the TRPM6 gene, underscoring its essential role in
active transcellular Mg2+ transport (Schlingmann et al.
2002; Walder et al. 2002). Most mutations of the human
TRPM6 gene, diagnosed in HSH patients, are either non-
sense mutations or result in the deletion of splice sites,
thereby generating mRNAs with premature stop codons
(Schlingmann et al. 2002; Walder et al. 2002). Transcripts
containing premature stop codons undergo degradation via
nonsense-mediated mRNA decay (Holbrook et al. 2004),
easily explaining a loss-of-function phenotype of patients
with mutations in TRPM6. However, one inactivating mu-
tation diagnosed in an HSH patient results in the ex-
change of the highly conserved S141 for an L in TRPM6
(Schlingmann et al. 2002). Using the heterologous ex-
pression systems HEK293 cells and Xenopus oocytes, it
was demonstrated that the mutation specifically impaired
TRPM6/7 channel complex formation and, consequently,
TRPM6(S141L) was retained in intracellular membrane
compartments (Chubanov et al. 2004). Since S141 is a

conserved amino acid residue in TRPM proteins, one may
speculate that a corresponding S to L missense mutation
in TRPM7 would also affect the trafficking competence of
this ion channel. In fact, TRPM7(S138L) was also found to
be retained intracellularly (Chubanov et al. 2004).

Interestingly, four out of five loss-of-function mutations
in the C. elegans TRPM gene, Gon-2, are located in the N-
terminal part of the protein (West et al. 2001). In the Gon-2
(dx22) allele, a conserved G427 is affected, which corre-
sponds to G144 in TRPM6 and is located close to the
critical S141 mutated in an HSH patient. In aggregate, ex-
periments with TRPM6(S141L) strengthen the notion of a
crucial role of the conserved N-terminal region for TRPM
function as proposed for Gon-2 (West et al. 2001), TRPM1
(Xu et al. 2001), TRPM2 (Zhang et al. 2003a) and TRPM4A/
TRPM4B isoforms (Launay et al. 2002; Xu et al. 2001).

At present, our mechanistic understanding of the molec-
ular events controlling Mg2+ homeostasis at the cellular
level have eluded detailed analysis (Dai et al. 2001; Konrad
et al. 2004; Quamme and de Rouffignac 2000). Mg2+ plays
a vital role in virtually all cellular pathways as a co-factor
of many enzymes, an essential structural element of pro-
teins and nucleic acids and a modulator of ion channels
(Grubbs 2002; Konrad and Weber 2003; Konrad et al.
2004; Romani and Maguire 2002; Wolf et al. 2003). While
free [Mg2+]i was estimated to be between 0.5 and 1 mM,
the total Mg2+ content in the majority of cells was calcu-
lated to be in the range of 14–20 mM (Grubbs 2002; Konrad
and Weber 2003; Konrad et al. 2004; Romani and Maguire
2002; Wolf et al. 2003). Intracellular Mg2+ is mostly bound
to ATP, other phosphonucleotides, phospholipids and pro-
teins (Grubbs 2002; Romani and Scarpa 2000). Mammalian
cells lack a substantial transmembrane chemical gradient for
ionized Mg2+, since the plasma concentration of Mg2+ in
most species is in the range of 0.9–1 mM of which about
50% is bound to albumin and other molecules. Nevertheless,
Mg2+ ions move into the cell primary driven by the electrical
gradient. A variety of hormonal and metabolic stimuli tight-
ly regulate [Mg2+]i, a process involving at least two types of
transport systems in the plasma membrane: extrusion of the
cation by putative Na+/Mg2+ or/and H+/Mg2+ exchangers
and its entry via Mg2+-permeable cation channels (Grubbs
2002; Konrad and Weber 2003; Konrad et al. 2004; Romani
and Maguire 2002; Wolf et al. 2003).

As mentioned above, TRPM7 is permeable to Mg2+ and
its channel activity is controlled by [Mg2+]i and [Mg·ATP]i.
These features are well suited for a protein which is re-
sponsible for Mg2+ influx into vertebrate cells (Monteilh-
Zoller et al. 2003; Nadler et al. 2001; Schmitz et al. 2003).
The crucial question is whether the permeability of TRPM7/
6 complexes to Ca2+ can be neglected, and whether channel-
kinase mediated entry of Ca2+ also plays a physiological
role. In fact, there are a number of reports showing that
non-selective cation channels responsible for influx of Ca2+

in vivo are also permeable for Mg2+. For instance, two
genes essential for sensory physiology, TRPV1 andDrosoph-
ila TRPL, were found to be only slightly more permeable to
Ca2+ than to Mg2+ (Caterina et al. 1997; Reuss et al. 1997).
Finally, two recent reports suggest that TRPM7-mediated
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Ca2+ influx is involved in anoxic neuronal cell death and in
regulation of the cell cycle of human retinoblastoma cells
(Aarts et al. 2003; Hanano et al. 2004). Thus, additional
experiments are required to elucidate whether the biological
role of TRPM6 and TRPM7 channels is restricted to Mg2+

homeostasis.
In conclusion, the discovery and functional character-

ization of the melastatin-related TRP cation channels sub-
stantially extended our knowledge about the biological role
of TRP proteins, especially about the cellular mechanisms
governing Mg2+ homeostasis of vertebrate cells. Addition-
al efforts are necessary in order to elucidate the in vivo
functions of these extraordinary cation channels.
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