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Abstract Any symmetric mixed-strategy equilibrium in a Tullock contest with inter-
mediate values of the decisiveness parameter (“2 < R < ∞”) has countably infinitely
many mass points. All probability weight is concentrated on those mass points, which
have the zero bid as their sole point of accumulation. With contestants randomizing
over a non-convex set, there is a cost of being “halfhearted,” which is absent from both
the lottery contest and the all-pay auction. Numerical bid distributions are generally
negatively skewed and exhibit, for some parameter values, a higher probability of
ex-post overdissipation than the all-pay auction.
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1 Introduction

Even after several decades, the game-theoretic analysis of Tullock’s (1980) model
of a political contest is still incomplete. Indeed, Nash equilibria in either pure or
mixed strategies have been described explicitly only for a range of lower values of the
decisiveness parameter (Pérez-Castrillo and Verdier 1992; Nti 1999), and for the limit
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case of the all-pay auction (Hillman and Samet 1987; Hillman and Riley 1989; Baye
et al. 1996), but not so for intermediate values. As has been widely acknowledged, this
lack of a game-theoretic prediction is undesirable, in particular because the resulting
constraints on the decisiveness parameter do not have a proper economic motivation.1

For the case of intermediate values of the decisiveness parameter (“2 < R <

∞”), in which a pure-strategy Nash equilibrium does not exist, Baye et al. (1994)
proved the existence of a symmetric mixed-strategy Nash equilibrium with complete
rent dissipation, and subsequently approximated the limit distribution by calculating
equilibria of rent-seeking games with finite strategy spaces. Building on those results,
Alcade and Dahm (2010) showed that many contests of intermediate decisiveness
allow amixed-strategy equilibrium that shares important statisticswith the equilibrium
of the corresponding all-pay auction.2 However, amore structural understanding of the
limit distribution remained elusive. For example, it was not known whether the limit
distribution is continuous as in the case of the all-pay auction, or a finite collection
of mass points as in Che and Gale’s (2000) analysis of difference-form contests, or
something completely different. Moreover, numerical calculations based on contests
with finite strategy spaces have tended to offer only rather low-resolution images of
the limit distribution.3

The present paper addresses these issues by deriving new structural properties of
mixed-strategy Nash equilibria in the rent-seeking game. Specifically, it is shown
that any symmetric mixed-strategy equilibrium in the Tullock contest of intermediate
decisiveness entails countably infinitely many mass points. Moreover, all probability
weight is concentrated on these mass points. Finally, the mass points form a discrete
set in the strategy space and accumulate only at the zero bid, which itself is played
with probability zero.4

These findings are potentially important because they imply that the equilibrium
prediction for intermediate values of the decisiveness parameter differs structurally
(even though not necessarily statistically) from the tractable cases that have been
studied more frequently in the literature. For illustration, consider the equilibrium
payoff function in a two-player contest, i.e., the expected payoff of a contestant as a
function of her own expenditure, assuming that the other contestant adheres to the
equilibrium strategy (see Fig. 1). For various intermediate values of R, it can be seen
that there are many local strict maxima that all lead to the same expected payoff of
zero. It turns out that infinitelymany of these local maxima receive positivemass in the
equilibrium distribution. Thus, contrasting both the pure-strategy equilibrium in the
lottery contest and the continuous mixed-strategy equilibrium in the all-pay auction,

1 See, e.g., Che and Gale (2000), Szymanski and Valetti (2003), Konrad and Kovenock (2009), Schweinzer
and Segev (2012), and Franke et al. (2013).
2 These statistics include the probability of becoming active, the average level of expenditure, the ex ante
probability to win, as well as expected payoffs.
3 To address the problem, one may choose to modify the game (Dari-Mattiacci and Parisi 2005; Amegashie
2013). While those alternative approaches might prove useful, they do not necessarily solve the original
problem (cf. Münster 2007).
4 The present analysis does not address the issue of equilibrium uniqueness, however. Note that uniqueness
is not self-evident. For example, Baye et al. (1994) find multiple equilibria in discrete rent-seeking games.
Multiplicity is likewise a possibility in the framework of Che and Gale (2000).
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Fig. 1 Equilibrium payoff functions in the two-player Tullock contest

the equilibrium bid distribution for intermediate values of the decisiveness parameter
has a non-convex support.5

The main tools for proving the results of this paper are taken from the realm of
complex analysis. It is shown that the equilibrium payoff function allows a complex-
analytic extension to an open connected subset of the complex numbers C = {x +√−1y : x, y ∈ R} that encompasses the real interval (0,∞).6 But any non-constant
function that is analytic over an open connected subset of the complex numbers has a
discrete set of zeros. Since all expenditure levels in the support of a mixed equilibrium
strategy necessarily yield the same expected payoff, this implies that all positive bids
used in an equilibrium strategy must be isolated points of the support, which is the
key ingredient of the equilibrium analysis.7

The remainder of the paper is structured as follows. The necessary material from
complex analysis is reviewed in Sect. 2. In Sect. 3, the discreteness result is stated
and proved. The equilibrium characterization can be found in Sect. 4. Section 5 offers
numerical illustrations. Concluding remarks are collected in Sect. 6. An Appendix
describes the numerical approach that has been used to calculate examples of bid
distributions.

2 Background on analytic functions

This section recalls some concepts and results from complex analysis. For further
details and proofs, the reader is referred to any textbook on the topic, such as Conway
(1978).

Here is the definition of a complex-analytic function.

5 The equilibria studied by Che andGale (2000) feature a non-convex best-response set. In their framework,
however, any convex combination of two optimal positive bids is again optimal.
6 Generally, a function is called analytic when it can be represented locally by a converging power series.
See Sect. 2 for a formal definition.
7 To obtain the discreteness result, it would in principle suffice to show that the equilibrium payoff function
is real-analytic on (0, ∞). However, I have not been able to prove this result without resorting to methods
from complex analysis.
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Definition 2.1 A complex-valued function f is complex-analytic in an open setU ⊆
C if, at any point z0 ∈ U , there is a power series

∑∞
m=0 αm(z − z0)m in z around z0,

with coefficients αm ∈ C for m = 0, 1, 2, . . ., that converges to f (z) for all z in a
neighborhood V ⊆ U of z0.

A zero of a complex-valued function f is a point z in the domain of f such that
f (z) = 0. The following result says that the zeros of a non-constant complex-analytic
function on an open connected set necessarily form a discrete set.

Lemma 2.2 If f is a complex-analytic function on an open connected set U ⊆ C and
if there is a sequence of distinct points z1, z2, . . . in U with z0 = limn→∞ zn ∈ U and
such that f (zn) = 0 for n = 1, 2, . . ., then f (z) = 0 for all z ∈ U.

The following two standard results in complex analysis serve as the main technical
tools to show that the equilibrium payoff function in the rent-seeking game allows an
analytic extension to some complex domain that contains the interval (0,∞).

Lemma 2.3 (Cauchy’s Theorem) Let f be a complex-analytic function on the open
set U ⊆ C. Then,

∮

ξ

f (z)dz = 0 (1)

for every closed rectifiable curve ξ that is homotopic to zero in U.

Lemma 2.4 (Morera’s Theorem) Let f be a continuous complex-valued function on
the open set U ⊆ C. Suppose that Eq. (1) holds for every triangular path ξ in U.
Then, f is complex-analytic in U.

3 The support of mixed equilibria in the Tullock contest

In the sequel, I will discuss only the simple example of a two-player rent-seeking
game.8 Each player i = 1, 2 chooses a level of expenditure xi ≥ 0. For a fixed value
of the parameter R ≥ 0, player i’s payoff in the rent-seeking game is given by

�i (xi , x j ) = x Ri
x Ri + x Rj

− xi , (2)

where j �= i , and the ratio is interpreted as 1
2 if the denominator vanishes.

Recall the following facts about the equilibrium set of this game. For 0 ≤ R ≤ 2,
there is a symmetric pure-strategy Nash equilibrium in which each agent invests R

4 .
For 2 < R < ∞, however, there does not exist a pure-strategy equilibrium. Instead,
there is a symmetric mixed-strategy equilibrium with complete rent dissipation.9

8 See Sect. 6 for a discussion of the scope of the results of this paper.
9 To define mixed-strategy equilibria, I follow the usual approach according to which mixed strategies
correspond to probability distributions on the respective player’s space of pure strategies (Dasgupta and
Maskin 1986; Baye et al. 1994; Yang 1994).
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Fig. 2 Construction of the domain U (ε, δ)

The following lemma collects those properties of Tullock’s “ impact function” that
are relevant for the discreteness result stated further below.

Lemma 3.1 For any finite R ≥ 0, the function h(xi ) = x Ri allows a complex-analytic
extension ĥ to an open neighborhood H of (0,∞) in C. Moreover, h(xi ) > 0 for any
xi > 0.

Proof Denoting by ln zi the principal value of the complex logarithm, the mapping
ĥ(zi ) = exp(R · ln zi ) is complex-analytic on the half-plane H = {zi ∈ C : Re(zi ) >

0}. Clearly, ĥ(xi ) = h(xi ) for any xi > 0. This proves the first claim. The second
claim is obvious. 
�

Fix now some parameter value R and take some symmetric mixed-strategy equilib-
rium μ∗ of the rent-seeking game with decisiveness R. The following result provides
some information about the support S∗ of μ∗.
Theorem 3.2 S∗ ∩ (0,∞) is discrete and allows only the zero bid as a potential
accumulation point.

Proof Choose some complex-analytic extension ĥ of h to an open neighborhood H
of (0,∞) in C. It is claimed first that, for any ε ∈ (0, 1), there is some δ = δ(ε) > 0
such that the complex-valued function

�̃i (zi , x j ) = ĥ(zi )

ĥ(zi ) + x Rj
− zi (3)

is well-defined and bounded on U (ε, δ) × R+, where

U (ε, δ) =
{

zi ∈ C : ε < Re zi <
1

ε
, |Im zi | < δ

}

(4)

is the rectangular domain that is illustrated in Fig. 2.

To prove this claim, take some ε ∈ (0, 1). On the non-empty compact interval
Iε = [ε, 1

ε
], the continuous function h assumes a minimum value M = M(ε) > 0.10

10 For example, in the Tullock game, M = εR . In this case, Fig. 2 illustrates the case R > 1, since
M/2 < ε.

123



64 C. Ewerhart

Given that H is an open set, there exists, for any xi ∈ Iε, a small disc D(xi ) = {zi ∈ C :
|zi − xi | < δ1(xi )} of radius δ1(xi ) > 0 around xi such that D(xi ) ⊆ H . Moreover,
since the function ĥ is continuous, δ1(xi ) may be chosen sufficiently small such that
Re(̂h(zi )) > M

2 for any zi ∈ D(xi ). Exploiting now the compactness of Iε once more,
there are finitely many x1i , . . . , x

ν
i ∈ Iε such that the open discs D(x1i ), . . . , D(xν

i )

cover Iε. Clearly, it may be assumed without loss of generality that x1i < . . . < xν
i ,

as illustrated in Fig. 2. But then, any two neighboring discs D(xv0
i ), D(xν0+1

i ), for
ν0 = 1, . . . , ν − 1, have a non-empty open intersection. Moreover, x1i − δ1(x1i ) < ε

and xν
i + δ1(xν

i ) > 1
ε
. Hence, for any sufficiently small δ, the set U (ε, δ) is covered

by the discs D(x1i ), . . . , D(xν
i ). In particular, Re(̂h(zi )) > M

2 for any zi ∈ U (ε, δ).
It follows that, for δ sufficiently small, the function �̃i is indeed well-defined and
bounded on U (ε, δ) × R+. To prove the theorem, consider now the complex-valued
equilibrium payoff function

�i (zi ) =
∫

�̃i (zi , x j )dμ∗(x j ). (5)

Because the integrand is bounded on U (ε, δ) × R+ as well as continuous in zi over
U (ε, δ) for any x j ≥ 0, and because μ∗ has a compact support, the Lebesgue’s
Dominated Convergence Theorem implies that �i is continuous on U (ε, δ). To show
that �i is even complex-analytic in U (ε, δ), consider an arbitrary triangular path ξ in
U (ε, δ). Then, for any x j ≥ 0, sinceU (ε, δ) is contractible and �̃i (·, x j ) is complex-
analytic in U (ε, δ), Cauchy’s Theorem implies that

∮

ξ

�̃i (zi , x j )dzi = 0. (6)

Integrating over μ∗ yields
∫ (∮

ξ

�̃i (zi , x j )dzi

)

dμ∗(x j ) = 0. (7)

Since μ∗ has a compact support, and �̃i is bounded on U (ε, δ) × R+, one may
exchange the order of integration in Eq. (7), so that

∮

ξ

(∫

�̃i (zi , x j )dμ∗(x j )
)

dzi = 0. (8)

But ξ was arbitrary, so that Morera’s Theorem implies that�i is indeed analytic in the
complex domain U (ε, δ). Moreover, �i is non-constant in U (ε, δ) for ε sufficiently
small because�i (xi ) ≤ 1−xi for any xi ≥ 0. Take now any x∗

i ∈ S∗ such that x∗
i > 0.

For ε sufficiently small, x∗
i is an interior point of Iε. Since x∗

i is a best response to μ∗,
one has �i (x∗

i ) − �∗ = 0, where �∗ denotes the expected equilibrium payoff. By
Lemma 2.2, there is an open neighborhood V̂ of x∗

i inU (ε, δ) such that x∗
i is the only

zero of �i − �∗ in V̂ . But then, Ṽ = V̂ ∩R++ is an open neighborhood of x∗
i in the

strategy set R+ such that x∗
i is the only best response to μ∗ in Ṽ . 
�
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4 Equilibrium characterization

By Theorem 3.2, any symmetric Nash equilibrium μ∗ of the rent-seeking game has
the property that the intersection of its support S∗ with (0,∞) is discrete and allows
only the zero bid as a potential accumulation point. Thus, either S∗ is finite, or the
zero bid is an accumulation point of S∗. For R > 2, however, it will be shown below
that the origin necessarily is an accumulation point of S∗.11 It is also shown that for
R ≤ 2, there are no symmetric mixed-strategy equilibria in addition to the well-known
pure-strategy equilibrium.

As before, Iwill restrict attention to the simplest of all cases and leave any discussion
to Sect. 6.

Theorem 4.1 In any symmetric equilibrium of the two-player rent-seeking game with
2 < R < ∞, the support of the distribution of expenditure levels has the zero bid as
an accumulation point. Thus, the equilibrium is characterized by a sequence of mass
points

y1 > y2 > . . . > 0, (9)

chosen with respective positive probabilities q1,q2, . . ., so that limk→∞ yk = 0 and∑∞
k=1 qk = 1. Moreover,

∞∑

k=1

qk yRK
yRK + yRk

− yK = 0, (10)

∞∑

k=1

qk Ry
R−1
K yRk

(yRK + yRk )2
− 1 = 0, (11)

for any integer K ≥ 1. Finally, there are no non-degenerate mixed-strategy equilibria
for R ≤ 2.

Proof Suppose that the zero bid is not an accumulation point of S∗. Then, using
Theorem 3.2, S∗ is discrete and compact, hence finite. Let y1 > y2 > . . . > yL be
the mass points of the equilibrium bid distribution, used with respective probabilities
q1, . . . , qL , where

∑L
k=1qk = 1. From the first-order condition at yL ,

L∑

k=1

qk Ry
R−1
L yRk

(yRL + yRk )2
= 1, (12)

one obtains

L∑

k=1

2yRk
yRL + yRk

qk yRL
yRL + yRk

− yL = 2 − R

R
yL . (13)

11 This specific argument is applied more generally in a companion paper (2012).
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But since yk ≥ yL for k = 1, . . . , L , it follows that

L∑

k=1

qk yRL
yRL + yRk

− yL ≤ 2 − R

R
yL . (14)

Thus, for R > 2, bidding yL yields a negative expected payoff in equilibrium, which
is impossible. The contradiction shows that the origin is necessarily an accumulation
point of S∗. To prove Eq. (10), one notes that

�∗ =
∞∑

k=1

qk yRK
yRK + yRk

− yK , (15)

for any index K ≥ 1, where �∗ is the expected equilibrium payoff, as before. Tak-
ing the limit K → ∞, and subsequently exchanging the sum and the limit via the
Lebesgue’s Dominated Convergence Theorem, implies then that �∗ = 0. Finally,
it is shown that there are no non-degenerate mixed-strategy equilibria for R ≤ 2.
Indeed, by Theorem 3.2, any symmetric equilibrium bid distribution consists of dis-
cretely located mass points {yk}Lk=1 that are chosen with probabilities {qk}Lk=1, where
L ≤ ∞. Consider now the first-order condition at y1, i.e.,

L∑

k=1

qk Ry
R−1
1 yRk

(yR1 + yRk )2
− 1 = 0. (16)

Arguing as above, this implies

L∑

k=1

qk yR1
yR1 + yRk

− y1 ≥ 2 − R

R
y1, (17)

where the inequality is strict if L > 1. Hence, for R ≤ 2, rent dissipation would be
imperfect in any non-degenerate mixed-strategy equilibrium. As pointed out above,
however, �∗ > 0 is feasible only if the zero bid is not an accumulation point of
S∗. Thus, L is finite. Noting now that the left-hand side of inequality (14) is equal
to the left-hand side of inequality (17), it follows that, indeed, L = 1.12 Thus, any
symmetric equilibrium in the two-player Tullock contest with R ≤ 2 is necessarily in
pure strategies. 
�

The equilibriumdescription providedbyTheorem4.1 contrastswith both the unique
(pure-strategy) Nash equilibrium in the lottery contest and the unique (mixed-strategy)
equilibrium in the all-pay auction. As already explained in the Introduction, the pecu-
liar nature of the mixed-strategy equilibria in the Tullock contest is caused by the
non-convexity of the relevant best-response set, which is illustrated by Fig. 1. Intu-
itively, the suboptimality of bids placed, e.g., strictly between bids y1 and y2, captures

12 Moreover, as observed by one of the referees, once it is established that L = 1, conditions (14) and (17)
must hold with equality, which implies that the equilibrium bid is given by the familiar expression R/4.
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a cost of being “halfhearted” in the sense that such positive bids are too low to be
effective against a decisive action by the opponent, but at the same time too high as a
measured defense against speculative underbidding.

5 Numerical illustrations

5.1 Solving the infinite system

While Theorem 4.1 clarifies the structure of the mixed-strategy equilibrium in the
Tullock contest, it is also desirable to learn more about the specific values of the
parameters yk and qk . Since an explicit solution of Eqs. (10–11) is not readily available,
I truncated the infinite system and solved the resulting finite system numerically.13

Parameter values obtained along these lines, rounded to the fourth digit, are shown
in Table 1. As can be seen, for R kept fixed, the probability weight qk is generally
declining in k. Moreover, as R increases, the probability distribution becomes more
dispersed and stretched out over a larger range, with any two neighboring mass points
movingmore closely together. In sum, thismay be seen as refining somewhat an earlier
description given by Baye et al. (1994).14

5.2 Higher moments of the bid distributions

Figure 3 exhibits the first four moments of the numerical bid distribution. As the
right-upper panel illustrates, the skewness of the bid distribution is generally negative
for R > 2, in contrast to the corresponding case of the all-pay auction. Moreover,
with variance increasing and skewness vanishing for higher R, a higher degree of
decisiveness seems to foster speculative underbidding.

5.3 Overdissipation

Figure 4 shows the probability of ex-post overdissipation, �(R), as a function of R.
Somewhat unexpectedly, �(R) exceeds, for some values of R, the probability of ex-
post overdissipation in the all-pay auction, which is 0.5 (Baye et al. 1999). In fact,
�(R) approaches unity for R close to 2. These possibilities are obviously related to
the discreteness of the equilibrium bid distribution.

6 Concluding remarks

While Theorem 3.2 has been stated and proved only for symmetric equilibria in the
two-player Tullock contest, it reflects a more general fact. Indeed, it is not hard to see

13 The numerical procedure is described in more detail in Appendix A.
14 Baye et al. (1994, p. 372) write: “For R = 3 and Q > 4, one generally finds that all probability mass is
loaded on the first few probabilities py , with most mass loaded on the higher py ’s.” In this statement, the
parameter Q denotes the value of the prize, which is in their setting also the number of grid points.
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that the proof extends to settingswithmore than twoplayers, heterogeneous valuations,
and alternative impact functions.15

Similarly, variants of Theorem 4.1 can be derived for other classes of contests.
In particular, the arguments made above extend to the case of symmetric equilibria
in Tullock contests with N ≥ 2 players, where then non-degenerate mixed-strategy
equilibria exist if and only if R > N/(N − 1).

Starting from Theorem 4.1, one may also obtain an explicit characterization of all-
pay auction equilibria constructed byAlcade andDahm (2010) in contests with hetero-
geneous valuations. For example, if N ≥ 2 contestants possess respective valuations
v1, . . . , vN , where v1 ≥ v2 ≥ . . . ≥ vN > 0, then player 1 randomizes over infinitely

15 For example, it suffices to assume that the impact function h(xi ) is real-analytic on the interval (0, ∞),
which is the case for many functional forms considered in the literature.
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many positive mass points {ykv2}∞k=1 with probabilities {qk}∞k=1, player 2 randomizes
over {0} ∪ {ykv2}∞k=1 with probabilities 1 − v2/v1 and {qkv2/v1}∞k=1, while players
3, . . . , N remain inactive. The characterization of the symmetric two-player equilib-
rium thereby sheds light also on the structure of equilibria in more general contests.

Open Access This article is distributed under the terms of the Creative Commons Attribution License
which permits any use, distribution, and reproduction in any medium, provided the original author(s) and
the source are credited.

Appendix: Numerical approach

To calculate numerical bid distributions in the symmetric two-player Tullock contest,
one focuses on conditions (10–11) for indices K ≤ Kmax and stipulates that yk = 0
for k > Kmax. Pursuing this route leads to a system of equations

K−1∑

k=1

qk yRK
yRK + yRk

+ qK
2

+
Kmax
∑

k=K+1

qk yRK
yRK + yRk

+
∞∑

k=Kmax+1

qk − yK = 0, (18)

K−1∑

k=1

qk Ry
R−1
K yRk

(yRK + yRk )2
+ qK R

4yK
+

Kmax
∑

k=K+1

qk Ry
R−1
K yRk

(yRK + yRk )2
− 1 = 0, (19)

where K = 1, . . . , Kmax. Using the relationship

qK
2

+
∞∑

k=Kmax+1

qk = 1 −
K−1∑

k=1

qk − qK
2

−
Kmax
∑

k=K+1

qk, (20)

Equation (18) may be rewritten as

1 −
K−1∑

k=1

qk +
K−1∑

k=1

qk yRK
yRK + yRk

− qK
2

−
Kmax
∑

k=K+1

qk yRk
yRK + yRk

− yK = 0. (21)

Solving now Eqs. (19) and (21) separately for qK yields the simplified system

qK = 2(1 −
K−1∑

k=1

qk − yK + αK (yK ) − βK (yK )) (22)

= 4yK
R

(1 − α′
K (yK ) + β ′

K (yK )), (23)

for K = 1, . . . , Kmax, where the functions

αK (x) =
K−1∑

k=1

qkx R

x R + yRk
, (24)
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βK (x) =
Kmax
∑

k=K+1

qk yRk
x R + yRk

, (25)

may be seen as error terms with respective derivatives α′
K (x) and β ′

K (x).
Ignoring all error terms in (22–23) generates useful initial values for approxi-

mate solution vectors {yk}Kmax

k=1 and {qk}Kmax

k=1 . In explicit terms, these initial values are

yK = R(R−2)K−1

(R+2)K
and qK = 4(R−2)K−1

(R+2)K
, for K = 1, . . . , Kmax, as can be verified using

a straightforward induction argument. Approximate solutions can then be improved
locally at the K -th mass point, for any K = 1, . . . , Kmax, by solving (22–23) numer-
ically for “updated” values ỹK and q̃K of yK and qK . To ensure a cumulative proba-
bility of one, any updated probability vector (q1, . . . qK−1, q̃K , qK+1, . . . , qKmax , 1−
∑Kmax

k=1 qk)was multiplied through with 1/(1−qK + q̃K ). To generate the data for this
paper, a Visual Basic macro executed about 40 round-robin iterations of such updat-
ing, where Kmax = 14. For any considered value of R > 2, the procedure always
converged to the same distribution, regardless of changes made to initial conditions.
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