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Abstract We show some of the conjectures of Pappas and Rapoport concerning the
moduli stack BunG of G-torsors on a curve C , where G is a semisimple Bruhat-Tits
group scheme on C . In particular we prove the analog of the uniformization theorem of
Drinfeld-Simpson in this setting. Furthermore we apply this to compute the connected
components of these moduli stacks and to calculate the Picard group of BunG in case
G is simply connected.
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1 Introduction

The uniformization of the moduli stack of principal bundles on a smooth projective
curve C by the affine Graßmannian proved by Drinfeld and Simpson [10] has been
proven to be a very useful tool [4,6,18]. More recently the moduli spaces of torsors
under non-constant group schemes over a smooth projective curve have been consid-
ered, in particular in the case of unitary groups. Motivated by their work on twisted
flag manifolds [20] Pappas and Rapoport conjectured [21] that these moduli spaces
should have a similar uniformization by twisted affine flag varieties. Furthermore, they
made conjectures on the geometry of the moduli stack of torsors under such group
schemes which generalize those results on the moduli of principal bundles which have
been proven using the affine Graßmannian.

As a first step towards these conjectures we want to explain a generalization of the
approach of Drinfeld and Simpson [10] to this situation.
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500 J. Heinloth

To state our results we need to introduce some notation: We fix a smooth projective
curve C over a field k. Let G be a smooth affine group scheme over C satisfying the
following conditions:

(1) All geometric fibres of G are connected.
(2) The generic fibre of G is semisimple.
(3) Let Ram(G) ⊂ C be the finite set of points x ∈ C such that the fibre Gx is

not semisimple and denote by ̂Ox the complete local ring at x. Then G
̂Ox

is a

parahoric group scheme over Spec ̂Ox as defined by Bruhat-Tits [7, Définition
5.2.6].

We will call such a group scheme a (parahoric) Bruhat-Tits group scheme over C . We
will denote by BunG the moduli stack of G-torsors on C .

To motivate the study of these group schemes, let us recall the basic examples,
which also provide alternative interpretations of some better known moduli spaces:

Examples (1) The standard examples are constant group schemes: For a given semi-
simple group G over k we may consider the group scheme G := G × C . In this
case BunG is just the space of G-bundles on C . Similarly any G-torsor P on C
defines a group scheme AutG(P/C) over C , which again is a Bruhat-Tits group
scheme.

(2) Moduli spaces of parabolic bundles are also of the form BunG : Again one starts
with a semisimple group G over k, together with a finite set of points xi ∈ C and
choices of parabolic subgroups Pi ⊂ G. In this situation Bruhat-Tits construct a
group scheme G over C together with a map G → G × C such that the image
of Gxi in G = G × xi is the subgroup Pi and the OC,xi -valued points G(OC,xi )

are given by the OC,xi -valued points of G × C which reduce to elements of Pi

modulo the maximal ideal of OC,xi i.e., the corresponding parahoric subgroup
in G(OC,xi ). (The construction of Bruhat-Tits is most often phrased over a com-
plete valuation ring. However, for the present example [7, Théorème 3.8.1] can
be applied, if one notices that the extensions of the root groups Ua are defined
over C .)

(3) More interesting examples are obtained by taking Weil restrictions and invari-
ants: If π : C̃ → C is a generically étale covering of C and G0 is a group scheme
over C̃ of the types described above then the Weil restriction ResC̃/CG0 – i.e.,
the group scheme whose sheaf of sections is given by the sheaf push-forward
π∗G0 – is again a parahoric group scheme.1 Such group schemes are called
induced group schemes.
Moreover, if π : C̃ → C is a tamely ramified Galois-covering with group �,
acting on a semisimple simply connected group G then one can take invariants
ResC̃/C (G × C̃)� to obtain another example of Bruhat-Tits group schemes. In
particular if � = Z/2Z and G = SLn then one can obtain the quasi-split unitary

1 Let us sketch how to see this: Pick a split maximal torus T0 ⊂ G0. The main point is to note that adjunction
gives a canonical isomorphism of cocharacter groups X∗(π∗T0) ∼= X∗(T0). Also the question is local, so
we can restrict to Spec( ̂OC,x). There, one can check explicitly that the Weil restriction of the root groups
Ua are the extensions needed for π∗(G0).

123



Uniformization of G-bundles 501

group SUC̃/C (n) in this way. Here BunG classifies vector bundles on C̃ equipped
with a Hermitian form.

(4) The construction of the previous point is interesting, even for tori (these groups
are not semisimple). If one starts with the trivial torus Gm on C̃ then finds groups
T the torsors under which are parameterized by Prym-varieties.

Our main theorem is the confirmation of the uniformization conjecture of Pappas
and Rapoport, which holds over every ground field k:

Theorem 1 Fix a closed point x ∈ C. Let S be a Noetherian scheme andP ∈ BunG(S)

a G-torsor on C × S. Then there exists a faithfully flat covering S′ → S such that
P|(C−x)×S′ is trivial.

Some of the conjectures concerning the geometry of BunG can be deduced from
the above result. To formulate these let us denote the generic point of C by η :=
Spec(k(C)) and by η := Spec(k(C)sep) the point of a separable closure of k(C).

Theorem 2 If Gη is simply connected, then BunG is connected.
For general G we have:

π0(BunG) ∼= π1(Gη)Gal(k(C)sep/k(C)).

For curves over finite fields, Behrend and Dhillon showed [5, Theorem 3.3 and
3.5] that under some additional hypothesis on G the above theorem would follow, if
one could prove that the Tamagawa number of G equals the number of elements of
π1(Gη)Gal(k(C)sep/k(C)).

Theorem 3 Assume that k is an algebraically closed field and that Gk(C) is semisim-
ple, absolutely simple and splits over a tamely ramified extension. For any x ∈ Ram(G)

denote by X∗(Gx) := Hom(Gx, Gm) the character group of the fibre of G over x. Then
there is an exact sequence:

0 →
∏

x∈ Ram(G)

X∗(Gx) → Pic(BunG) → Z → 0,

where the right arrow can be computed as a multiple of the central charge homomor-
phism at any given point x ∈ C.

Here the central charge homomorphism at a point x ∈ C is given by pulling back a
line bundle on BunG to the affine flag variety parameterizing bundles, together with
a trivialization on C − x and then applying the central charge homomorphism on the
flag variety as constructed by Pappas and Rapoport [20, Sect. 10]. This is recalled in
more detail in Sect. 6.

Finally, again assuming that Gk(C) splits over a tamely ramified extension of k(C),
we also prove an analog of the existence of reductions to generic Borel subgroups [10,
Theorem 1] in the case of G-torsors, see Corollary 26.

We would like to stress that these theorems are well known in the case of constant
group schemes and a considerable part of the proofs of our results follow the lines of

123



502 J. Heinloth

the proofs in this special case. The main difference of our approach is that we avoid
the reduction to Borel subgroups in our proof. Instead of this we use a variant of the
“key observation” in [20] to show that every tangent vector to the (twisted) affine flag
manifold lies in the image of a map of the affine line into the affine flag manifold.
The applications to the geometry of BunG are variations of the arguments in the case
of constant group schemes, as explained in Faltings’ article [15]—of course some
technical problems arise here. For example, we find that the central charge morphism
may not be independent of the point x ∈ C , but it may drop at points in Ram(G).
Note added on revised version: We will see that the proof of the uniformization the-
orem (Theorem 1) does not use the assumption that for x ∈ Ram(G) the group G|Ox

is parahoric, so general connected Bruhat-Tits groups would do here. In the other
theorems, we do however make use of the additional assumption.
Notations: S will denote a Noetherian base scheme defined over a field or an excellent
Dedekind domain (for all our purposes it will be sufficient to assume that this is either
the spectrum of a field or a smooth curve over a field).

C → S is smooth, projective, absolutely irreducible curve over S, i.e., the mor-
phism C → S is smooth, projective of relative dimension 1, such that all geometric
fibres are connected.

For any S-scheme T we will denote the base change from S to T by a lower index
T , e.g., CT = C ×S T . If T = Spec(R) happens to be affine then we will denote the
base change to Spec(R) by a lower index R, e.g., CR := C ×S Spec(R).

For a smooth, affine, group scheme G over C we will denote by Lie(G) its Lie-alge-
bra, which is a vector bundle over C .

Given a G-torsor P on C and a scheme F → C , affine over C on which G acts, we
will denote by P ×G F the associated fibre bundle over C , i.e., P ×G F := P ×C F/G
where G acts diagonally on P ×C F . Since P is locally trivial for the étale topology
descent for affine schemes implies that the quotient P ×C F/G is a scheme.

Also we will write Puniv for the universal G-torsor on BunG ×C .

2 Preliminaries on moduli stacks of torsors

In this preliminary section we recall the basic results concerning the moduli stacks
BunG that we will frequently use:

Proposition 1 Let G be a smooth affine group scheme over C, which is separated and
of finite type. Denote by BunG the stack of G-torsors on C. Then BunG is a smooth
algebraic stack, which is locally of finite type.

Proof This is certainly well-known, but I couldn’t find a reference, so let us briefly
indicate why Artin’s criteria ([19, Corollaire 10.11 and Remarque 10.12], where one
also finds the necessary references on deformation theory) hold for BunG : First we
need to check that given a S-scheme T , and P,Q ∈ BunG(T ) the sheaf Isom(P,Q)

is representable. Considered as sheaf over C × T the G-isomorphisms of P and Q
are given by P ×G Q = (P × Q)/G (where G acts diagonally on P × Q), which
is affine over C × T . Thus the sheaf Isom(P,Q) is the sheaf of sections over C of
(P×G Q). This sheaf is representable by an separated scheme of finite type, because C
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is projective. Thus we have shown that the diagonal of BunG is representable, separated
and of finite type.

To verify the other criteria, we need to recall deformation theory of G-torsors:
Let A be a local Artin ring with Spec(A) → S. The maximal ideal of A is denoted
m and denote the residue field A/m = k. Let I ⊂ A an ideal with Im = 0. Let
P ∈ BunG(A/I ) and denote the special fibre of this family by P0 := Pk . Finally
write Ad(P) := P ×G Lie(G) for the vector bundle defined by P via the adjoint
representation of G.

We need to study the possible extensions of P to a family P ∈ BunG(A). There
exists an étale covering U � C with U affine, such that P0|Uk = G × Uk is triv-
ial. Applying the lifting criterion for smoothness to P → CA/I , we find that this
trivialization can be lifted to a trivialization of P|UA/I .

Thus P is given by a Čech-cocycle gU ∈ G((U ×C U )A/I ). Again, U being affine
and G being smooth, this g can be lifted to an element g ∈ G((U ×C U )A), and the pos-
sible such g form a torsor under H0(U ×C U )A/I , Ad(P)⊗A/I I ). The obstruction to
modify g to satisfy the cocycle condition defines an element in H2(CA/I , Ad(P)⊗A/I

I ) = 0. So we see that we can always find an extension P ∈ BunG(A). Moreover, we
see that the possible extensions P of P are parameterized by H1(CA/I , Ad(P)⊗A/I I ),
and the automorphisms of such extensions (i.e., automorphisms of P , inducing the
identity on P) are parameterized by H0(CA/I , Ad(P) ⊗A/I I ). Since the groups
Hi (C, Ad(P0)) are finite dimensional vector spaces, this implies that for every G-tor-
sor P0 ∈ BunG(k) there exists a versal deformation. Any such formal deformation is
algebraizable by Grothendieck’s existence theorem (EGA III, Sect. 6).

Finally we need to check that versatility is an open condition. In the above dis-
cussion we already noted that for every P0 ∈ BunG(k) the fibre of tangent stack
(which by definition is the algebraic stack given on affine schemes by Spec(R) 	→
BunG(R[ε]/(ε2)), see [19, Définition 17.13] is isomorphic to the stack-quotient of the
vector spaces [H1(Ck, Ad(P0))/H0(Ck, Ad(P0))]. Since C is a curve, the formation
of R1 p∗ Ad(P) commutes with base-change. In particular for a family Spec(R) →
BunG to induce a surjection on tangent spaces is equivalent to the condition that the
induced Kodaira-Spencer map from the tangent sheaf of Spec(R) to the pull back of
R1 pBunG ,∗ Ad(Puniv) to Spec(R) is surjective and this is an open condition. 
�

3 Preliminaries on twisted affine flag manifolds

We will need to use the construction of loop groups and twisted flag manifolds in
families. This is well known for constant groups see e.g., the Appendix of [12], so
we just have to check that a similar construction works in our situation, in particular
at those points of C where the group scheme is not semisimple. Similarly we have to
give the analog of the moduli interpretation of the affine Graßmannians, parameteriz-
ing torsors trivialized outside a point of C .

In this section we will assume that our family C → S has a section s : S → C and
π : G → C will be a smooth affine group scheme over C .

In order to reduce to the case of GLn we have to make some technical assumptions,
these will automatically be satisfied in the situation considered in Sect. 1.
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Assumption 1 (1) The conditions of [20, Proposition 1.3] are satisfied for our fam-
ily i.e.: There exists a vector bundle E on C and a faithful representation ρ : G →
GL(E)× Gm such that ρ is a closed embedding and the quotient Q = (GL(E)×
Gm)/G → C is representable and quasi-affine.

(2) Denote by OC [G] the OC -algebra of functions on G. Assume that locally in the
Zariski topology on C there exist vector bundles E, I on C which are OC [G]-
comodules (i.e., G acts on E, I) and a G-equivariant exact sequence:

I ⊗ Sym• E → Sym• E → OC [G] → 0.

To relate this to condition (1), note that given a vector bundle E0 on C and a
faithful representation ρ : G → SL(E0) then we get a closed embedding i : G →
SL(E0) → End(E0) and denote the ideal sheaf of i(G) by I0. Then we can use
E := End(E0) and then choose a G-equivariant vector bundle φ : I → I0 such
that the image of φ generates I0.

Examples We are interested in the following situations:

(1) C/k and G are as in Sect. 1 and s ∈ C(k) is a rational point. This is the situa-
tion considered in [20, Sect. 1.b]. Since C is regular of dimension 1 the group
scheme G always admits a faithful representation as above, at least locally as is
shown in loc.cit. by considering a subrepresentation of the regular representation
π∗(OG) of G. Given an open subset U ⊂ C any representation on a vector bun-
dle EU ↪→ π∗(OG)|U defined over U extends to the flat closure E ⊂ π∗(OG).
Thus, taking a direct sum of such representations we also find that G has a
faithful representation over C . The assumption on the quotient Q is unchanged
if we add representations, because given two vector bundles E1, E2 we have
GL(E1 ⊕ E2)/G = GL(E1 ⊕ E2) ×GL(E1)×GL(E2) GL(E1) × GL(E2)/G and the
quotient GLn1+n2/GLn1 × GLn2 is affine.

(2) Given C/k and G/C as in (1) we can vary the point in C as follows. Consider
the constant family pr2 : C × C → S := C given by the projection on the
second factor together with the diagonal section 	 : S = C → C × C and
GC := G × C → C × C . The representation from (1) can be pulled back to
C × C , so again the extra condition is automatically satisfied.

(3) Given C/k and G as in (1) we can extend everything to a family over a finitely
generated Z-algebra: The schemes C,G, the section s, the faithful representation
and the quasi-affine quotient are defined over some finitely generated Z-algebra
A and we can take S = Spec(A). The same holds for the second assumption.

Let us fix a notation for completions. Given an affine scheme X = Spec(A) and a
closed subscheme Z = Spec(A/I ) ⊂ X , we denote by ̂X Z := Spec(̂AI ) the spectrum
of the completion of A along I . We use the same notation for non-affine X if Z is
contained in an affine subset of X . If Z is given by the image of a closed embedding
s : Z → X we write ̂Xs := ̂Xs(Z). In particular in our situation ̂Cs is the completion of
C along s and we denote by C̊ := C − s the complement of the image of the section s.
We define the following functors on affine schemes T = Spec(R) over S:
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(1) L+G(T ) := G( ̂(C × T )s×T ).

(2) LG(T ) := G( ̂(C × T )s×T ×C (C̊))

(3) GRG(T ) := (LG/L+G)#(T ), where the sheaffification # is taken in the fpqc-
topology.

In particular if S = Spec(k) and G = G × C is a constant group scheme then these
functors coincide with the classical loop groups and the affine Graßmannian.

Proposition 2 Under Assumption 1 we have:

(1) The functor L+G is representable by an S-scheme.
(2) The functor LG is representable by an ind-scheme over S.
(3) The functor GRG is representable by an ind-scheme over S and the morphism

LG → GRG admits local sections in the étale topology.

Proof The questions are local in S, so we may assume that S = Spec(A) is affine,
that the vector bundle E from Assumption 1 (2) is trivial on an open neighbourhood
U ⊂ C of s and that there exist a function t on U , which is a local parameter at s i.e.,
such that s is the subscheme defined by t .

In this case we may argue as in the case of constant group schemes: The rep-

resentation ρ defines a closed embedding G|U ⊂ A
(n+1)2

S ×S U . We have defined

L+
A

n(R) = R[[t]](n+1)2
so this functor is represented by an infinite affine space

∏

i∈N
A

(n+1)2

S and the subfunctor L+G(R) = G(R[[t]]) is given by an infinite set of
polynomial equations, so it is again representable.

The same argument holds for the ind-scheme LG: In the case of G = GLn the func-
tor LG is the union of the subfunctors given by those matrices for which the entries
are Laurent series of the form

∑

i>−N ai t i , which are representable for every N . In
the general case we use a representation G ⊂ GLn to describe the functor LG as a sub-
functor of LGLn , given by polynomial equations. In this way we obtain ind-schemes,
defined over open subsets of S. Note that the schemes occurring in the inductive limit
glue, because we can compare the different choices of local parameters on the intersec-
tions. This is because a different choice of a local parameter t ′ ∈ OU can be expanded
as a power series in ̂OU,s = A[[t]] as t ′ = αt + ∑

i>1 αi t i with α ∈ A∗. In particular
t ′−1 = t−1(α + ∑

i>0 αi+1t i )−1 and the second factor is an invertible power series,
so we see that the different choices of t respect the subfunctors defined above using
the pole order. So we can glue the subschemes to obtain an ind-scheme over S.

Finally the argument for the affine Graßmannian given in [20, Theorem 1.4] gen-
eralizes as well: by Assumption 1 we have an embedding G ⊂ GLn(E) × Gm =: H
such that the quotient Q = H/G is quasi-affine over C , i.e. Q is an open subscheme of
a scheme Z , which is affine over C . Since G is smooth the map p : H → Q is smooth,
so we can lift any section of Q locally in the étale topology to a section of H. Since
for any Henselian local Spec(R) → S we can find a local coordinate for the section
sR we obtain L+Q(R) = Q(R[[t]]) and R[[t]] is again Henselian. Therefore we find
L+Q = L+H/L+G as fpqc-sheaves.

We write Lq : LH → LQ for the map induced by q : H → Q and eQ : S →
L+Q ⊂ LQ for the section induced by the neutral element of LH. Note that LG =
(Lq)−1(eQ).
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By construction L+Z ↪→ LZ is a closed subscheme, so that L+Q ⊂ LZ is
locally closed. Therefore the preimage (Lq)−1(L+Q) ⊂ LH is a locally closed sub-
ind-scheme, which is L+H invariant. Also any element h ∈ (Lq)−1(L+Q)(R) defines
Lq(h) ∈ L+Q(R), so étale locally on R we can write h = g · h+ with g ∈ LG and
h ∈ L+H.

Since the L+H-torsor LH → GRH is Zariski-locally trivial, this implies that the
image Y of Lq−1(L+Q) in GRH is again locally closed. We already noted, that LG
maps to Lq−1(L+Q), so that we get a map π : LG → Y and we claim that this
identifies LG/L+G ∼= Y :

First, since L+G ⊂ L+H, the map π factors through GRG . Let us show that the
map has sections locally in the étale topology. The map LH → GRH being a Zariski
locally trivial L+H-torsor, we can lift any R-valued point of Y Zariski locally to a
point of Lq−1(L+Q) and locally in the étale topology we have just seen that up to
multiplication by an element of L+H such a point can be lifted to LG.

Finally, any two elements h, h′ in a fibre LG → Y differ by an element of LG ∩
L+(H) = L+G, so the map LG → Y is indeed a L+G-torsor. 
�

Notation If C is a curve over S = Spec(k) any point x ∈ C(k) can be viewed as
a section of C → Spec(k). In this case we will denote by GrG,x the ind-scheme
over S = Spec(k) constructed above. Note that in the setting of example (2) this can
also be viewed as the fibre of GRG over x. Similarly LGx will denote the fibre of
LG over x. This is a slight abuse of notation, we really consider (LG)x, which is the
loop group as defined in [20] and not the standard loop group of the fibre Gx, which
would be a loop group of a possibly non-semisimple group. This should not cause
confusion, since the letter G indicates that we are working with non-constant group
schemes.

Remark 3 Note that if Gx is not semisimple, then GrG,x is a (twisted) affine flag man-
ifold and not an affine Graßmannian. In particular the family GR constructed above is
different from the family used by Gaitsgory [12] to construct the center of the Iwahor-
i-Hecke algebra. In particular the above family does not contain the extra G/B-factor
in the fibres over those points where Gx is semisimple.

Next, we need to recall the construction and the basic properties of the map from the
twisted affine flag manifold to the moduli stack of G torsors. This is certainly well-
known, however we could not find a reference for the case of non-constant group-
schemes.

Proposition 4 (1) The ind-scheme LG represents the functor given on Noetherian
rings R over S by G-torsors P on CR together with trivializations on CR − sR

and the formal completion ĈsR .
(2) The ind-scheme GRG represents the functor given on Noetherian rings R over S

by G-torsors together with a trivialization on CR − sR. In particular, there is a
natural forgetful map p : GRG → BunG .

(3) The map p : GRG → BunG is formally smooth.
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(4) For any point x ∈ C(k) the map px : GrG,x → BunG is formally smooth. In
particular, let P ∈ GrG,x be a point defining the G-torsor px(P) =: P on C,
then the map p induces a surjection of tangent spaces

dpP : TGrG,x,P � H1(C,P ×G Lie(G)).

Proof First of all, given a G-torsor P on CR , together with trivializations on CR − sR

and ̂CsR the difference of the two trivializations on ̂CsR ×CR (CR − sR) is an ele-
ment of LG(R). Furthermore if we change the trivialization on ̂CsR we obtain the
corresponding element in LG(R) by multiplication with an element of L+G(R).

Similarly, if only a trivialization on CR − sR is given, we can étale locally on R
choose a trivialization of P on ̂CsR and this defines an element in GRG which is
independent of the chosen trivialization.

To prove parts (1) and (2) of the proposition, we therefore have to give an inverse
to this construction, i.e. we have to construct the map p.

Since GRG is the inductive limit of Noetherian schemes it is sufficient to construct
the map p on T -valued points, where T = Spec(R) is a Noetherian affine S-scheme
(for non-Noetherian rings one may use the technique of Beauville-Laszlo [4], but we
will not use this). Furthermore, since LG → GRG admits local sections in the étale
topology, it is sufficient to construct an LG+ equivariant map p̃ : LG(R) → BunG(R)

for Noetherian S-algebras R.
Since R is Noetherian the morphism (̂CR)sR

∪ (CR − sR) → CR is a faithfully flat,

quasi compact covering and LG(R) = G(((̂CR)sR
) ×CR (CR − sR)).

To apply descent theory to this covering some care is needed.2 Let us write U :=
(̂CR)sR

∪ (CR − sR). A descent datum for the trivial G-torsor on U is an element of
G(U ×C U ) satisfying a cocycle condition in G(U ×C U ×C U ). One component of
U ×C U is the selfintersection of the completion (̂CR)sR

over C . The following lemma
explains how any element of LG(R) can be used to define a gluing cocycle on this
scheme:

Lemma 5 R be a Noetherian S-algebra. Let C/S be smooth curve, s : S → C a
section. Write DR := (̂CR)sR

, C̊ := C − s and D̊R := DR ×CR (C̊R).
Then DR ×CR DR = DR ∪D̊R

DR i.e., the following is a pushout-diagram of
schemes:

D̊R
� � ��

� �

	

��

DR� �

��
D̊R ×CR D̊R

�� DR ×CR DR

.

Proof First, the question whether DR ×CR DR represents the push out of the above
diagram is local in the Zariski topology on S. Moreover, the above fibred products

2 I would like to thank Y. Laszlo for pointing out this problem.
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only depend on a Zariski open neighbourhood of sR so we may further assume that
C = Spec(A) is affine and that there exists t ∈ A which is a local parameter at sR .

Furthermore all schemes in the above diagram are affine, so the claim is equivalent
to the dual statement that we have a pull-back diagram of rings:

R((t)) R[[t]]��

R((t)) ⊗AR R((t))

��

R[[t]] ⊗AR R[[t]].

��

��

So we have to show that given an element
∑

Pi (t) ⊗ Qi (t) ∈ R((t)) ⊗AR R((t))
such that

∑

Pi (t)Qi (t) ∈ R[[t]] ⊂ R((t)) we can find pi , qi ∈ R[[t]] such that
∑

Pi (t) ⊗ Qi (t) = ∑

pi (t) ⊗ pi (t).
First note that t ∈ AR so we may assume that Qi = ∑∞

n=0 bi,ntn with bi,0 = 1 ∈ R.
Write Pi (t) = ∑∞

n=−ni
ai,ntn and do induction on the maximal pole order N of the

Pi . Write
∑

i

Pi (t) ⊗ Qi (t) = ∑

{i |ni =N }
ai,N t−N ⊗ 1 + ∑

{i |ni =N }
ai,N t−N ⊗ (Qi − 1)

+ ∑

{i |ni =N }
(Pi − ai,N t−N ) ⊗ Qi + ∑

{i |ni <N }
Pi ⊗ Qi .

Since
∑

Pi (t)Qi (t) ∈ R[[t]] we see that
∑

i ai,N = 0, so the first term in the above
sum vanishes and the other terms have poles of lower order. This proves our claim.


�

Given g ∈ G(D̊R) = LG(R), the element pr∗
1(g) × pr∗

2(g
−1) ∈ G(D̊R ×CR D̊R)

restricts to the identity on the diagonal D̊R ⊂ D̊R ×CR D̊R , which clearly extends
to DR . By the above lemma pr∗

1(g) × pr∗
2(g

−1) therefore defines an element g1,1 ∈
G(DR ×C DR).

We claim that this is the gluing cocycle needed to apply descent as indicated before
the Lemma. Namely G(U ×C U ) = G(DR ×CR C̊R) × G(DR ×CR DR) × G(C̊R ×CR

DR) × G(C̊R) and we have constructed the element (g, g1,1, g
−1, 1) in this group. It

is easy to verify that this element satisfies the cocycle condition on U ×CR U ×CR U ,
for example on DR ×CR C̊R ×CR DR ∼= D̊R ×CR D̊R we have pr∗

12(g) · pr∗
23(g

−1) =
pr∗

13(g1,1) because pr13 is just the inclusion D̊R ×CR D̊R → DR ×CR DR . This
example already shows that the cocycle condition forces us to use the element g1,1 ∈
G(DR ×CR DR).

In particular if G = GLn × C , then BunG is the stack of vector bundles on C and
thus fpqc-descent for vector bundles gives (1) and (2).

For general G we use our Assumption 1 (2) in order to apply a Tannaka type argu-
ment: consider the exact sequence of A-comodules

I ⊗ Sym• E → Sym• E → A → 0. (3.1)

In particular the representation ρ defines a map LG(R) → LGLn(R) and thus we
get gluing cocycles for the vector bundles E and I on our faithfully flat covering.
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Uniformization of G-bundles 509

Therefore this data defines vector bundles ER , IR on CR together with a map IR ⊗
Sym• ER → Sym• ER . The cokernel A′

R of this morphism is an algebra on C × R,
which is locally isomorphic to AR and the AR-comodule structure also descends to
CR . Thus Spec(A′

R) is a G-torsor on CR . Note that we only assumed that the sequence
3.1 exists locally on C , so this construction defines a G torsor on an open neighbour-
hood Us of the section s, together with a trivialization on Us − s. Since the trivial
torsor extends canonically to C − s this is sufficient to construct p̃. This proves (1)
and (2).

Part (3) and (4) of the proposition follow from (2) by the lifting criterion for formal
smoothness: again, since BunG is locally Noetherian, we may restrict to Noetherian
S-algebras R. Let I ⊂ R be a nilpotent ideal and let P be a G-torsor on CR . By (2),
a preimage of P|CR/I under p is given by a section of P|C̊R/I . Since P → CR is
smooth and C̊R is affine we can apply the lifting criterion to C̊R/I to obtain that any
such section can be extended to a section over C̊R . 
�

The following is an application of the key observation 9.3 in [20]:

Lemma 6 Assume that Gk(C) is simply connected. Let x ∈ C be a closed point and
denote by Kx the corresponding local field. Finally let g ∈ GrG,x(k) be a geometric
point.

For any finite dimensional subspace V ⊂ T(GrG,x),g there exist a map f : A
n
k

→
LGx → GrG,x which induces a surjection d f : A

n
k

� V .

Proof Since by definition of Grx the group LGx acts transitively on Grx we may
assume that g = 1 ∈ Grx.

Let v be an element of TGrx,1 i.e. v ∈ Grx(k[ε]/ε2). Since the morphism LGx →
Grx admits sections in the étale topology, we may choose a preimage ṽ ∈ LG(k[ε]/ε2)

with ṽ ≡ 1 mod ε. In order to lift ṽ to a morphism of A
1 → LGx we apply the same

reductions as in [20, Sect. 8.e.2 and 9.a]:
Since G is simply connected, there exist finite extensions Ki/Kx such that we can

write GKx = ∏

ResKi /Kx Gi where Gi are absolutely simple and simply connected
groups over Ki . In particular to prove the Lemma we may assume that GKx is absolutely
simple.

We may assume that k = k is algebraically closed. Then the group GKx is automat-
ically quasi-split ([23, p. 78], last paragraph or [17, Proposition 10.1]). In this case,
as in the construction of the Bruhat-Tits group scheme, we have an open embedding
U−×T ×U → GKx , where T is a maximal torus of GKx and U, U− are products of root
subgroups. Since LGx(k[ε]/(ε2)) = Gx(k[ε]/(ε2)((t))) and ṽ mod ε ∈ U−×T ×U
we know that ṽ ∈ U− × T × U ⊂ GKx .

Since U and U− are affine spaces it is sufficient to show that every element
T (k[ε]/(ε2)((t))) can be lifted to an element of Gx(k[ε]((t))).

Now Gx is simply connected and therefore T splits into a product of induced tori.
Thus, as in [20] proof of 9.3 we may reduce ourselves to the case G = SL2 or G = SU3.
If G = SL2 the formula:

(

c 0
0 c−1

)

=
(

1 c
0 1

)(

1 0
−c−1 1

) (

1 c
0 1

) (

0 −1
1 0

)
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shows that any element of T (k[ε]/(ε2)((t))) can be lifted to an element of
SL2(k[ε]((t))). Similarly if G = SU3 is the unitary group for a quadratic extension
K ′

x/Kx formula (9.13) in [20] (we denote the generator of Gal(K ′
x/Kx) by · ):

⎛

⎜

⎜

⎝

−d 0 0

0 d
d 0

0 0 − 1
d

⎞

⎟

⎟

⎠

=

⎛

⎜

⎜

⎝

1 −c −d

0 1 c

0 0 1

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

1 0 0
c
d

1 0

− 1
d

− c
d 1

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

1 − cd
d −d

0 1 cd
d

0 0 1

⎞

⎟

⎟

⎠

×

⎛

⎜

⎜

⎝

0 0 1

0 −1 0

1 0 0

⎞

⎟

⎟

⎠

shows the claim in this case. 
�
Remark 7 Note, that if in the above construction the groups G, T, U and the decompo-
sition of T into a product of induced tori are defined over a ring R instead of a field k,
then the map A

n → LGx will also be defined over R.

Corollary 8 Assume that Gk(C) is simply connected. Let P ∈ BunG(k) be a G-torsor
which lies in the image of the map GrG,x → BunG . Then there exists a smooth neigh-
bourhood p : UP → BunG of P such that UP ⊂ A

n and the map p can be lifted to
p̃ : UP → GrG,x → BunG .

Proof In the proof of Proposition 1 we have seen that the tangent stack to BunG at P
is given by [H1(C,P ×G Lie(G))/H0(C,P ×G Lie(G))]. By our assumption there
exists a preimage (P, φ) ∈ GrG,x(k) of P . Since the map GrG,x → BunG is for-
mally smooth, there exist a finite dimensional subspace V ⊂ TGrG,x,(P,φ) such that

dpx : V → H1(C,P ×G Lie(G)) is surjective. The above lemma shows, that there is a
map f : A

n → GrG,x such that f (0) = (P, φ) and d f : A
n → H1(C,P ×G Lie(G))

is surjective. In particular the map p ◦ f : A
n → BunG is smooth at 0. Thus there is

a Zariski open neighbourhood UP ⊂ A
n such that p ◦ f |U is smooth. 
�

Corollary 9 Assume that Gk(C) is simply connected. Then the image of the map
prx : Grx → BunG is open.

Proof By the preceding corollary we know that for each point in the image of prx

there is a smooth neighbourhood contained in the image. 
�

4 Reminder on local triviality

As a first step in our proof of the uniformization theorem, we need to recall a theorem
of Steinberg and Borel–Springer. They showed that G-bundles over a curve C , defined
over an algebraically closed field are locally trivial in the Zariski topology. A theorem
of Harder says that the same holds over finite fields if G is simply connected. Together
with the deformation arguments from the previous section this will suffice to deduce
the uniformization theorem.
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Let us recall:

Theorem (Steinberg, Borel–Springer [1]) Let k(C) be the function field of a curve
C, defined over an algebraically closed field k and let G be a connected semisimple
group scheme over k(C). Then

H1(k(C), G) = 0.

This theorem tells us that if P is a G torsor on C , then the restriction of P to the
generic point of C is trivial. Since P is of finite type over C any trivialization over
the generic point will extend to a non-empty open subset U ⊂ C i.e., we can find
U ⊂ C such that P|U is trivial. Finally, since G is smooth any trivialization over a
closed point can be lifted to a trivialization over the formal completion, so for any
point x ∈ C(k) any P torsor is trivial on the formal completion ̂Cx.

Therefore any G-torsor P can be obtained by gluing the trivial torsor on some open
subset U ⊂ C and the trivial torsors on the formal completions at the remaining points
x ∈ C − U . In other words, denoting by Ak(C) the adèles of k(C) we see that the map
pA : G(Ak(C)) → BunG(k) which maps an adèle g to the torsor obtained from the
cocycle given by g is essentially surjective (recall that BunG(k) is a category).

Recall furthermore that the above theorem also implies, that Gk(C) is always quasi-
split [22, III 2.2]. (The proof of (i′)⇒ (ii′) in this reference does not use that the
ground field is perfect.)

Remark 10 To prove the uniformization theorem we may always pass to an extension
of the ground field, so we might always assume that k is algebraically closed. However
the deformation arguments of the previous section also allow to perform a reduction
to the case of finite fields. In this case Harder proved in [14] that H1(k(C),G) = 0 if
G is simply connected. It would therefore also suffice to use Harder’s theorem in the
following.

5 The case of simply connected group schemes

Theorem 4 Let k be a field, G a simply connected parahoric Bruhat-Tits group scheme
over C and let x ∈ C be a closed point.

Then, for every Noetherian scheme S and every family P ∈ BunG(S) there exists
an étale covering S′ → S such that P|(C − x) × S′ is trivial.

Proof By Proposition 4 and Corollary 9 we know that the map prx : Grx → BunG
is formally smooth with open image. Therefore we want to show that this map is also
essentially surjective on k-valued points.

We claim that for all points y ∈ C the image of pry coincides with the image of
prx. First, since GrGx is connected [20, Theorem 0.1] we know that both images lie
in the connected component of the trivial bundle in BunG . Now let P be a bundle
which lies in the image of pry . Denote by GP := AutG(P/C) the group scheme of
automorphisms of P over C , which is étale locally isomorphic to G. In particular this is
again a simply connected Bruhat-Tits group scheme over C , which is of the same type
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as G. Furthermore BunGP
∼= BunG , the isomorphism being given by Q 	→ Q ×GP P

(here GP acts on the right on Q and on the left on P , commuting with the right action
of G on P , so that the quotient Q × P/GP is a (right) G torsor on C). Consider the
map prP

x : GrGP ,x → BunGP
∼= BunG . Its image consists of those G-bundles which

are isomorphic to P over C − x. We already know that the image of this map is open
and that it is contained in the connected component of P ∈ BunG . Thus there exists
a bundle P ′ ∈ Im(prx) ∩ Im(prP

x ), but that means that P|C−x
∼= P ′|C−x

∼= G|C−x.
Thus P ∈ prx and therefore all the maps pry have the same image. Moreover we have
shown that given two G-bundles P,P ′ such that P|C−y

∼= P ′|C−y for some y ∈ C
then P|C−x

∼= P ′|C−x for all x ∈ C .
By the theorem of Steinberg and Borel–Springer we know that any bundle is trivial

on some open subset U ⊂ C and can thus be obtained by gluing trivial bundles on
U ⊂ C and on the formal completions of the finitely many points C − U .

However we have just seen, that gluing at different points does not produce new
bundles: namely fix x ∈ C and suppose that P is given by gluing the trivial bundle on
U = C − {x1, . . . ,xn} via the gluing functions gi ∈ LGxi (k) for i = 1, . . . n. Let P j

be the bundle given by g1, . . . , g j for 0 ≤ j ≤ n, in particular P0 is the trivial bundle.
Then we know that P j |C−x j

∼= P j−1|C−x j and we have shown that this implies that
P j |C−x

∼= P j−1|C−x. Therefore P|C−x
∼= P0|C−x. And therefore the map prx is

surjective on k-valued points.
Thus Corollary 8 can be applied to every point in the image of S → BunG , in order

to obtain a smooth covering of S, factoring through Grx. Since every smooth covering
has an étale refinement this is sufficient to prove our theorem. 
�

Remark 11 If G is simply connected the affine flag manifold GrG,x is connected [20,
Theorem 0.1]. Therefore Theorem 4 and Proposition 4 (1) imply that BunG is con-
nected if G is simply connected. This proves Theorem 2 for simply connected groups G.

6 The case of general groups

In this section we want to deduce the general case of the uniformization theorem from
the case of simply connected groups. As in the previous section the formulation for
group schemes is helpful in order to circumvent the reduction to Borel subgroups used
in [10].

Since the statement of the uniformization theorem allows to pass to finite extensions
of k we may assume that C is defined over an algebraically closed field k.

Let us begin with some preparations concerning simply connected coverings of
Bruhat-Tits group schemes. Let G be a Bruhat-Tits group scheme over C and denote
the open subset of C over which G is semisimple by U . Then we know that over U
there exists a simply connected covering pU : G̃U → GU , which is a finite morphism.
We denote the kernel ZU := ker(pU ). Furthermore, since k is algebraically closed,
the group schemes GU , ˜GU are quasi-split.

To extend this to the whole of C , we consider the local problem around x ∈ Ram(G)

and then glue the result, as in the proof of Proposition 4. In the local situation we obtain
a canonical extension of ˜GU , because the Bruhat-Tits building of a group G over a local
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field is isomorphic to the building of the simply connected of G [17, 2.1.7]. To use
this abstract result, we need to recall some points of the construction of Bruhat-Tits.

Write R := ̂OC,x and K := Kx for the local field at x. Since GK is quasi-split GR is
obtained by first extending a maximal torus TK ⊂ GK by taking its connected Néron
model and then extending the root subgroups Ua ⊂ GK according to the choice of a
facet in X∗(T 0

K ), where T 0
K ⊂ TK is a maximal split torus in TK .

The choice of T 0
K , TK determines tori T̃ 0

K , T̃K in G̃K , and we can use the same
extensions of the root subgroups Ua to construct pR : G̃R → GR . By construction, the
kernel of pR is the kernel Z of the map on the maximal tori p : T̃ → T . We will need
some control over the group scheme Z .

Since G̃K is simply connected, the torus T̃K is an induced torus, i.e. there exists a
generically étale (possibly disconnected) extension Spec R′ → Spec R such that T̃K

is the Weil-restriction of Gm over Spec K ×Spec R Spec R′. Moreover in this case the
connected Néron model T̃ of T̃K is the Weil restriction to Spec R of Gm on Spec R′
[7, 4.4.8].

Claim 12 The closure Z fin of ZK in T̃ is a finite flat group scheme over Spec(R).

Proof Since the center ZK is finite, it is contained in the n-torsion TK [n] ⊂ TK for
some n and it is sufficient to show that the closure of TK [n] in T is finite over R. It
is certainly quasi-finite and to check properness, we observe that TK [n] is the Weil
restriction of μn = Gm[n] ⊂ Gm over Spec(R′). So if L ⊃ K is the quotient field of
a discrete valuation ring O , then an L-point of TK [n] is a L ⊗R R′ point of μn . Since
μn is proper, this extends canonically to an O ⊗R R′ point of μn , which defines an
O-point of the Weil restriction. 
�
Remark 13 If Spec R′ → Spec R is ramified and the characteristic of the ground field
divides n, then the Weil restriction of μn on R′ is not finite over R. In particular it
can happen that the group scheme Z is only generically finite. However we also see
that Z = Zfin is finite and flat if either R′ is an unramified extension of R or the
characteristic of the base field does not divide the order of π1(G).

In order to make some global computations, we note that GU being quasi-split
implies that we can find a Borel subgroup BU ⊂ GU so the quotient of B by its uni-
potent radical is a torus TU over U . We can consider its connected Néron model T
over C and the same holds for the simply connected covering G̃, so we find an exact
sequence 0 → Z → T̃ → T . Here, we need to note that T need not be contained in
G. However, since the maximal tori of GKx are conjugated, locally around any point
x ∈ C the torus T

̂OC,x
is isomorphic to the torus used in the Bruhat-Tits construction.

Furthermore, since ZR is contained in the center of G̃R the kernel Z of T̃ → T is
independent of the choice of the maximal torus over R, so that the kernel of T̃ → T
is indeed isomorphic to the kernel of ˜G → G.

Denote by T fin := T̃ /Zfin, which is a smooth group scheme, generically isomorphic
to T and the sequence

0 → Zfin → T̃ → T fin → 0 (6.1)
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defines an exact sequence of fppf-sheaves of groups. In particular this induces a long
exact sequence of cohomology groups.

Similarly we define Gfin := G̃/Zfin and again we get a short exact sequence:

0 → Zfin → G̃ → Gfin → 0.

Moreover we claim:

Lemma 14 (1) The natural morphism H1(C, T fin) → H1(C, T ) is surjective. The
map BunT fin → BunT is smooth, surjective, with connected fibres.

(2) Given a family P of T -torsors, parameterized by a connected scheme S, the
obstruction to lift P to a family of ˜T -torsors fppf-locally on S is constant on S.

(3) Let us denote H2(C,Z fin) := H2(C,Z fin)/H0(C, T /T fin), where H0(C, T /T f in)

→ H1(C, T f in) → H2(C,Z fin) is a composition of boundary maps. Then there
is an exact sequence H1(C, T̃ ) → H1(C, T ) → H2(C,Z fin).

(4) Parts (1)-(3) also hold if we replace T , T fin, T̃ by G,Gfin, G̃.

Proof We know that for any torus T over k(C) we have H1(k(C), T ) = 0 [22, Corol-
laire p.170]. So any T −torsor is generically trivial and thus any T -torsor lies in the
image of the gluing map ⊕x∈C LTxi → BunT . Since LTxi

∼= LT fin
xi

this proves
the claimed surjectivity. The map T fin → T induces a map on the Lie algebras
Lie(T fin) → Lie(T ) which is an isomorphism on the generic fibre. In particular, the
map H1(C, Lie(T fin)) → H1(C, Lie(T )) is surjective, and thus the map BunT fin →
BunT is smooth. Finally, the elements of the kernel of H1(C, T fin) → H1(C, T ) are
obtained from elements in

⊕x∈Ram(T )L+Tx(k)/L+T fin
x (k) ⊂ ⊕x∈Ram(T )LT fin

x (k)/L+T fin
x (k).

Since L+T is a connected scheme, this is connected. This proves part (1).
Part (1) for G follows by the same argument using the theorem of Steinberg and

Borel–Springer as recalled in Sect. 4.
To show (2) we want to prove that the map BunT̃ to BunT is flat with finite fibres.

As in Claim 12, there is an n > 0 such that the multiplication by n on T̃ factors
through the map T̃ → T . Since multiplication by n has finite fibres on BunT̃ , the
map BunT̃ → BunT has finite fibres as well.

Next, we recall that the dimension of the stacks BunT̃ and BunT , which are both

smooth, only depends on the rank and degree of the Lie algebras Lie(T̃ ) and Lie(T ).
These sheaves have the same degree by the main theorem of [8], so the two stacks
have the same dimension.

We claim that this implies that the canonical map BunT̃ → BunT is flat. First,
since both stacks carry a group structure it is sufficient to show that the map on the
connected component of the identity p : Bun◦

T̃ → Bun◦
T is flat on some non-empty

open substack of Bun◦
T̃ .

To show this, take a smooth, connected scheme X together with a smooth domi-
nant map p : X → Bun◦

T of relative dimension dp. Also take a smooth dominant
map q : Y → X ×Bun◦

T
Bun◦

T̃ =: F of relative dimension dq . In particular the map
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Y → Bun◦
T̃ is smooth of relative dimension dq + dp. If the induced map f : Y → X

was not dominant, then f had a fibre of dimension > dq . This implies that F → X
has a fibre of dimension > 0, which cannot happen since the fibres of BunT̃ → BunT
are finite. Since X is integral and f is dominant, generic flatness implies that the map
Y → X is flat on some non-empty open U ⊂ Y . This implies that p is generically
flat, because flatness can be checked on smooth coverings. This shows our claim.

In particular, for any family of T -torsors parameterized by a connected scheme S,
the obstruction to lift the family fppf-locally on S to a family of T̃ -torsors is constant
on S.

Statement (3) follows from the exactness of the sequences

H1(C, T̃ ) → H1(C, T fin) → H2(C,Zfin)

and

H0(C, T /T fin) → H1(C, T fin) → H1(C, T ).

Here the second sequence is obtained from the map T fin → T which induces an
injection of fppf-sheaves on C , since the map is an isomorphism on the generic fibre.

To deduce the corresponding statements for G-torsors we note that the sheaves
G/Gfin ∼= T /T fin are isomorphic. This is because the G and Gfin contain open sub-
sets isomorphic to UT U− and UT finU− respectively, generating the connected group
schemes G and Gfin. We have already seen that after passing to a smooth neighbourhood
any family of G-torsors can be lifted to a family of Gfin torsors.

The obstruction to lift a family of Gfin torsors to a family of ˜G-torsors locally on
the base S is given by a class in R2prS,∗pr∗

CZfin. So the obstruction to lift a family of
G-torsors to a ˜G-torsor is given by an element in R2prS,∗pr∗

CZfin/R0prS,∗pr∗
CG/Gfin.

Since G/Gfin is supported at Ram(G) this quotient is the same as the corresponding quo-
tient in the case of T -torsors (see Remark 17 for a local description of the obstruction
classes in H2(C,Zfin)). This already proves (3) for G.

We are left to show that the above quotient sheaf is locally constant. In the following
Lemma we will see that H1(C, T fin) → H2(C,Zfin) is surjective. Since we already
know that the obstruction to the existence of a lift of a T -torsor to a T̃ -torsor is locally
constant, this implies that the quotient R2prS,∗pr∗

CZfin/R0prS,∗pr∗
CT /T fin is locally

constant and it is isomorphic to the above quotient sheaf. 
�
Knowing that the obstruction to lift a given G-torsor to a G̃-torsor is given by an

element in H2(C,Zfin) we will need to calculate the latter group. This we can do,
because we have realized Z as a subgroup of an induced torus i.e., a groups of the
form ResD/CGm as considered in Example (3) in Sect. 1, where D → C is a finite,
generically étale, but possibly disconnected covering of C .

Lemma 15 Assume that k = k is algebraically closed. Then H2(C, T̃ ) = 0 and
therefore the sequence:

0 → Z fin → T̃ → T fin → 0
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defines an exact sequence

H1(C, T̃ ) → H1(C, T fin) → H2(C,Z fin) → 0.

By Lemma 14 this induces an exact sequence:

H1(C, T̃ ) → H1(C, T ) → H2(C,Z fin) → 0.

Proof Write T̃ = π∗(Gm), where π : D → C is a finite covering. We claim that the
Leray spectral sequence

H∗(C, Rπ∗Gm) ⇒ H2(D, Gm)

defines an isomorphism H2(C, T̃ ) = H2(D, Gm) = 0, because the higher derived
images vanish in the fppf-topology. This holds because R1π∗(Gm) is the sheaffifica-
tion of the group of line bundles on the finite fibres of π , and H2 of the fibres classifies
gerbes, which are also calculated by the corresponding étale cohomology, which is 0.

Thus we obtain

H1(C, T̃ ) → H1(C, T fin) → H2(C,Zfin) → 0.


�
In order to make this more explicit we need to check that the moduli space of tor-

sors under a torus has the expected number of connected components. Recall that for
a torus T over k(C) the fundamental group is π1(T ) := X∗(Tk(C)sep ), considered as
a Gal(k(C)sep/k(C))-module.

Lemma 16 Keeping the notation from Lemma 15 we have:

(1) There is an isomorphism π0(BunT )
∼=−→ X∗(Tk(C)sep)Gal(k(C)sep/k(C)).

(2) There is an exact sequence:

π1(T̃ )Gal(k(C)sep/k(C)) → π1(T )Gal(k(C)sep/k(C)) → H2(C,Z fin) → 0.

In particular π1(G)Gal(k(C)sep/k(C))
∼= H2(C,Z fin).

Proof If T = π∗Gm is an induced torus, then (1) holds: In this case the connected
components of BunT = PicD are given by the degrees of line bundles on the connected
components of D and X∗(T ) = π∗(Z), as sheaves over C .

Next, let T be arbitrary. As in the definition of the Kottwitz homomorphism (cf.
[20, Sect. 3] for a brief review of the construction of the Kottwitz homomorphism)
we choose induced tori I2 → I1 � T such that the induced sequence X∗(I2) →
X∗(I1) → X∗(T ) → 0 is exact. By [20] Theorem 5.1 we know that for any x ∈ C
we have π0(LTx) ∼= X∗(T )Gal(Kx

sep/Kx). Thus we obtain an exact sequence

π0(LI2,x) → π0(LI1,x) � π0(LTx) → 0.
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Since any T -torsor lies in the image of the gluing map
⊕

x∈C T (Kx) → BunT (k) we
obtain an exact sequence

π0(BunI2) → π0(BunI) � π0(BunT ) → 0.

This implies (1).
Finally (2) follows applying π0( ) to the last sequence in Lemma 15 and then

using (1).

Remark 17 The above lemma shows that the surjection T (Kx) = T fin(Kx) �
H2(C,Zfin) can be obtained by associating to a T fin-torsor the gerbe of liftings to
a T̃ -torsor. Alternatively we can describe this using the diagram:

H1(C, T fin) �� H2(C,Zfin)

T (Kx) ��

��

H1(Kx,Zfin)

��

Namely, given a Zfin-torsor P → Spec(Kx) we can define a Zfin-gerbe by the groupoid:

Zfin|Spec(̂Ox) ∪ Zfin|C−x ∪ P �� �� Spec(̂Ox) ∪ (C − x) ,

in which the source and target morphisms for the first two spaces are the projections
and for P the source morphism is the projection to Spec(̂Ox) and the target morphism
is the projection to (C − x), composition is given by multiplication and the Z-torsor
structure of P . To prove that this defines an algebraic stack we only need to note that
any torsor over Kx extends to a scheme of finite type over C − x.

We claim that this gerbe has a natural morphism to the lifting gerbe. The lifting
gerbe of a T -torsor Q0 is the stack which is given by associating to any flat f : S → C
the category of T̃ -torsors Q over S together with an isomorphism of the T -torsors

Q×T̃ T ∼= f ∗(Q0). This is a Zfin-gerbe, because for any flat S → C sections of T̃ (S)

mapping to 1 in T (S) automatically factor through Zfin. Moreover this gerbe is neutral
over Spec(̂OC,x) and (C − x) because the trivial T -torsors admits a reduction to T̃ .

Given g ∈ T (Kx) denote by Qg , the associated T -torsor over C and by Pg the
Zfin-torsor over Spec(Kx). Finally denote the lifting gerbe of T by ZT . The gerbe
constructed above maps to the lifting gerbe, because Pg is canonically trivial over
Spec(̂OC,x) and C − x so we obtain canonical morphisms Spec(̂OC,x) → ZT and
(C −x) → ZT . The difference between the two trivializations of Pg over Kx is given
by g, so Spec(̂OC,x) ×ZT (C − x) ∼= Pg . Thus we obtain the claimed morphism of
Zfin-gerbes, but any morphism of Zfin-gerbes is an isomorphism.

This description has the advantage that it only uses the local structure of T at
Kx, which allows us to compare the construction for groups which are only locally
isomorphic to T .
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Now we can prove the uniformization theorem stated in Sect. 1:

Theorem 5 Let G be a parahoric Bruhat-Tits group scheme over C such that the
generic fibre of G is semisimple. Then for every point x ∈ C, every Noetherian scheme
S and every family P ∈ BunG(S) there exists an fppf-covering S′ → S such that
P|(C −x)× S′ is trivial. In particular the map GrG,x → BunG is a formally smooth,
surjective map of stacks.

Proof Denote by G̃ the simply connected covering of G. We have seen that there is an
exact sequence:

H1(C, G̃) → H1(C,G) → H2(C,Zfin) → 0

defined by the obstruction to lift a G-torsor to a G̃-torsor. Furthermore we have seen
that the class in H2(C,Zfin) is locally constant. This implies that every class d ∈
H2(C,Zfin) defines an open and closed substack Bund

G .

Thus we may assume that S is connected and maps into Bund
G for some d. If d = 0

we may argue as before: The obstruction to lift our G-torsor P to G̃ vanishes after
passing to a covering S′ → S. Thus we can find S′ → S such that P lifts to a G̃-torsor
P̃ on C × S′ and for G̃-torsors we can apply Theorem 4 (the uniformization theorem).

Now if d is arbitrary we can apply a similar argument to reduce the question to the
situation where S is a geometric point: Assume again that S is connected and that P
is a family of G-bundles on S. Choose a point 0 ∈ S and consider the group scheme
G0 := AutG(P0) over C . The simply connected covering G̃0 again defines a sequence
Z → G̃0 → G0. (Here the kernel is given by the same group scheme Z as before,
because G0 is an inner form, i.e., it is in the image H1(C,G) → H1(C, Aut(G)) and
inner automorphisms act trivially on the center.)

The trivial G0-torsor P0 certainly lifts to a G̃0-torsor (see e.g. [13, Prop. 4.3.4])
and so we can apply the same reasoning as before to see that the G0-torsor P ×G P0
lifts to a G̃0-torsor locally on S. Passing to a further covering we therefore find that
P|(C−x)×S′ ∼= P0 × S′|(C−x)×S′ . Thus it is sufficient to show that the G-torsor P0 is
trivial on C − x.

To prove this, we show that one can modify P0 at the point x, such that the obstruc-
tion d vanishes. This is implied by the surjectivity of the Kottwitz homomorphism: the
isomorphism π0(LGx) → π1(GK x

)Gal(K sep
x /Kx) is defined by a reduction to tori and

thus we can apply Lemma 16 and Remark 17 to conclude that π0(LGx) → H2(C,Zfin)

is surjective. 
�
As a corollary of the above proof we can also verify the conjecture on the connected
components of BunG :

Theorem 6 Let G be a quasi-split semisimple parahoric Bruhat-Tits group scheme.
Then

π0(BunG) = π1(Gη)Gal(k(η)sep/k(η)).
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Proof In the above proof we have seen that for every d ∈ H2(C,Zfin) the stack Bund
G

is connected and non-empty, and in Lemma 16 we have seen that H2(C,Zfin) ∼=
π1(Gη)Gal(k(η)sep/k(η)).

Without reference to the proof above we can use the global Graßmannian GRG → C
to get an alternative argument:

Again denote by U ⊂ C an open subset such that G|U is semisimple. Then the sur-
jection GRG |U � BunG induces a surjection π0(GRG |U ) � π0(BunG). We claim
that π0(GRG |U ) ∼= π1(Gη)Gal(k(η)sep/k(η)). To see this, observe that the formation of
GR commutes with étale base change. Thus to compute the étale sheaf on U given by
the connected components of the fibres GRG → C , we may (after possibly shrinking
U ) reduce to the case that G is a split group scheme. In this case the connected com-
ponents are canonically isomorphic to π1(G) by the Kottwitz homomorphism on the
fibres (this morphism is constant, since the definition of the Kottwitz homomorphism
uses a reduction to the case of tori). In particular the connected components of GRG |U
are given by the orbits of the Galois group on π1(G).

The inverse map π0(BunG) → π1(Gη)Gal(k(η)sep/k(η)) is given by the obstruction

class in H2(C,Zfin) and Lemma 16. 
�

7 Line bundles on BunG

Rapoport and Pappas conjectured that for simply connected and absolutely simple
groups G splitting over a tamely ramified extension of k(C) there should be an exact
sequence:

0 →
∏

x∈ Bad(G)

X∗(Gx) → Pic(BunG)
c−→ Z → 0

where the map c should be given by the so called central charge, defined for any point
x ∈ C as follows (see [20, Remark 10.2]): First, the map GrG,x → BunG defines a map
Pic(BunG) → Pic(GrGx) and there is a canonical morphism Pic(GrG,x) = Z

Nx → Z

which can be described explicitly in terms of the root datum of Gx. In the case of
constant groups G this morphism is usually described in terms of a central extension
of LG. Namely the obstruction to lift the action of LG to the line bundles on GrG,x

defines a central extension ˜LG of LG and the central charge homomorphism is defined
by the weight of the action of the central Gm ⊂ ˜LG on the line bundle. A similar
description also holds in the general case, since we will see that the obstruction to the
existence of an LGx-linearization of the line bundles on GrG,x only depends on its
central charge, so again there exists one central extension of LGx acting on all line
bundles on GrG,x.

In this section we will denote by Pic(BunG) the group of line bundles, rigidified by
the choice of a trivialization over the trivial G-torsor. This is useful in order to compare
the Picard groups of schemes mapping to BunG .

The assumptions on G will be used in our proofs, since we will apply the compu-
tation of Pic(GrG,x) given in [20] and we will also need the fact that GrG,x is reduced
and connected.
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First of all, note that there exists a natural morphism

∏

x∈Bad(G)

X∗(Gx) ↪→ Pic(BunG),

which can be constructed as follows: For any point x ∈ C restriction to x defines a
morphism BunG → BGx. Now Pic(BGx) ∼= X∗(Gx) by definition, since a coherent
sheaf on BGx is the same thing as a representation of Gx. Thus we get a pull-back map
∏

x∈Bad(G) X∗(Gx) → Pic(BunG).
To see that this morphism is injective, consider the composition Gry → BunG →

BGx. By Lemma 4, Gry is the classifying space for torsors on C together with a triv-
ialization on C − y. In particular for y �= x the above map is given by the trivial
Gx-torsor and therefore induces the 0-map on the Picard groups.

Furthermore we claim that for x = y the map Grx → BGx defines an injection
X∗(Gx) ↪→ Pic(Grx). To simplify notations let us assume that L+G(k) ⊂ LGx(k)

is an Iwahori subgroup (otherwise we can find a smaller Bruhat–Tits group scheme
G′ → G and check injectivity after pulling back everything to BunG′ ). Recall that for
any affine simple root α of LGx we get an embedding iα : P

1 → Grx coming from
an embedding of a parahoric group L+ Pi → LG. This way we get a commutative
diagram:

L+ Pi
��

��

LGx
��

��

pt

��
P

1 = L+ Pi/L+G �� Grx �� BGx.

So we see that the degree of the restriction of the bundle given by a character λ on
P

1 is given by the restriction of this character to the root-subgroup Gm → Pi . This
constructs the left hand side of the exact sequence of the statement of Theorem 3.

For the right hand side we would like to argue as in the case of constant groups
[15], but in order to take care of the ramification of G we need the relative affine
Graßmannian GRG :

Lemma 18 Assume that k is algebraically closed, Gk(C) is simply connected and
absolutely simple and splits over a tamely ramified extension of k(C).

(1) The relative Graßmannian GRG → C is ind-proper (this holds for general G).
(2) The relative Picard group Pic(GRG /C) → C is an étale sheaf over C and there

exists a quotient c := Pic(GRG /C)/
∏

X∗(Gx).
(3) The fibres of c are isomorphic to Z and the restriction of c to C − Ram(G) is

constant.

Proof For the first part we only have to recall that we constructed GRG as a closed
subscheme of an affine Graßmannian for the constant group GLn , which is ind-pro-
jective.

To prove (2), we first consider this Zariski-locally over open subsets U ⊂ C , as
in the construction of GRG . In particular we may assume that there is a function t on
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U ×U , which is a local parameter along the diagonal. We want to write GRG = lim−→ Zi

where Zi ⊂ Zi+1 ⊂ · · · is a chain of closed embeddings of proper, connected, reduced
schemes, flat over U .

To get proper, connected schemes, we want to use Schubert varieties, so we need
to find a torus T ⊂ G over U : Since Gk(C) is quasi-split, we can choose TV ⊂ GV for
a small enough V ⊂ U . Denote by T the connected Néron model of TV over U . For
every x ∈ U − V we know that all maximal tori contained in some a Borel-subgroup
are conjugated, so TKx is conjugated to the torus used to construct the Bruhat-Tits
group G. Thus the elements in G(Kx) needed to conjugate TKx define a G-torsor P
such that for GP = AutG(P) we have T ⊂ GP . By the uniformization theorem we
know that there exists a trivialization of P over every open subset U � C . So we can
find an isomorphism GP |U ∼= GU and thus an inclusion T ⊂ G|U .

Moreover, T being an induced torus we can write T = ResD/U Gm for some

finite, generically étale covering D → U and we have G
π0(D)
m,U ⊂ T ⊂ G. Also write

Ů := U −Ram(G). We can already deduce that GRG is the closure of GRG,Ů , because
on the one hand all fibres are reduced by [20] and we claim that all geometric points
of a special fibre x ∈ Ram(G) lie in the closure. To see this last point, note that
we have seen that any geometric point of GrGx can be lifted to an element of LGx

(Proposition 2 (3)) and these elements can be written as products of elements in root
subgroups LUa,x. The torus T defines root subgroups Ua over U and as varieties these
are locally trivial bundles of affine spaces over U , so that any element in LUa,x(k)

can be extended to a local section of LUa . The product of these elements gives the
extension we were looking for. In particular, given any presentation GRG,Ů = lim−→ Zi

as an inductive limit of closed subschemes, the limit of the closures of the Zi in GRG,U
will be GRG,U .

To define global Schubert varieties, note that our choice of a local parameter defines
for every w ∈ X∗(Gπ0(D)

m ) a point in LT and this defines w ∈ GRG(U ). We define the
Schubert cell Cw := L+GŮ w ⊂ GRGU and its closure Sw := Cw ⊂ GRGU . We see

that any fibre of Sw over Ů is the Schubert variety of the fibre. Since the inductive limit
of the fibrewise Schubert varieties exhausts the fibres of GRG by [20] (and our w form
a cofinal system), we find that lim−→ Sw = GRGU . Furthermore, the canonical section of
GRG → C given by the trivial G-bundle on C factors through all Sw. Finally, since U
is a smooth curve, the projection πw : Sw → U is flat.

We claim that this suffices to prove that the relative Picard functor Pic(GRG /C) is
an étale sheaf (we adapt the arguments of [2, Sect. 8.1]): By definition a line-bundle
on an ind-scheme lim−→ Zi is a family of line bundles Li on each of the Zi , together
with isomorphisms of the restrictions Li |Z j

∼= L j for all j ≤ j .
We use the Sw, which are flat over U . In particular for each Sw we have an exact

sequence:

H1(U, πw,∗Gm)→ H1(Sw, Gm)→Pic(Sw/U )(U )→ H2(U, πw,∗Gm)→ H2(Sw, Gm)

and the same holds for every base-change T → U . Furthermore, if πw,∗OSw = OSw

then πw,∗Gm = Gm so that the existence of our section U → Sw implies that the right
hand arrow of the exact sequence is injective.
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In our situation we know that for any x ∈ U the fibre (Sw)x ⊂ GRG,x is a closed
subscheme of finite type, so it will be contained in a connected, reduced Schubert
variety Sx of the fibre GRGx . And Sx will in turn be contained in (Sw′)x for some
w′ > w. Therefore, the restriction map πw′,∗OSw′ → πw,∗OSw will factor through
OU and the same argument holds after any base-change T → U .

This implies that given a compatible family of sections (sw) ∈ Pic(Sw/U )(T ) on
some T → U we can lift these canonically to a line bundle on GRG ×U T : First, let us
check that each sw lies in the image of H1(Sw,T , Gm). Given w choose w′ > w as in the
previous paragraph. Then sw = sw′ |Sw,T and the obstruction to lift sw to H1(Sw,T , Gm)

lies in the image H2(T, πw′,∗Gm) → H2(T, Gm) → H2(T, πw,∗Gm). How-
ever, H2(T, Gm) ⊂ H2(Sw,T , Gm) so the obstruction must vanish and we can
find line bundles L0

w on Sw,T , trivialized along our section of Sw, mapping to
sw ∈ Pic(Sw/U )(T ). Define Lw := L0

w′ |Sw,T . Then for v > w the bundles Lv|Sw,T

and Lw differ by an element of H1(T, πw,∗Gm), but as before this element lies in the
image of H1(T, Gm), so it has to be trivial, because both bundles are trivialized along
our section. This procedure gives for any family of sections (sw) canonical preimages
in H1((Sw)T , Gm). Thus we find that Pic(GRG /C) is an étale sheaf. Fibrewise we
can apply [20, 10.1] to see that Pic(GRG /C)/

∏

X∗(Gx) is isomorphic to Z.
Finally, the formation of GR commutes with étale base change. Over U := C −

Ram(G) we can find a covering π : Ũ → U such that the restriction π∗(G) is an inner
form. Therefore π∗(c) is the constant sheaf Z, with canonical generator given by the
ample line bundle of central charge 1. In particular c|U is constant. 
�

Remark 19 (1) Denote by s0 : C → GRG the zero section. Then the composition

C
s0−→ GRG → BunG is given by the trivial G-torsor, so we get a morphism

Pic(BunG) → Pic(GR /C) of the groups of rigidified line bundles and thus a
morphism Pic(BunG) → H0(C, c). Furthermore the last part of the lemma shows
that for any point x ∈ C −Ram(G) the composition Pic(BunG) → H0(C, c) →
Pic(GrG,x)

cx−→ Z does not depend on the chosen point x.
(2) Fix a point x ∈ C − Ram(G). Then we may find a bundle L ∈ Pic(BunG) such

that its image in Pic(GrG,x) = Z is non-zero as follows: Choose a faithful rep-
resentation ρ : G → SL(E), where E is a vector bundle on C . This induces a
morphism indρ : BunG → BunSL(E). On BunSL(E) we have the line bundle Ldet
given by the determinant of the cohomology of the universal vector bundle on
BunSL(E) ×C . Thus we may define L := ind∗

ρ(Ldet). It is known ([15, p. 42],

[3, p. 410, last two paragraphs]) that the pull-back of L−1
det to GrSLn = GrSL(E),x

is an ample line bundle. Since ρ induces an embedding GrG,x → GrSLn ,x we
see that the pull back of L−1 to GrG,x is ample and in particular non-trivial.
Together with the previous remark we find that there exists a minimal n ∈ Z>0
such that the section n ∈ H0(C − Ram(G), c) = Z extends to a global section
i.e., a non-zero element in H0(C, c).

(3) Let x ∈ Ram(G), denote by Ux := C − Ram(G) ∪ {x} ⊂ C and jx : C −
Ram(G) → Ux the open embedding. We claim that there exists nx ∈ Z>0 such
that c|Ux

∼= jx,∗(nxZ)
∐

jx,!(Z − {nxZ}) as a sheaf of sets: We already know
that there exists a minimal non-zero section of c|C−Ram(G), which extends to Ux.
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This defines an embedding jx,∗(nxZ)
∐

jx,!(Z−{nxZ}) → c|Ux . Since the fibre
of c|x ∼= Z this must be an isomorphism.

(4) The even unitary groups provide examples of groups for which the sheaf c is not
constant: Assume that char(k) �= 2 and choose a Z/2Z-covering C̃ → C , rami-
fied at a non-empty set Ram ⊂ C . Let G = SUC̃/C (2n) := (ResC̃/C )(SL2n)

σ ⊂
ResC̃/CSL2n =: H be the corresponding unitary group. Pappas and Rapoport
show ([20, Sect. 10.4]) that for every x ∈ Ram(G) the induced map GrG,x →
GrH,x defines an isomorphism of Picard groups.
If y ∈ C − Ram(G) is an unramified point, then over the formal completion
̂OC,y we have LHy = LSL2n × LSL2n and the action of Z/2Z on LHy is given
by permuting the factors and applying the transpose–inverse automorphism. In
particular we find that LGy = LSL2n , which is embedded as A 	→ (A, At,−1)

in LHy . Therefore the corresponding map on Picard-groups is given by the sum
Pic(GrSL2n×SL2n ) = Z × Z → Z = Pic(GrSL2n ).
For x ∈ Ram(G) we know by [20, Sect. 10.a.1] that the generator of Pic(GrH,x) is
given by the determinant of the cohomology Ldet of the corresponding universal
vector bundle on BunC̃,SLn

= BunH. For y ∈ C − Ram(G) the bundle Ldet
restricts to the diagonal element (1, 1) ∈ Pic(GrSL2n×SL2n ). Thus we see that
only twice the generator of the Picard group of GrG,y descends to BunG .

Theorem 7 Assume that G is simply connected, absolutely simple and splits over a
tamely ramified extension of k(C). Then there is an exact sequence:

0 →
∏

x∈ Ram(G)

X∗(Gx) → Pic(BunG) −→ Z → 0.

To prove this result we need the analog of the loop group LG for the sections of G
over open subsets U ⊂ C :

Lemma 20 Let X → C be a closed subscheme of A
N × C, where N is any integer.

For any non-empty open U ⊂ C the fpqc-sheaf

Lout
U X := X (T × U )

is an ind-scheme. The same holds for the limit over all U ⊂ C :

Lout
k(C)X := lim−→

U⊂C

Lout
U G.

Proof Let us first prove the lemma for the case X = A
N
C . Here the functor is given

as Lout
U X (T ) = A

N (T × U ). Write OC (U ) = ∪n Vn as a union of finite dimensional
k-vector spaces Vn . To give a map T × U → A

N is the same as to give N functions
on T ×U , i.e., a finite OT (T )-linear combination of elements in some Vn . This means
that Lout

U X is an inductive limit of affine spaces. The same argument holds for Lout
k(C)X .

Next, assume that X ⊂ C ×A
N is a closed subscheme. Then Lout

U X is a subfunctor
of Lout

U A
N
C . To find equations for this subfunctor assume that U � C (otherwise the

result is easy). Then X |U is defined by an ideal I ⊂ H0(An ×U,OAn×U ) and we can
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choose generators I = ( f1, . . . , fm). An element Lout
U A

N
C (T ) defines an element of

Lout
U X (T ) if and only if all the fi are mapped to 0 in OT (T ) ⊗ OC (U ). Writing fi as

polynomials in the coordinates of A
N
U the image in OT (T )⊗OC (U ) can be expanded

as an element in OT (T ) ⊗ Vn for large enough n, so choosing a basis of Vn we obtain
equations for the functor Lout

U X . 
�
Proof of Theorem 7 (See [18] for the case of constant groups.) First note that for any
finite set of points {xi } ⊂ C we have Pic(

∏

i GrG,xi ) = ∏

i Pic(GrG,xi ), by the see-saw
principle, which we may apply since GrG,x is ind-proper and Pic(GrG,x) is discrete.
Further, the product

∏

i GrG,xi classifies G-torsors trivialized on C − {xi } and by the
uniformization theorem we know that the BunG is the quotient of

∏

i GrG,xi by the
group Lout

C−{xi }i
G, considered as a sheaf in the flat topology.

Now given L ∈ Pic(BunG) we may tensor L with a multiple fixed line bun-
dle of minimal central charge and then modify it by a line bundle in the image of
∏

x∈C X∗(Gx) such that the inverse image of L to
∏

GrG,xi is trivial for any finite set
of points xi ⊂ C . Taking the limit over all points of C , we find that L is defined by a
character of the group Lout

k(C)G. Now, since k is algebraically closed, Gk(C) is quasi-split
and simply connected. In particular G(k(C)) is generated by unipotent root subgroups
Ua(k(C)). Given the structure of the Ua (they are products of additive groups, or sub-
groups thereof, [7, 4.1]) any point u ∈ Ua(k(C)) defines a morphism Ga → Lout

k(C)Ua

considered as ind-schemes over k. Since Ga does not have characters, the character
of Lout

k(C) must therefore be trivial on geometric points. This implies that the character
is trivial on Lout

k(C)G(T ) for all reduced schemes T . Since we have seen in Theorem 4
that there exists a smooth atlas X → BunG which lifts to

∏

i GrG,xi this is sufficient
to show that L must be trivial. 
�

8 Existence of generic Borel subgroups

In this final section we want to generalize the result of Drinfeld and Simpson on the
existence of generic reductions to Borel subgroups. In the case of constant group
schemes this was used to reduce to problems for tori e.g., Faltings used this result to
construct line bundles of central charge one on BunG (see [15]). As a first application
in the more general setting of Bruhat-Tits group schemes this gives an alternative
approach to the uniformization theorem.

In this section we allow non-simply connected groups, however we need the
assumption that G splits over a tamely ramified extension.

Since some of the fibres of G may not be semisimple, we begin by studying the
possible extensions of Borel subgroups defined over the generic point of C to these
fibres. For us the following lemma, which we will prove by using arguments of [7],
will suffice:

Lemma 21 Assume that GKx splits over a tamely ramified extension of Kx. Denote
by T0 ⊂ GKx the maximal torus used in the definition of the Bruhat-Tits group scheme
GKx and let BKx ⊂ GKx be a Borel subgroup with unipotent radical UKx .

Denote by U ⊂ B ⊂ G be the closures of UKx ,BKx in G. Then B is smooth and
B/U ∼= T0.
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Proof First, we may assume that the ground field is separably closed, since smoothness
can be checked over k.

Reduction to the case of simply connected groups. Let G̃Kx → GKx be the simply
connected covering of G. As noted in Sect. 5, the Bruhat-Tits buildings of G and G′ are
canonically isomorphic [17, 2.1.7]. In particular this isomorphism defines the simply
connected cover G̃ → G, an extension Z → T̃0 → T0 and B̃ → B. Since T0 and
T̃0 are smooth and the unipotent radicals of B and B̃ are isomorphic it is sufficient to
prove the theorem for the simply connected group G̃.

Reduction to the case of split groups. Again, we can use the reduction given in [20,
Sect. 7 and 8.e.2]: GKx

∼= ∏

ResKi /KxGi is a product where Ki/Kx are tame exten-
sions and Gi is absolutely simple and simply connected. Thus we may assume that
Kx = Ki and GKx = Gi is absolutely simple. In this case there is a tamely ramified
extension L/Kx with ring of integers OL such that GOx

∼= (ResOL/Ox GOL )σ , where
GOL is a parahoric subgroup of the split Chevalley group scheme of the type given by
GKx and σ is an automorphism of ResOL/Ox GOL . Since taking invariants preserves
smoothness if the extension is tame [11], we may assume that GKx = GL is a split
group.

Thus we are reduced to the following situation: Denote by G the Chevalley group
scheme over Ox with generic fibre G Kx and let T ⊂ G be a split maximal torus and
let X∗(T ) be its character group. We know that GOx is a parahoric group scheme
corresponding to a facet A ⊂ X∗(T ). Furthermore we are given a Borel subgroup
Bη ⊂ GKx = G Kx and we want to show that the closure B ⊂ GOx of Bη is smooth.

Now let PA ⊂ G be the parabolic subgroup defined by A, let B ⊂ PA be a Borel
subgroup and let B ′ ⊂ G be the closure of Bη in G. Since all Borel subgroups are con-
jugate and G/B is projective over Ox we see that B ′ ⊂ G is of the form B ′ = g−1 Bg
for some g ∈ G(O). Denote by T g := g−1T g ⊂ B ′ the corresponding maximal torus.

Denote the special fibres of PA and B ′ by PA,x and B ′
x. There exist a split maximal

torus T ′
x ⊂ B ′

x ∩ PA,x. Since all tori are conjugate this implies that T ′
x = b−1

x T gbx for
some bx ∈ B ′

x(k). Choose a lift b ∈ B ′(Ox) of bx. Then T ′ := b−1T gb ⊂ B ′ ⊂ G
is a split maximal torus in G the special fibre of which lies in PA,x, in particular
T ′(Ox) ⊂ G(Ox) and therefore T ′ ⊂ G. Thus T ′ ⊂ B and since the unipotent radical
of Bη also has a smooth extension to G we see that B is smooth. 
�
Definition 22 We will say that B ⊂ G is a Borel subgroup of G if B is the closure of
a Borel subgroup of the generic fibre of G.

Lemma 23 Assume that k is algebraically closed. Let B ⊂ G be a Borel subgroup
and P a G-torsor on C. Then there exists a reduction of P to B.

Proof Choose a point x ∈ C − Ram(G). By the uniformization theorem (Theo-
rem 1) the restriction of P to C − {x} is trivial, in particular there exist a section
s̊ of P/B|C−{x}. Now, since G|C−Ram(G) is semisimple the quotient P/B|C−Ram(G)

is projective. Therefore the section s̊ extends to a section s of P/B. This proves the
lemma.

Remark 24 The only problem in the above construction stems from the fact that G/B
is non-compact if Gx is not semi-simple, and therefore sections of Pη/Bη need not
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extend to P/B. However, if one replaces G by the inner form AutG(P) over C , one
can apply Lemma 21 to find that any reduction over Pη extends to a Borel subgroup
of AutG(P).

Note further that we used the uniformization theorem in the above proof. However,
it would be sufficient to use the weaker statement, that there is an open subset con-
taining the finitely many points x ∈ Ram(G) on which P can be trivialized, which is
easier to prove.

The argument for the proof of the following proposition is a simple special case of
the argument given by de Jong and Starr to produce sections of rationally connected
fibrations [9]:

Proposition 25 Assume that C and G are defined over a field k. Let B ⊂ G be a Borel
subgroup, P a G-torsor on C and s ∈ P/B a reduction of P to B. Denote by PB the
corresponding B-torsor on C.

(1) If H1(C,PB×G Lie(G)/ Lie(B)) = 0 then the map indG
B : BunB → BunG which

maps a B-torsor to the induced G-torsor is smooth in PB.
(2) If s,B are given, then there exists another reduction s′ ∈ P/B(k) such that (1)

holds for s′.

Corollary 26 (Reduction to generic Borel subgroups) Let G be a parahoric Bruhat-
Tits group scheme over C such that the generic fibre of G is semisimple and quasi-split
and let B ⊂ G be a Borel subgroup. Then for any locally Noetherian scheme S and
every family P ∈ BunG(S) there exists a smooth covering S′ → S such that P|C × S′
has a reduction to B.

Proof of Corollary 26 For every point s ∈ S we can apply Corollary 23 to obtain
a reduction Ps,B of Ps to B. By the preceding proposition we may further assume
that the space of reductions of P to Bs is smooth in Ps,Bs i.e., there is a smooth
neighbourhood S′

s such that the reduction extends on this neighbourhood. 
�
Proof of Proposition 25 The first part follows from the cohomology sequence:

H1(C,PB ×B Lie B) → H1(C,P ×G Lie G) → H1(C,PB ×B Lie(G)/ Lie(B))

and the fact that the first two groups classify infinitesimal deformations of the B- resp.
G-bundle P .

To show the second part note that PB ×B Lie(G)/ Lie(B)) is the normal bundle
to the section s. In particular the morphism indG

B is smooth if the section s is a very
free curve, i.e. if the normal bundle has no higher cohomology. Now over all points
x ∈ C for which Gx is semisimple, the fibres of P/B → C are flag varieties - in
particular these contain very free rational curves and the smoothening argument for
combs [16, II, Theorem 7.9] applies: Let x1, . . . xn ∈ C be the set of points for which
Gx is not semi simple. There exist points y1, . . . , yN ⊂ C and very free rational curves
Pi ⊂ (P/B)yi passing through s(yi ). Consider C ′ := s(C) ∪ ⋃N

i=1 Pi . Then there
exist a deformation C ′′ ⊂ P/B of C ′ such that C ′′ is smooth C ′′

xi
= s(xi ) for all

i = 1, . . . , n and such that the normal bundle of C ′′ has no higher cohomology. Since
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the degree of C ′′ over C is still 1 the curve C ′′ defines a new section s′ which satisfies
condition (2). 
�

Remark 27 Using the strategy of Drinfeld and Simpson one can also use the above
result to give a different proof of the uniformization theorem for groups splitting over
a tamely ramified extension.
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