Skip to main content
Log in

Trabecular bone microarchitecture in female collegiate gymnasts

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

Using high-resolution magnetic resonance imaging, we observed more developed trabecular bone microarchitecture in the proximal tibia of female collegiate gymnasts vs. matched controls. This suggests that high-load physical activity may have a positive effect on the trabecular microarchitecture in weight-bearing bone.

Introduction

Participation in physical activities that overload the skeleton, such as artistic gymnastics, is associated with increased areal bone mineral density (aBMD); however, the status of trabecular microarchitecture in the weight-bearing bone of gymnasts is unknown.

Methods

Eight female collegiate artistic gymnasts and eight controls matched for age, height, body mass, gender and race were recruited for the study. Apparent trabecular bone volume to total volume (appBV/TV), trabecular number (appTb.N), thickness (appTb.Th) and trabecular separation (appTb.Sp) were determined using high resolution magnetic resonance imaging. Areal bone mineral density, bone mineral content (BMC) and bone area in the proximal tibia were determined using dual-energy X-ray absorptiometry. Group differences were determined using t-tests. The magnitude of group differences was expressed using Cohen’s d (d).

Results

Gymnasts had higher appBV/TV (13.6%, d = 1.22) and appTb.N (8.4%, d = 1.45), and lower appTb.Sp (13.7%, d = 1.33) than controls (p < 0.05). Gymnasts had higher aBMD and BMC in the proximal tibia, although the differences were smaller in magnitude (d = 0.75 and 0.74, respectively) and not statistically significant (p > 0.05).

Conclusion

The findings suggest that high-load physical activity, such as performed during gymnastics training, may enhance the trabecular microarchitecture of weight-bearing bone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Virvidakis K, Georgiou E, Korkotsidis A, Ntalles K, Proukakis C (1990) Bone mineral content of junior competitive weightlifters. Int J Sports Med 11:244–246

    Article  PubMed  CAS  Google Scholar 

  2. Modlesky CM, Cureton KJ, Lewis RD, Prior BM, Sloniger MA, Rowe DA (1996) Density of the fat-free mass and estimates of body composition in male weight trainers. J Appl Physiol 80(6):2085–2096

    PubMed  CAS  Google Scholar 

  3. Nickols-Richardson SM, Modlesky CM, O’Connor PJ, Lewis RD (2000) Premenarcheal gymnasts possess higher bone mineral density than controls. Med Sci Sports Exerc 32:63–69

    Article  PubMed  CAS  Google Scholar 

  4. Heinonen A, Kannus P, Sievanen H, Oja P, Pasanen M, Rinne M, Uusi-Rasi K, Vuori I (1996) Randomised controlled trial of effect of high-impact exercise on selected risk factors for osteoporotic fractures. Lancet 348:1343–1347

    Article  PubMed  CAS  Google Scholar 

  5. Lohman T, Going S, Pamenter R, Hall M, Boyden T, Houtkooper L, Ritenbaugh C, Bare L, Hill A, Aickin M (1995) Effects of resistance training on regional and total bone mineral density in premenopausal women: a randomized prospective study. J Bone Miner Res 10(7):1015–1024

    PubMed  CAS  Google Scholar 

  6. Nelson ME, Fiatarone MA, Morganti CM, Trice I, Greenberg RA, Evans WJ (1994) Effect of high-intensity strength training on multiple risk factors for osteoporotic fractures. JAMA 272:1909–1914

    Article  PubMed  CAS  Google Scholar 

  7. Bass S, Pearce G, Bradney M, Hendrich E, Delmas PD, Harding A, Seeman E (1998) Exercise before puberty may confer residual benefits in bone density in adulthood: studies in active prepubertal and retired female gymnasts. J Bone Miner Res 13:500–507

    Article  PubMed  CAS  Google Scholar 

  8. Laing EM, Massoni JA, Nickols-Richardson SM, Modlesky CM, O’Connor PJ, Lewis RD (2002) A prospective study of bone mass and body composition in female adolescent gymnasts. J Pediatr 141:211–216

    Article  PubMed  Google Scholar 

  9. Seeman E (2002) An exercise in geometry. J Bone Miner Res 17:373–380

    Article  PubMed  Google Scholar 

  10. Legrand E, Chappard D, Pascaretti C, Duquenne M, Krebs S, Rohmer V, Basle MF, Audran M (2000) Trabecular bone microarchitecture, bone mineral density, and vertebral fractures in male osteoporosis. J Bone Miner Res 15:13–19

    Article  PubMed  CAS  Google Scholar 

  11. Majumdar S, Link TM, Augat P, Lin JC, Newitt D, Lane NE, Genant HK (1999) Trabecular bone architecture in the distal radius using magnetic resonance imaging in subjects with fractures of the proximal femur. Osteoporos Int 10:231–239

    Article  PubMed  CAS  Google Scholar 

  12. Siffert RS, Luo GM, Cowin SC, Kaufman JJ (1996) Dynamic relationships of trabecular bone density, architecture, and strength in a computational model of osteopenia. Bone 18:197–206

    Article  PubMed  CAS  Google Scholar 

  13. Wehrli FW, Gomberg BR, Saha PK, Song HK, Hwang SN, Snyder PJ (2001) Digital topological analysis of in vivo magnetic resonance microimages of trabecular bone reveals structural implications of osteoporosis. J Bone Miner Res 16:1520–1531

    Article  PubMed  CAS  Google Scholar 

  14. Vico L, Chappard D, Palle S, Bakulin AV, Novikov VE, Alexandre C (1988) Trabecular bone remodeling after seven days of weightlessness exposure (BIOCOSMOS 1667). Am J Physiol 255:R243–R247

    PubMed  CAS  Google Scholar 

  15. Bourrin S, Palle S, Pupier R, Vico L, Alexandre C (1995) Effect of physical training on bone adaptation in three zones of the rat tibia. J Bone Miner Res 10:1745–1752

    PubMed  CAS  Google Scholar 

  16. Ito M, Nishida A, Nakamura T, Uetani M, Hayashi K (2002) Differences of three-dimensional trabecular microstructure in osteopenic rat models caused by ovariectomy and neurectomy. Bone 30:594–598

    Article  PubMed  CAS  Google Scholar 

  17. Kazarian LE, Von Gierke HE (1969) Bone loss as a result of immobilization and chelation. Preliminary results in Macaca mulatta. Clin Orthop 65:67–75

    PubMed  CAS  Google Scholar 

  18. Biewener AA, Fazzalari NL, Konieczynski DD, Baudinette RV (1996) Adaptive changes in trabecular architecture in relation to functional strain patterns and disuse. Bone 19(1):1–8

    Article  PubMed  CAS  Google Scholar 

  19. Modlesky CM, Majumdar S, Narasimhan A, Dudley GA (2004) Trabecular bone microarchitecture is deteriorated in men with spinal cord injury. J Bone Miner Res 19:48–55

    Article  PubMed  Google Scholar 

  20. Slade JM, Bickel CS, Modlesky CM, Majumdar S, Dudley GA (2005) Trabecular bone is more deteriorated in spinal cord injured versus estrogen-free postmenopausal women. Osteoporos Int 16:263–272

    Article  PubMed  Google Scholar 

  21. Modlesky CM, Subramanian P, Miller F (2007) Underdeveloped trabecular bone microarchitecture is detected in children with cerebral palsy using high-resolution magnetic resonance imaging. Osteoporos Int (in press). DOI 10.1007/s00198-007-0433-x

  22. Joo YI, Sone T, Fukunaga M, Lim SG, Onodera S (2003) Effects of endurance exercise on three-dimensional trabecular bone microarchitecture in young growing rats. Bone 33:485–493

    Article  PubMed  Google Scholar 

  23. Bourrin S, Palle S, Genty C, Alexandre C (1995) Physical exercise during remobilization restores a normal bone trabecular network after tail suspension-induced osteopenia in young rats. J Bone Miner Res 10:820–828

    Article  PubMed  CAS  Google Scholar 

  24. Hall SJ (1986) Mechanical contribution to lumbar stress injuries in female gymnasts. Med Sci Sports Exerc 18:599–602

    PubMed  CAS  Google Scholar 

  25. Helge EW, Kanstrup IL (2002) Bone density in female elite gymnasts: impact of muscle strength and sex hormones. Med Sci Sports Exerc 34:174–180

    Article  PubMed  Google Scholar 

  26. Blair SN, Haskell WL, Ho P, Paffenbarger RS Jr, Vranizan KM, Farquhar JW, Wood PD (1985) Assessment of habitual physical activity by a seven-day recall in a community survey and controlled experiments. Am J Epidemiol 122:794–804

    PubMed  CAS  Google Scholar 

  27. Dishman RK, Steinhardt M (1988) Reliability and concurrent validity for a 7-d re-call of physical activity in college students. Med Sci Sports Exerc 20:14–25

    Article  PubMed  CAS  Google Scholar 

  28. USDA Food and Nutrient Database for Dietary Studies, 1.0. Agricultural Research Service, Food Surveys Research Group, Beltsville, MD.

  29. Majumdar S, Genant HK, Grampp S, Newitt DC, Truong VH, Lin JC, Mathur A (1997) Correlation of trabecular bone structure with age, bone mineral density, and osteoporotic status: in vivo studies in the distal radius using high resolution magnetic resonance imaging. J Bone Miner Res 12:111–118

    Article  PubMed  CAS  Google Scholar 

  30. Beuf O, Ghosh S, Newitt DC, Link TM, Steinbach L, Ries M, Lane N, Majumdar S (2002) Magnetic resonance imaging of normal and osteoarthritic trabecular bone structure in the human knee. Arthritis Rheum 46:385–393

    Article  PubMed  Google Scholar 

  31. Cohen J (1988) Statistical Power for the Behavioral Sciences. Lawrence Erlbaum Associates, Hillsdale, NJ

    Google Scholar 

  32. Lehtonen-Veromaa M, Mottonen T, Nuotio I, Heinonen OJ, Viikari J (2000) Influence of physical activity on ultrasound and dual-energy X-ray absorptiometry bone measurements in peripubertal girls: a cross- sectional study. Calcif Tissue Int 66:248–254

    Article  PubMed  CAS  Google Scholar 

  33. Gluer CC, Wu CY, Genant HK (1993) Broadband ultrasound attenuation signals depend on trabecular orientation: an in vitro study. Osteoporos Int 3:185–191

    Article  PubMed  CAS  Google Scholar 

  34. Gluer CC, Wu CY, Jergas M, Goldstein SA, Genant HK (1994) Three quantitative ultrasound parameters reflect bone structure. Calcif Tissue Int 55:46–52

    Article  PubMed  CAS  Google Scholar 

  35. Daly RM, Rich PA, Klein R, Bass S (1999) Effects of high-impact exercise on ultrasonic and biochemical indices of skeletal status: a prospective study in young male gymnasts. J Bone Miner Res 14:1222–1230

    Article  PubMed  CAS  Google Scholar 

  36. Ruffing JA, Nieves JW, Zion M, Tendy S, Garrett P, Lindsay R, Cosman F (2007) The influence of lifestyle, menstrual function and oral contraceptive use on bone mass and size in female military cadets. Nutr Metab (Lond) 4:17

    Article  Google Scholar 

  37. Hawker GA, Jamal SA, Ridout R, Chase C (2002) A clinical prediction rule to identify premenopausal women with low bone mass. Osteoporos Int 13:400–406

    Article  PubMed  CAS  Google Scholar 

  38. Polatti F, Perotti F, Filippa N, Gallina D, Nappi RE (1995) Bone mass and long-term monophasic oral contraceptive treatment in young women. Contraception 51:221–224

    Article  PubMed  CAS  Google Scholar 

  39. Martins SL, Curtis KM, Glasier AF (2006) Combined hormonal contraception and bone health: a systematic review. Contraception 73:445–469

    Article  PubMed  CAS  Google Scholar 

  40. Matkovic V, Fontana D, Tominac C, Goel P, Chesnut CH 3rd (1990) Factors that influence peak bone mass formation: a study of calcium balance and the inheritance of bone mass in adolescent females. Am J Clin Nutr 52:878–888

    PubMed  CAS  Google Scholar 

  41. Ihle R, Loucks AB (2004) Dose-response relationships between energy availability and bone turnover in young exercising women. J Bone Miner Res 19:1231–1240

    Article  PubMed  Google Scholar 

  42. Kirchner EM, Lewis RD, O’Connor PJ (1995) Bone mineral density and dietary intake of female college gymnasts. Med Sci Sports Exerc 27(4):543–549

    PubMed  CAS  Google Scholar 

  43. Modlesky CM, Lewis RD (2002) Does exercise during growth have a long-term effect on bone health? Exerc Sport Sci Rev 30:171–176

    Article  PubMed  Google Scholar 

  44. Kannus P, Haapasalo H, Sankelo M, Sievanen H, Pasanen M, Heinonen A, Oja P, Vuori I (1995) Effect of starting age of physical activity on bone mass in the dominant arm of tennis and squash players. Ann Intern Med 123:27–31

    PubMed  CAS  Google Scholar 

  45. Westerlind KC, Fluckey JD, Gordon SE, Kraemer WJ, Farrell PA, Turner RT (1998) Effect of resistance exercise training on cortical and cancellous bone in mature male rats. J Appl Physiol 84:459–464

    PubMed  CAS  Google Scholar 

  46. Rubin C, Turner AS, Muller R, Mittra E, McLeod K, Lin W, Qin YX (2002) Quantity and quality of trabecular bone in the femur are enhanced by a strongly anabolic, noninvasive mechanical intervention. J Bone Miner Res 17:349–357

    Article  PubMed  Google Scholar 

  47. Rubin C, Turner AS, Bain S, Mallinckrodt C, McLeod K (2001) Anabolism. Low mechanical signals strengthen long bones. Nature 412:603–604

    Article  PubMed  CAS  Google Scholar 

  48. Dodd KW, Guenther PM, Freedman LS, Subar AF, Kipnis V, Midthune D, Tooze JA, Krebs-Smith SM (2006) Statistical methods for estimating usual intake of nutrients and foods: a review of the theory. J Am Diet Assoc 106:1640–1650

    Article  PubMed  Google Scholar 

  49. Jonnalagadda SS, Bernadot D, Nelson M (1998) Energy and nutrient intakes of the United States National Women’s Artistic Gymnastics Team. Int J Sport Nutr 8:331–344

    PubMed  CAS  Google Scholar 

  50. Majumdar S, Kothari M, Augat P, Newitt DC, Link TM, Lin JC, Lang T, Lu Y, Genant HK (1998) High-resolution magnetic resonance imaging: three-dimensional trabecular bone architecture and biomechanical properties. Bone 22:445–454

    Article  PubMed  CAS  Google Scholar 

  51. Link TM, Majumdar S, Augat P, Lin JC, Newitt D, Lu Y, Lane NE, Genant HK (1998) In vivo high resolution MRI of the calcaneus: differences in trabecular structure in osteoporosis patients. J Bone Miner Res 13:1175–1182

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank the subjects for their participation. The study was funded by the National Institutes of Health (HD40323) and the Center for Research Development in the College of Health Sciences at the University of Delaware.

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. M. Modlesky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Modlesky, C.M., Majumdar, S. & Dudley, G.A. Trabecular bone microarchitecture in female collegiate gymnasts. Osteoporos Int 19, 1011–1018 (2008). https://doi.org/10.1007/s00198-007-0522-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-007-0522-x

Keywords

Navigation