Skip to main content
Log in

Rotary wave-ejector enhanced pulse detonation engine

  • Original Article
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

The use of a non-steady ejector based on wave rotor technology is modeled for pulse detonation engine performance improvement and for compatibility with turbomachinery components in hybrid propulsion systems. The rotary wave ejector device integrates a pulse detonation process with an efficient momentum transfer process in specially shaped channels of a single wave-rotor component. In this paper, a quasi-one-dimensional numerical model is developed to help design the basic geometry and operating parameters of the device. The unsteady combustion and flow processes are simulated and compared with a baseline PDE without ejector enhancement. A preliminary performance assessment is presented for the wave ejector configuration, considering the effect of key geometric parameters, which are selected for high specific impulse. It is shown that the rotary wave ejector concept has significant potential for thrust augmentation relative to a basic pulse detonation engine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Roy G.D., Frolov S.M., Borisov A.A., Netzar D.W.: Pulse detonation propulsion: challenges, current status, and future perspective. Prog. Energy Combust. Sci. 30, 545–672 (2004)

    Article  Google Scholar 

  2. Eidelman S., Grossmann W., Lottati I.: Review of propulsion applications and numerical simulations of the pulsed detonation engine concept. J. Propuls. Power 7, 857–865 (1991)

    Article  Google Scholar 

  3. Kailasanath K.: Review of propulsion applications of detonation waves. AIAA J. 38, 1698–1708 (2000)

    Article  Google Scholar 

  4. Kailasanath K.: Recent developments in the research on pulse detonation engines. AIAA J. 41, 145–159 (2003)

    Article  Google Scholar 

  5. Allgood D., Gutmark E., Rasheed A., Dean A.: Experimental investigation of a pulse detonation engine with a two-dimensional ejector. AIAA J. 43, 390–398 (2005)

    Article  Google Scholar 

  6. Wilson J., Sgondea A., Paxson D.E., Rosenthal B.N.: Parametric investigation of thrust sugmentation by ejectors on a pulsed detonation tube. J. Propuls. Power 23, 108–115 (2007)

    Article  Google Scholar 

  7. Bussing, T.R.A.: Rotary valve multiple combustor pulse detonation engine. US patent 5,345,758 (1994)

  8. Bussing, T.R.A.: A rotary valve multiple pulse detonation engine. AIAA Paper 95-2577 (1995)

  9. Hinkey, J.B., Williams, J.T., Henderson, S.E., Bussing, T.R.A.: Rotary-valved, multiple-cycle, pulse detonation engine experimental demonstration. AIAA Paper 97-2746 (1997)

  10. Schauer, F., Bradley, R., Hoke, J.: Interaction of a pulsed detonation engine with a turbine. AIAA Paper 2003-891 (2003)

  11. Xia, G., Li, D., Merkle, C.: Modeling of pulsed detonation tubes in turbine systems. AIAA Paper 2005-225 (2005)

  12. Goldmeer J., Tangirala V.E., Dean A.J.: System-level performance estimation of a pulse detonation based hybrid engine. ASME J. Eng. Gas Turbines Power 130, 011201-1-8 (2008)

    Article  Google Scholar 

  13. Rasheed A., Furman A., Dean A.: Pressure measurements and attenuation in a hybrid multitube pulse detonation turbine system. J. Propuls. Power 25, 148–161 (2009)

    Article  Google Scholar 

  14. Nalim, M.R.: Wave rotor detonation engine. US Patent 6,460,342 (2002)

  15. Akbari P., Nalim M.R.: Review of recent developments in wave rotor combustion technology. J. Propuls. Power 25, 833–844 (2009)

    Article  Google Scholar 

  16. Nalim, M.R., Elharis, T.M., Wijeyakulasuriya, S.D., Izzy, Z.A.: wave rotor combustor aerothermodynamic design and model validation based on initial testing. AIAA Paper 2010-7041 (2010)

  17. Matsutomi, Y., Meyer, S.E., Wijeyakulasuriya, S.D., Izzy, Z.A., Nalim, M.R., Shimo, M., Kowalkowski, M., Snyder, P.H.: Experimental investigation on the wave rotor combustor. AIAA Paper 2010-7043 (2010)

  18. Azoury P.H.: Engineering Applications of Unsteady Fluid Flow. Wiley, New York (1992)

    MATH  Google Scholar 

  19. Kentfield J.A.C.: Nonsteady, One-Dimensional, Internal, Compressible Flows. Oxford University Press, Oxford (1993)

    Google Scholar 

  20. Weber H.E.: Shock Wave Engine Design. Wiley, New York (1995)

    Google Scholar 

  21. Berchtold, M.: The comprex®. In: Proceeding ONR/NAVAIR Wave Rotor Research and Technology Workshop, Report NPS-67-85-008, pp. 50–74. Naval Postgraduate School, Monterey (1985)

  22. Shreeve, R.P., Mathur, A.: Proceeding ONR/NAVAIR wave rotor research and technology workshop. Report NPS-67-85-008. Naval Postgraduate School, Monterey (1985)

  23. Akbari P., Nalim M.R., Müller N.: A review of wave rotor tech- nology and its applications. ASME J. Eng. Gas Turbines Power 128, 717–735 (2006)

    Article  Google Scholar 

  24. Nalim M.R.: Longitudinally stratified combustion in wave rotors. J. Propuls. Power 16, 1060–1068 (2000)

    Article  Google Scholar 

  25. Bilgin, M., Keller, J.J., Breidenthal, R.E.: Ignition and flame propagation process with rotating hot jets in a simulated wave engine test cell. AIAA Paper 98-3399 (1998)

  26. Nalim M.R., Paxson D.E.: A numerical investigation of premixed combustion in wave rotors. ASME J. Eng. Gas Turbines Power 119, 668–675 (1997)

    Article  Google Scholar 

  27. Nalim, M.R., Jules, K.: Pulse combustion and wave rotors for high-speed propulsion engines. AIAA Paper 98-1614 (1998)

  28. Fong, K.K., Nalim, M.R.: Gas dynamic limits and optimization of pulsed detonation static thrust. AIAA Paper 2000-3471 (2000)

  29. Paxson, D.E., Perkins, H.D.: Thermal load considerations for detonative combustion-based gas turbine engines. AIAA Paper 2004-3396 (2004)

  30. Akbari, P., Nalim, M.R.: Analysis of flow processes in detonative wave rotors and pulse detonation engines. AIAA Paper 2006-1236 (2006)

  31. Alperin M., Wu J.J.: Thrust augmenting ejectors, Part I. AIAA J. 21, 1428–1436 (1983)

    Article  Google Scholar 

  32. Alperin M., Wu J.J.: Thrust augmenting ejectors, Part II. AIAA J. 21, 1698–1706 (1983)

    Article  Google Scholar 

  33. Amin S.M., Garris C.A.: Experimental investigation of a nonsteady thrust augmenter. J. Propuls. Power 12, 124–729 (1996)

    Article  Google Scholar 

  34. Opalski, A., Paxson, D.E., Wernet, M.: Detonation driven ejector exhaust flow characterization using planar DPIV. AIAA Paper 2005-4379 (2005)

  35. Paxson, D.E., Wilson, J., Dougherty, K.T.: Unsteady ejector performance: an experimental investigation using a pulsejet driver. AIAA Paper 2002-3915 (2002)

  36. John, W.T., Paxson, D.E., Wernet, M.P.: Conditionally sampled pulsejet driven ejector flow field using DPIV. AIAA Paper 2002-3231 (2002)

  37. Paxson, D.E., Dougherty, K.T.: Ejector enhanced pulsejet based pressure gain combustors: an old idea with a new twist. AIAA Paper 2005-4216 (2005)

  38. Paxson, D.E., Litke, P.J., Schauer, F.R.: Performance assessment of a large scale pulsejet-driven ejector system. AIAA Paper 2006-1021 (2006)

  39. Nalim, M.R., Izzy, Z.: Rotary wave ejector enhanced pulsed detonation system. AIAA Paper 2001-3613 (2001)

  40. Nalim, M.R., Izzy, Z.: Simulation of a wave rotor pulse dtonation egine with itegrated ejector. ISABE Paper 2001-1214 (2001)

  41. Izzy, Z., Nalim, M.R.: Wave fan and rotary-ejector pulsed performance prediction. AIAA Paper 2002-4068 (2002)

  42. Nalim, M.R.: Rotary wave ejector enhanced pulsed detonation system and method. US Patent 6,845,620 (2005)

  43. Paxson, D.E.: A general numerical model for wave-rotor analysis. NASA Report TM-105740 (1992)

  44. Paxson, D.E.: An improved numerical model for wave rotor design and analysis. AIAA Paper 93-0482 (1993)

  45. Paxson, D.E., Wilson, J.: Recent improvements to and validation of the one dimensional NASA wave rotor model. NASA Report TM-106913 (1995)

  46. Paxson D.E.: Comparison between numerically modeled and experimentally measured wave-rotor loss mechanism. J. Propuls. Power 11, 908–914 (1995)

    Article  Google Scholar 

  47. Paxson, D.E.: Wave augmented diffusers for centrifugal compressors. AIAA Paper 98-3401 (1998)

  48. Paxson D.E.: Numerical simulation of dynamic wave rotor performance. J. Propuls. Power 12, 949–957 (1996)

    Article  Google Scholar 

  49. Paxson D.E.: A numerical investigation of the startup transient in a wave rotor. ASME J. Eng. Gas Turbines Power 119, 676–682 (1997)

    Article  Google Scholar 

  50. Litke, P.J., Schauer, F.R., Paxson, D.E., Bradley, R.P., Hoke, J.L.: Assessment of the performance of a pulsejet and comparison with a pulsed-detonation engine. AIAA Paper 2005-0228 (2005)

  51. Mawid, M.A., Sekar, B.: A numerical study of active control of combustion-driven dynamic instabilities in gas-turbine combustors. AIAA Paper 1999-2778 (1999)

  52. Paxson D.E.: A sectored-one-dimensional model for simulating combustion instabilities in premix combustors. AIAA Paper 2000-0313 (2000)

  53. Paxson D.E.: Performance evaluation method for ideal airbreathing pulse detonation engines. J. Propuls. Power 20, 945–947 (2004)

    Article  Google Scholar 

  54. Perkins, H.D., Paxson, D.E., Povinelli, L.A., Petters, D.P., Thomas, S.R., Fittje, J.E., Dyer, R.S.: An assessment of pulse detonation engine performance estimation methods based on experimental results. AIAA Paper 2005-3831 (2005)

  55. Paxson, D.E.: A simplified model for detonation based pressure-gain combustors. AIAA Paper 2010-6717 (2010)

  56. Elharis, T.M., Wijeyakulasuriya, S.D., Nalim, M.R.: Wave rotor combustor aerothermodynamic design and model validation based on initial testing. AIAA Paper 2010-7041 (2010)

  57. Paxson, D.E., Lindau, J.W.: Numerical assessment of four-port through-flow wave rotor cycles with passage height variation. AIAA Paper 97-3142 (1997)

  58. Geng, T., Nalim, M.R.: Statistical design-of-experiments for wave ejector performance improvement. AIAA Paper 2004-1211 (2004)

  59. Geng, T.: Statistical design of experiments in the investigation of the wave ejector. M.S. Thesis, Mechanical Engineering Dept., Indiana University-Purdue University Indianapolis, Indianapolis (2004)

  60. Nalim M.R.: Thermodynamic limits of work and pressure gain in combustion and evaporation processes. J. Propuls. Power 18, 1176–1182 (2002)

    Article  Google Scholar 

  61. Nalim M.R., Li H., Akbari P.: Air-standard aerothermodynamic analysis of gas turbine engines with wave rotor combustion”. ASME J. Eng. Gas Turbines Power 131, 0545061–0545066 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Akbari.

Additional information

Communicated by F. Lu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nalim, M.R., Izzy, Z.A. & Akbari, P. Rotary wave-ejector enhanced pulse detonation engine. Shock Waves 22, 23–38 (2012). https://doi.org/10.1007/s00193-011-0348-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-011-0348-5

Keywords

Navigation