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Abstract We consider a dynamic planning problem for paratransit transportation.
The focus is on a decision to take one day ahead: which requests to serve with own
vehicles, and which requests to subcontract to taxis? We call this problem the day-
ahead paratransit planning problem. The developed model is a non-standard two-stage
integer recourse model. Both stages consist of two consecutive optimization problems:
the clustering of requests into routes, and the assignment of these routes to vehicles.
To solve this model, a genetic algorithm approach is used. Computational results are
presented for randomly generated data sets.
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1 Introduction

We consider a dynamic planning problem for the transport of elderly and disabled
people. In particular, we focus on a decision to take one day before the day of opera-
tion (i.e., day-ahead): which requests should be served with own vehicles, and which
requests should be assigned to taxis (i.e., subcontracted)? We will call this problem
the Day-ahead Paratransit Planning problem (the DaPP problem). A typical aspect
of the DaPP problem in particular and transportation of elderly and disabled people
in general is that part of the requests is known one day ahead, but also part of the
requests becomes known only on the day of operation itself. We pay special attention
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324 M. L. A. G. Cremers et al.

to this aspect of uncertainty with respect to late requests. Besides uncertainty, cluster-
ing (combining requests) is an important aspect too. Clustering of requests ensures that
less vehicles are needed to serve all requests. The criterion upon which the decision of
the DaPP problem is taken, is the expected costs of serving all requests. These costs
depend to a large extent on the degree of clustering.

Several studies exist which examine the door-to-door transportation problem
of elderly and disabled people (e.g. Attanasio et al. 2004; Borndörfer et al. 1997;
Cordeau and Laporte 2003a,b; Jørgensen et al. 2007; Madsen et al. 1995; Toth and
Vigo 1997). In this section, we first give a description of this problem and then present
an overview of studies in the literature. The focus of this overview is on how different
studies handle the use of taxis in their model. Explicitly incorporating taxis as part of
the vehicle fleet, and deciding (day-ahead) about requests either to assign them to an
own vehicle or to a taxi, results in the development of the DaPP problem. To the best
of our knowledge, the DaPP problem has not been studied before.

In the literature, the dial-a-ride problem (DARP) is frequently used for the door-
to-door transportation services of elderly and disabled people (paratransit services).
In DARP, a vehicle fleet is given, as well as a set of service requests. Each request con-
sists of an origin (pickup location), destination (delivery location), and desired time
windows for pickup and delivery. The set of requests can either be known beforehand
(static) or gradually revealed during the day of operation (dynamic). The aim is to find
a set of minimum cost vehicle routes subject to constraints regarding, among others,
vehicle capacity and time windows.

In the context of paratransit services, time windows are usually modeled as soft
constraints. That is, deviations from the desired pickup and delivery times are not for-
bidden but included in customer service measures, together with waiting time and ride
time. These measures can either be included in the (multi-criteria) objective function
or added to the set of constraints. In the last case, a bound for each measure has to be
prescribed.

Furthermore, in paratransit transport there are various types of customers, mostly
depending on physical characteristics (e.g., ambulatory customers and customers in
folding or non-folding wheelchairs). Customers often have two requests on the same
day: an outbound request from home to a destination (e.g., a hospital), and an inbound
request for the return trip. Typically, in paratransit service also the vehicle fleet is het-
erogeneous. Each vehicle type has its own capacity depending on the customer type.
For example, a van has capacity for two wheelchairs and five ambulatory customers,
or for four wheelchairs and two ambulatory customers. Sometimes taxis are used in
addition to the own vehicle fleet, mainly for the transport of ambulatory customers in
peak hours. Without the use of taxis it may not be possible to serve all requests, and
often maximization of the number of requests served is then part of the problem.

In most studies, the model can handle more than one option on how to deal with
taxis. Which option will be chosen depends on the planning operator. The algorithm
of Jaw et al. (1986) can either reject customers or not. If rejection of customers is
not allowed an additional vehicle is introduced. This additional vehicle will be part of
the vehicle fleet from that time on, contrary to taxis which are available to serve one
single request. The underlying assumption is a (more or less) unbounded number of
available vehicles. Madsen et al. (1995) distinguish two options for the use of taxis. In
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the first option, they add taxis to the vehicle fleet with a cost larger than for vehicles
of the own fleet. In the second option, they allow rejection of customers and assign
rejected customers to taxis afterwards. Toth and Vigo (1997) have only one option
which is the use of taxis, but only if strictly necessary and for non ‘difficult’ requests,
which are in their specification ambulatory customers, those in folding wheelchairs,
and customers not requiring specialized accompanying personnel. To minimize the
use of taxis they introduce penalty costs.

Of all studies mentioned above only the studies of Madsen et al. (1995) and
Attanasio et al. (2004) consider the dynamic version of the paratransit problem: at
the beginning of the day of operation many requests are already known, but during
the day more requests are revealed. All other studies consider the static version of
the problem in which all requests are known beforehand. It is obvious that the static
version is easier to solve, but the dynamic version should give better results. When
one decides to study the dynamic version of the problem, different options exist to
model the uncertainty of the late requests. Both Madsen et al. (1995) and Attanasio
et al. (2004) use an insertion heuristic to insert the new requests in the existing vehicle
routes.

As opposed to all other studies, which look at the paratransit problem on the
day of operation, we consider the paratransit problem one day before the day of
operation. By then, many requests are already known which makes it possible to
assign already then some of the known requests to taxis. This is exactly the deci-
sion taken in the DaPP problem: which requests to assign day-ahead, when only
part of the requests is known, to subcontractors. The advantages of considering the
paratransit problem one day ahead are threefold. First, better rates can be negoti-
ated with taxi companies one day before the day of operation than on the day itself.
Second, the set of requests requiring scheduling on the day of operation is smaller
so that a solution can be found faster. Third, since a day-ahead decision is made,
the vehicle schedules need not be determined in detail. Some extra, simplifying
assumptions can be made which diminish the complexity of the problem and resulting
model.

In the DaPP problem, we explicitly consider taxis as part of the vehicle fleet. Fur-
thermore, besides the known requests we also take late requests into account which
we assume to become known at the beginning of the day of operation. Consequently,
two decisions need to be made since in between more information becomes available:
day-ahead a decision is made on which of the early requests will be subcontracted,
using only probabilistic information on the late requests. Then, at the start of the day
of operation, the late requests become known, and additional decisions are made tak-
ing this new information into account. That is, it is decided which of the remaining
early requests and the late requests will be subcontracted. Thus, we have chosen to
take the late requests into account and assume probabilistic information about them.
This makes the problem more difficult to solve, but the main decision improves, as
we will show later on (see Sect. 5). Our simplifying assumption on the flow of infor-
mation allows to use a two-stage recourse model. In practice, new requests become
known gradually during the day of operation, which could be formulated as a multi-
stage recourse model. This approach will be analyzed in a subsequent paper, see also
Sect. 6.
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In Sect. 2 we give an extensive problem description of the DaPP problem. In Sect. 3,
we present a two-stage recourse model. This model is non-standard since each stage
consists of two optimization problems which have to be solved consecutively. Sect.
4 contains the heuristics used to solve both optimization problems. Furthermore, we
present the genetic algorithm used to solve the two-stage recourse model as a whole. A
description of the numerical experiments and results can be found in Sect. 5, followed
by conclusions and recommendations for further research in Sect. 6.

2 Problem description

In the DaPP problem it is determined which requests in paratransit service are best to
assign to taxis one day before the day of operation, under uncertainty of the requests
that become known on the day of operation itself. There are two sets of requests, a
set of known or early requests, and a set of late requests which we assume to become
known at the beginning of the day of operation. All requests need to be served. Each
request, whether it is early or late, is characterized by the number of customers, an
origin (or pickup location), and destination (also called delivery location). One time
window is specified by the customer(s), either for pickup or for delivery. For outbound
requests the time window for delivery is specified by the customer(s), and for inbound
requests the time window for pickup is specified by the customer(s).

There are two types of customers: ambulatory and those in wheelchairs, and three
types of vehicles: cars, vans, and taxis. Cars and vans belong to the own vehicle fleet
while taxis do not. Cars can only be used for ambulatory customers, and vans and
taxis have convertible seats such that both ambulatory and wheelchair customers can
be transported. For vehicle types of the own fleet (cars and vans) the capacity is given,
as well as the available number per time period. We assume the capacity of cars to be
smaller than that of vans. For taxis, the capacity is not relevant in this problem and
we assume that each time period an unlimited number is available. Without loss of
generality, we may assume that the number of customers of a request is at most equal
to the capacity of a van, such that all requests can be served by one vehicle. If not, the
request can be divided into two or more requests.

The average driving speed is the same for all vehicle types. We assume that stop-
ping to pick up or deliver customers does not take time. Furthermore, when a vehicle
becomes empty after finishing a request, the vehicle becomes immediately available
to serve a new request, i.e., driving empty from the destination of the current request to
the origin of the new request does not take time. Both assumptions are simplifications
of reality which are acceptable in our view, since we are concentrating on a day-ahead
problem which does not require the actual vehicle schedule to be made.

We use the (expected) operational costs as decision criterion in the DaPP problem.
For every vehicle type, the operational costs are proportional to the distance driven,
and for taxis a fee is added for each request that is assigned to a taxi. Moreover, sub-
contracting on the day of operation is more expensive than day-ahead. The fixed costs
of the own vehicles are not taken into account.

Clustering is an important aspect in the paratransit problem, and in some
studies it even is the only subject under consideration (e.g. Desrosiers et al. 1991;
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Ioachim et al. 1995). Clustering ensures that less vehicles are needed to serve all
requests. As a result, serving clustered requests is cheaper than serving the requests
separately. Also in the DaPP problem, clustering is an important aspect. Since less vehi-
cles are needed to serve all requests and taxis are more expensive than own vehicles,
less requests need to be subcontracted. When clustered requests are subcontracted, the
requests are assigned to taxis separately. We assume the following conditions which
have to be satisfied for requests to be clustered.

• The capacity of the vehicle is not allowed to be violated. Based on this condition,
the number of requests that can be clustered depends on the number of customers,
the type of the customer(s), and the type of the vehicle used.

• The time window specified by the customer(s), either for pickup or delivery, is not
allowed to be violated.

• The excess ride time of each request (in the literature also known as the maximum
ride time) does not exceed a certain bound. The excess ride time is defined as the
difference between the actual ride time and the direct ride time of transporting the
customer(s) directly from the origin to the destination.

A group of clustered requests is called a route.

3 Two-stage recourse model

In the DaPP problem, a decision is made based on early requests, and under uncer-
tainty of late requests. Besides this uncertainty, clustering is an important aspect. To
incorporate these important features of the problem in the model, we have built a non-
standard two-stage recourse model. In the first stage, all early requests are considered,
while the second-stage problem also considers the late requests. This is consistent
with most two-stage recourse models used in stochastic programming. Our model
is non-standard since each stage consists of two consecutive optimization problems.
The first optimization problem is the clustering of requests into routes and can be
viewed as preprocessing. The second optimization problem deals with the assignment
of the obtained routes to vehicles (own vehicles and taxis). For more information about
recourse models and stochastic programming, we refer the interested reader to Birge
and Louveaux (1997), Kall and Mayer (2005), Ruszczynski and Shapiro (2003).

We now present a schematic overview of our two-stage recourse model. Subse-
quently, we introduce some notation and give a more detailed description.

Figure 1 contains a schematic overview of the model. The first stage models the day
before the day of operation. In this stage, all early requests are clustered into routes
and these routes are in turn assigned to vehicles. The requests in the routes that are
assigned to taxis are handed over to subcontractors and disappear from the system.
Hence, these routes are not considered anymore, whereas the routes assigned to own
vehicles are reconsidered in the second stage which models the day of operation. In
this second stage, the late requests are clustered into routes together with the routes
assigned to own vehicles in the first stage. Finally, these routes are assigned to an own
vehicle (car or van), or to a taxi.
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Fig. 1 Schematic overview of the two-stage recourse model

The following notation is used.

Sets and indices

I k routes of stage k, index i , k = 1, 2
I k
v van routes of stage k, I k

v ⊂ I k , k = 1, 2
J own vehicles, index j, J = Jv ∪ Jc, Jv ∩ Jc = ∅
Jv own vans
Jc own cars
T time periods, index t

Here, I 1 is the set of early requests clustered into routes, and I 2 is the set of early
routes assigned to own vehicles in the first stage and the set of late requests clustered
together into new routes.

Van routes are routes in which one or more wheelchair customers need to be trans-
ported. These routes need to be served with a van, or subcontracted.

Time is discretized in periods. All time periods have an equal length, which is
measured in minutes.

Parameters

bi time period in which route i starts
ei time period in which route i ends, ei ≥ bi

av
t number of vans available during time period t

ac
t number of cars available during time period t

ca
i cost of assigning route i to a taxi

cv
i cost of serving route i with an own van

cc
i cost of serving route i with an own car

β cost multiplier for short-term subcontracting, β > 1

Here, cv
i and cc

i depend on the distance of the route, and ca
i consists of the costs of

assigning the requests in the route separately to subcontractors. Hence, ca
i depends on

the number of requests in the route and on the distance of each request in the route.
The cost multiplier β is used to model that subcontracting on the day of operation is
more expensive than day-ahead.

123



A two-stage model for a DaPP problem 329

First-stage decision variables (all binary)

xi 1 if route i is assigned to a taxi, 0 if the route is assigned to an own vehicle
xi j 1 if route i is assigned to own vehicle number j , 0 otherwise
xi j t 1 if route i is assigned to own vehicle number j in time period t , 0 otherwise

Second-stage decision variables (all binary)

yi 1 if route i is assigned to a taxi, 0 if the route is assigned to an own vehicle
yi j 1 if route i is assigned to own vehicle number j , 0 otherwise
yi j t 1 if route i is assigned to own vehicle number j in time period t ,0 otherwise

Furthermore, we introduce the matrix ω of random variables, whose realizations
become known only in the second stage. The matrix ω contains all information on
the late requests. Each row of the matrix contains the data of precisely one such
request. The number of rows, i.e., the number of late requests, is random too.

Description of the recourse model In the first stage, all early requests are clustered
into routes. In Sect. 4.1, a description is given of the clustering heuristic which is
applied to combine requests into routes.

For the assignment of routes to vehicles, we have developed a model which is
related to the Multi-Resource Generalized Assignment Problem (MRGAP) (see e.g.
Gavish and Pirkul 1991; Mazzola and Wilcox 2001). MRGAP is a generalized assign-
ment problem in which agents may use different, limited resources to perform the
jobs assigned to them. The resemblances between our model and MRGAP are the
assignment of routes (jobs) to vehicles (agents), and the existence of different vehicle
types (resources). The most important difference, which destroys the special struc-
ture of MRGAP, is the use of time periods in our model. Other differences are the
cost structure and the resource taxi of which we assume an unlimited number is
available.

The mathematical formulation of our assignment model is as follows.

min
∑

i∈I 1

ca
i · xi + Q (x) (1)

s.t.
∑

i∈I 1, j∈Jv

xi j t ≤ av
t , t ∈ T

∑

i∈I 1, j∈Jc

xi j t ≤ ac
t , t ∈ T

(2)

xi = 1 −
∑

j∈J

xi j , i ∈ I 1 (3)

xi j t =
{

xi j t ∈ [bi , ei ]
0 otherwise

, i ∈ I 1, j ∈ J (4)
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xi j = 0, i ∈ I 1
v , j ∈ Jc (5)

xi ∈ {0, 1}, i ∈ I 1

xi j ∈ {0, 1}, i ∈ I 1, j ∈ J

xi j t ∈ {0, 1}, i ∈ I 1, j ∈ J, t ∈ T

(6)

The objective function (1) minimizes the costs of assigning the early routes to taxis
plus Q(x), which is the expected costs of the second-stage problem resulting from the
first-stage (assignment) decision x . The constraints (2) ensure that in each time period
no more routes are assigned to cars (vans) than available. The constraints (3) are a
definition statement: each route that is not assigned to an own vehicle is assigned to
a taxi. The constraints (4) ascertain that if a route is assigned to a certain vehicle, this
vehicle will serve the entire route. The constraints (5) ensure that all van routes are
assigned to a van or to a taxi. The last set of constraints (6) defines all variables as
binary variables.

Let us take a closer look at Q(x), the expected costs of the second-stage problem
associated with the first-stage decision x . Although the vector x contains all first-
stage decisions, only the routes which are assigned to own vehicles in the first stage
are reconsidered in the second stage. The expectation is taken with respect to ω, the
matrix of random variables with all information on the late requests. Suppose a partic-
ular realization of the late requests is given. Then, these requests are clustered, together
with the routes assigned to own vehicles in the first stage, by applying the clustering
heuristic described in Sect. 4.1. New routes are obtained from this clustering which
can be viewed as preprocessing of the second-stage assignment. The assignment of
these routes to vehicles is solved by the following model.

min
∑

i∈I 2

β · ca
i · yi +

∑

i∈I 2, j∈Jv

cv
i · yi j +

∑

i∈I 2, j∈Jc

cc
i · yi j (1′)

s.t.
∑

i∈I 2, j∈Jv

yi j t ≤ av
t , t ∈ T

∑

i∈I 2, j∈Jc

yi j t ≤ ac
t , t ∈ T

(2′)

yi = 1 −
∑

j∈J

yi j , i ∈ I 2 (3′)

yi j t =
{

yi j t ∈ [bi , ei ]
0 otherwise

, i ∈ I 2, j ∈ J (4′)

yi j = 0, i ∈ I 2
v , j ∈ Jc (5′)
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yi ∈ {0, 1}, i ∈ I 2

yi j ∈ {0, 1}, i ∈ I 2, j ∈ J

yi j t ∈ {0, 1}, i ∈ I 2, j ∈ J, t ∈ T

(6′)

The structure of this model is very similar to the structure of the model used in the first
stage: only the objective function is different. In the first stage, the assignment of routes
to taxis is permanent and the assignment of routes to own vehicles is preliminary. Con-
sequently, the objective function consists only of the costs for subcontracting. In the
second stage, all assignments are permanent. Hence, the objective function comprises
the costs of all assignments. Furthermore, subcontracting on the day of operation is
more expensive than subcontracting one day ahead.

We conclude this section with a mathematical formulation for Q(x). First of all, we
denote the optimal value of the model (1′)–(6′) by v. Amongst others, v depends on
the data D of the routes that are under consideration. D can be represented as a matrix
which results from applying the clustering heuristic to two sets of routes/requests.
The first set is the set of routes that have been assigned to own vehicles in the first
stage. This depends on the vector x . The second set consists of the realization of
the late requests, which is the realization of the random variables of the matrix ω.
To make the dependence of the matrix D on x and ω visible, we write D(x, ω).
Then

Q(x) = Eω[v(D(x, ω))].

4 Solution method

In the previous section, the two-stage recourse model for the DaPP problem has been
explained in detail. The model consists of two stages, and each stage consists of
two optimization problems: the clustering of requests into routes, and the assign-
ment of the obtained routes to vehicles. In this section, we present the heuristics we
have developed to solve each optimization problem: in Sect. 4.1 the clustering heu-
ristic is presented and in Sect. 4.2 the assignment heuristic. Furthermore, in Sect.
4.3 we describe the genetic algorithm to solve the two-stage recourse model as a
whole.

The reason that we have developed our own clustering heuristic instead of using
one of the heuristics described in the literature (e.g. Borndörfer et al. 1997; Desro-
siers et al. 1991; Ioachim et al. 1995) is that the CPU time of the heuristics is very
important. To evaluate Q(x) for a fixed first-stage decision x , both the clustering and
assignment problem have to be solved many times. As a result, the CPU time to evalu-
ate Q(x) depends heavily on the CPU time of both heuristics. The clustering heuristic
we have developed uses special characteristics of our problem and appears to be very
fast.

The assignment heuristic which we have developed is partly based on heuristics in
the paper of Dawande et al. (2000).
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Since genetic algorithms have been applied successfully to problems related to
our assignment problem, see Baker and Ayechew (2003), Chu and Beasley (1997),
Chu and Beasley (1998), Feltl and Raidl (2004), we have decided to use a genetic
algorithm to solve the recourse model.

4.1 Clustering heuristic

Our clustering heuristic is based on the data of individual requests. To allow applica-
tion of the heuristic in the second stage, in which late requests are combined together
with the routes assigned to own vehicles in the first stage, the routes therefore are
reformulated as requests. This allows to use the same heuristic in both stages: in the
first stage to combine early requests, and in the second stage to combine reformulated
routes and late requests.

The purpose of the clustering heuristic is to cluster all requests in as few routes
as possible, i.e., each route consists of at least one request, but preferably more. Our
clustering heuristic is a so-called greedy heuristic, and hence the order in which the
requests are considered is important. We choose to order the requests based on the
direct ride time of the request. Requests with a long direct ride time have a good
potential to be clustered with many other requests.

We start the clustering heuristic by splitting the group of requests into subgroups,
such that either the pickup and/or the delivery location of all requests in a subgroup
are the same. The first subgroups consist of requests which have as origin and/or des-
tination a special location. Since these special locations are more likely to occur than
other locations, we expect better combination possibilities. All requests that have no
location in common will also be put in a subgroup.

In each subgroup, the requests are ordered in decreasing direct ride time; ties are
broken using increasing start time of the pickup time window, in remaining cases the
order is arbitrary.

For each subgroup, we take the first van request. Since the capacity of a van is
greater than the capacity of a car, in potential more requests can be clustered with a
van request. Now, the other requests are tried to be clustered with this van request, in
the order specified by the list. For this, the clustering conditions have to be satisfied. As
described in Sect. 2, the capacity of the vehicle is not allowed to be violated, the time
window for pickup or delivery has to be satisfied, and the excess ride time does not
exceed a certain bound. If all requests are checked for clustering with the van request,
the clustered requests form a route, and the data of this new route is calculated. The
data of a route consists of an indicator of the vehicle type (a van route or not), the three
different cost parameters of serving the route with a car, van, and a taxi, respectively,
and the time periods in which the route starts and ends. In the clustering heuristic, time
is measured continuously, unlike the assignment heuristic in which time is discretized
in periods. Hence, the begin and end time of the route are converted into a begin and end
period, respectively. Finally, the requests in the route are deleted from the subgroup.
This process is repeated until there are no more van requests in the subgroup.

Next, the remaining (non-van) requests in the subgroup are combined into routes,
following the same steps as described above.
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Requests are
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Fig. 2 Flow chart of the clustering heuristic

This way, all subgroups are handled. In Fig. 2, a flow chart of the clustering heuristic
can be found.

4.2 Assignment heuristic

The purpose of the assignment heuristic is to find a feasible assignment of all routes
to vehicles (own vehicles and taxis) such that the costs are as low as possible. We
propose a greedy heuristic which considers the routes one-by-one. The route under
consideration is assigned to an own vehicle if it passes the feasibility test, and to a taxi
if not. Here we use a relaxed feasibility test: for assigning a route to a car (van), the
individual cars (vans) are not considered as is done in our model in Sect. 3 (by use
of the variables xi j and yi j ). Instead, for each time period it is checked whether the
number of available cars (vans) is large enough to serve all routes already assigned
plus the route under consideration. Our assignment neglects scheduling aspects but
is suitable for the decision we want to make, i.e., which routes (requests) are best to
assign to taxis.

Because our heuristic is greedy, the ordering of the routes is important. For the
ordering of routes we use the difference in costs between subcontracting and using an
own vehicle.

Let cdiff
i the difference in costs for route i and

co
i =

{
cv

i if route i is a van route

cc
i otherwise

,
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Fig. 3 Flow chart of the assignment heuristic

Generation of initial population;
Evaluation of fitness of individuals in the population;
repeat:
     Selection of parents from the population;
     Reproduction of parents to create children;
     Evaluation of fitness of children;
     Replacement of (part of) the population by the children;
until   stopping criterion is satisfied.

Fig. 4 The main steps of a genetic algorithm

then cdiff
i = ca

i −co
i . Here, the symbols cv

i , cc
i , and ca

i are defined in Sect. 3. The higher
the cost difference the better it is to serve the route with an own vehicle.

The assignment heuristic starts by sorting all routes in decreasing order of cost
difference; ties are broken using increasing order of time period in which the routes
start, in remaining cases the order is arbitrary.

Working down the list of routes, they are assigned to vehicles by the following
rules:

1. Van routes are assigned to vans if possible, otherwise they are assigned to taxis.
2. Non-van routes are assigned to cars if possible. If not, they are assigned to vans

or—if that fails too—to taxis.

Figure 3 contains a flow chart of the assignment heuristic.

4.3 Genetic algorithm

Genetic Algorithms (GAs) were developed by Holland (1975). Although nowadays
their principles are well known, we have summarized the main steps of a GA in Fig. 4.
For more details and terminology used we refer the interested reader to e.g. Goldberg
(1989) and Reeves (1993).

A GA starts with the generation of an initial population of individuals. Each individ-
ual is represented by a string of characters (or bits) representing a possible solution to
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the given problem. The fitness of an individual is determined by use of a given objective
function. In each iteration, individuals reproduce (or mate) in a crossover procedure
to create children (or offspring). Selection ensures that mostly highly fit individuals
are chosen to mate. After the crossover procedure, mutation is often applied to the
offspring by changing some characters in the string. The offspring can either replace
the whole population, or only the less fit individuals. This selection-reproduction-
evaluation-replacement cycle ends when the stopping criterion is satisfied.

When developing a GA, many choices have to be made regarding for example the
selection procedure, crossover procedure, and stopping criterion. However, a suitable
representation needs to be chosen first. This is the way individuals in the population
are represented. We have chosen to use a standard 0-1 binary representation: for each
route a binary variable indicates whether the route is assigned to an own vehicle (zero)
or to a subcontractor (one). Thus, a member of the population is an n-bit string with
n the number of routes in the first stage. Consequently, there are 2n possible distinct
members, or solutions. Not all solutions are feasible. A solution is said to be infeasible
if in any time period more own vehicles of a particular type are needed than there are
available. Infeasible solutions are discarded and will never enter the population.

The fitness value of an individual is determined by the fitness function. We want
to minimize the fitness value of the individuals, i.e., we want to obtain the least fit
individual. Since this is counterintuitive, we have decided to use the term cost function
instead of fitness function and the term estimated costs instead of fitness value. The
cost function is equal to the objective function of the (first-stage) assignment model.
Let x be the binary vector as defined before, then the cost function is

f̂ (x) =
n∑

i=1

ca
i · xi + Q̂(x).

To determine Q̂(x) a sample of the random variables of the matrix ω is drawn. Let s
be the sample size, and ω j the realization of the late requests of sample j , then

Q̂(x) = 1

s

s∑

j=1

v(D(x, ω j )).

To solve the second-stage problem for a particular realization and given first-stage
solution the clustering and assignment heuristic have to be applied. For a large sample
size, i.e., many realizations, calculating the estimated costs of an individual will take
much time. Using only a small number of realizations might give a bad approximation
of Q(x) and thus of f (x). In Sect. 5.2 we will decide about the number of realizations
to use and report on the error encountered.

Parents are selected by the binary tournament selection method. In this method,
two individuals of the population are chosen randomly. The cheapest individual of the
two is chosen as the first parent. The second parent is obtained in the same manner.

We use the one-point crossover in which a crossover point is selected randomly.
The first child is created by taking the bits to the left of this point from the first parent,
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and by taking the other bits from the second parent. Swapping parents gives the second
child, i.e., the second child obtains the complementary bits from both parents.

After the crossover procedure two bits in each child are randomly mutated. Then,
each child is checked for feasibility. Even with the relaxed feasibility introduced in
Sect. 4.2, checking for feasibility is not easy because the non-van routes can be assigned
to a car or to a van. We have decided to perform a simple check for relaxed feasibility
which never accepts an infeasible solution, but might reject a (just) feasible solution.

Replacement occurs according to the steady-state replacement method. In this
method, children replace the most expensive population member, if the estimated costs
of the child are lower. Duplicate solutions are not allowed to enter the population.

5 Numerical experiments

In this section, we describe our numerical experiments and the results: in Sect. 5.1 we
describe how the data instances are generated and in Sect. 5.2 the parameters of the
GA are discussed. Furthermore, in Sect. 5.3 the effect of taking into account the late
requests can be found, and in Sect. 5.4 the effect of clustering the requests into routes.

5.1 Data

All data instances used for the experiments are randomly generated and contain 50
early requests. The number of late requests varies between 5 and 25. The pickup time
is between 7 and 10 am, and the delivery time is until noon. All requests consist of
one customer. Each request has a chance of 0.125 of being a van request which needs
to be served with a van because of a wheelchair customer. The capacity of a car (van)
is equal to 3 (6). Until 10 am 10 cars are available, thereafter 4, and all day 3 vans
are available. All locations lie on a 7 × 7-grid and have an equal chance of being
chosen, except for two special locations, e.g., hospitals, which have a higher chance.
This chance varies between 0.05 and 0.3. The time periods have a length of 15 min.
The costs of serving a request/route for one grid unit with a car, van, and taxi are,
respectively, 0.8, 1, and 1. Furthermore, for each subcontracted request a fixed fee of
3 needs to be paid, and β = 1.2. All experiments are performed on a 2.4 Ghz Intel
Pentium 4. With the parameter setting of Sect. 5.2, the running time per instance varies
between 60 and 120 min of CPU time.

5.2 Parameters of the GA

The size of the population is set equal to 30 members. We have experimented with both
random as well as structured initial population members (see below), and observed
that the latter leads to faster convergence of the GA to a good solution. Therefore, we
only use structured initial population members which are obtained by diminishing the
number of available own vehicles for certain time periods, or by setting a maximum
on the number of routes that are allowed to be served with an own vehicle, or by
doing both. That is, a structured initial solution reserves capacity today to be able to
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Table 1 The estimated costs of
the GA solution and the 95%
confidence interval, for four
different instances

Estimated costs Lower bound Upper bound Length
(in percentage)

250.48 248.42 252.53 1.65

341.62 338.52 344.72 1.83

284.22 281.71 286.72 1.78

212.26 210.21 214.31 1.95

serve requests that become known tomorrow. For each population member, a different
setting to reserve capacity is used, e.g., for the first population member at most 90%
of the routes are allowed to be served with own vehicles and for the second population
member this is at most 50%. If two structured initial solutions are the same, a ran-
domly generated initial solution is used instead of the duplicate one. Such solutions
are constructed by randomly choosing routes which are assigned to own vehicles up
to the available number for each vehicle type.

As stopping criterion we let the GA run for 500 generated non-duplicate feasible
children. Based on tests with various instances, it appears that after 500 non-duplicate
feasible children have been generated the solution improves only marginally.

Now, only the sample size has to be determined. In Sect. 4.3 it has already been
mentioned that the number of realizations influences the quality of the approxima-
tion of the cost function f (x). To measure the error encountered by using a sample
for the late requests, a confidence interval for the optimal value of the cost function
f (x) can be determined. In Table 1, we have denoted for four different instances
the estimated costs of the solution and the 95% confidence interval when 200 real-
izations are used. The length of the confidence interval is less than 2% for all four
instances. Since we think that this is reasonable, we set the sample size equal to 200
realizations.

A second factor influencing the quality of the results is the randomness of the algo-
rithm itself: possibly good solutions may not always be found. To test this effect, we
ran the algorithm ten times on the same instance, and did this for various instances.
As we found that the estimated costs vary by at most 1.03%, we conclude that the
algorithm consistently finds similar solutions.

5.3 Late requests

To determine the effect of taking into account the late requests (by using a two-stage
recourse model), we introduce the myopic solution in which the late requests are
ignored. That is, the myopic solution is obtained by clustering the early requests and
assigning the obtained routes to vehicles. The estimated costs of the myopic solution
are calculated by the cost function f̂ (x) defined before.

For a good comparison of both approaches, we generated 12 instances which are
solved twice: once with few (5–10) late requests, and once with many (20–25) late
requests. Since the early requests are the same for each variant, by definition the myo-
pic solution is the same for few and many late requests, only the estimated costs of
the myopic solution are different. For each instance the estimated costs of the GA

123



338 M. L. A. G. Cremers et al.

Table 2 The effect of late requests on the estimated costs of the GA solution and the myopic solution

Inst. Few late requests Many late requests

GA solution Myopic Difference in GA solution Myopic Difference in
solution percentage solution percentage

1 222.04 229.00 3.14 312.91 322.80 3.16

2 263.22 277.00 5.24 358.82 378.65 5.53

3 261.76 267.07 2.03 360.14 370.62 2.91

4 250.48 256.57 2.43 345.20 362.59 5.04

5 252.56 264.06 4.55 352.58 370.04 4.95

6 257.98 263.81 2.26 348.03 364.73 4.80

7 236.99 259.92 9.67 341.62 366.03 7.15

8 224.74 229.71 2.21 319.09 328.92 3.08

9 232.23 241.53 4.00 329.83 344.33 4.39

10 265.85 271.55 2.14 363.18 373.12 2.74

11 274.42 285.18 3.92 366.61 379.37 3.48

12 246.23 258.04 4.79 340.05 356.00 4.69

solution and the myopic solution are calculated, both with few and many late requests.
Furthermore, the relative difference between the estimated costs of the GA solution
and myopic solution is determined.

As can be seen in Table 2, the estimated costs of the myopic solutions are between
2 and 10% higher than those of the GA solutions. This is as we expected and can be
explained as follows. The myopic solution simply tries to assign as few early requests
as possible to subcontractors. Hence, on the day of operation there is hardly any capac-
ity of own vehicles left and many requests have to be assigned to subcontractors, which
is 20% more expensive than the day before. The GA solution does take into account
the late requests. As a result, more early requests will be assigned to subcontractors in
the first stage, but on the day of operation itself less requests need to be subcontracted.
When many late requests arise, this effect should be and is almost always stronger,
as can be seen in Table 2: the difference (in percentage) between the estimated costs
of the GA solution and myopic solution is larger than when few late requests arise,
except for instances 7, 11, and 12.

Table 3 clearly demonstrates the effect explained above. The myopic solution
assigns as many early requests as possible to own vehicles while the GA solution
reserves capacity for the late requests. The columns costs show the estimated costs
of the GA solution and the myopic solution when few and many late requests are
used, and can also be found in Table 2. The remaining columns show the costs of the
first stage, i.e., the costs of subcontracting the early requests, and the number of early
requests assigned to subcontractors. Only for instance 12 with few late requests, the
GA solution assigns less early requests to subcontractors than the myopic solution.
This is caused by an unfortunate outcome of the assignment heuristic.

As can be seen in Table 3, when many late requests arise the effects are the same
as when few late requests arise, but only larger. Considerably more early requests are
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Table 3 The effect of late requests on the GA solution and the myopic solution

Inst. Few late requests Many late requests

GA solution Myopic solution GA solution Myopic solution

Subcontracted Subcontracted Subcontracted Subcontracted

Costs Costs Number Costs Costs Number Costs Costs Number Costs Costs Number

1 222.04 67 9 229.00 24 3 312.91 67 9 322.80 24 3

2 263.22 93 11 277.00 65 10 358.82 160 19 378.65 65 10

3 261.76 90 11 267.07 65 9 360.14 153 18 370.62 65 9

4 250.48 74 10 256.57 46 7 345.20 123 15 362.59 46 7

5 252.56 94 11 264.06 56 8 352.58 141 17 370.04 56 8

6 257.98 83 11 263.81 64 10 348.03 133 15 364.73 64 10

7 236.99 66 7 259.92 46 7 341.62 96 12 366.03 46 7

8 224.74 67 8 229.71 49 7 319.09 78 9 328.92 49 7

9 232.23 77 9 241.53 62 9 329.83 118 15 344.33 62 9

10 265.85 99 12 271.55 78 12 363.18 136 17 373.12 78 12

11 274.42 102 11 285.18 73 10 366.61 123 15 379.37 73 10

12 246.23 77 9 258.04 67 10 340.05 120 15 356.00 67 10

assigned to subcontractors in the GA solution, and hence the first-stage costs of the
GA solution are also larger.

5.4 Clustering

The second important aspect of the DaPP problem, besides the uncertainty of the late
requests, is the clustering of requests into routes. To determine the effect of clustering,
we have developed the NoClust solution for comparison. This solution is obtained
by applying the GA to individual requests—as opposed to clustered routes—in both
stages. The estimated costs of the NoClust solution are obtained by the costs of the
early requests that are assigned to subcontractors in the first stage and the estimated
costs of the assignment of the remaining early requests and all late requests to vehicles
(both own vehicles and subcontractors) in the second stage.

Again, we generated 12 instances each with two variants: few and many clustering
possibilities, implemented by specifying the probability of a special location as 0.05
and 0.3, respectively. These probabilities hold for both the early and the late requests.
For each instance, the estimated costs of the GA solution and NoClust solution are
calculated, as well as their relative difference.

As can been seen in Table 4, the estimated costs of the NoClust solution are between
10 and 81% higher than the estimated costs of the GA solution. As expected, the
difference is largest when there are many clustering possibilities. But even when
there are only few clustering possibilities the difference in estimated costs is
considerable.
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Table 4 The effect of clustering on the estimated costs of the GA solution and NoClust solution

Instance Limited clustering Much clustering

GA solution NoClust solution Difference (%) GA solution NoClust solution Difference (%)

1 296.45 335.61 13.21 173.37 287.09 65.60

2 281.69 330.50 17.33 174.37 315.85 81.14

3 284.22 321.59 13.15 232.69 335.34 44.12

4 299.42 339.04 13.23 195.73 333.61 70.45

5 289.31 337.32 16.60 219.06 353.73 61.48

6 258.98 323.04 24.73 184.64 301.37 63.22

7 266.93 315.01 18.01 217.78 348.37 59.97

8 283.76 310.74 9.51 188.81 310.60 64.50

9 249.37 302.58 21.34 215.53 335.98 55.88

10 263.13 319.61 21.46 222.31 326.48 46.85

11 288.77 334.67 15.89 212.26 348.04 63.96

12 240.56 291.94 21.36 221.32 315.99 42.78

6 Conclusion

We have formulated the day-ahead paratransit planning problem. In this problem, in
which we need to decide one day before the day of operation about the routes to
assign to vehicles, the focus is on clustering requests into routes and and on coping
with uncertainty due to the late requests that only become known just before the day
of operation. In the non-standard two-stage recourse model we have developed, taxis
allow for flexibility which is necessary to deal with the uncertainty. Our model and
solution method are flexible and can easily be adjusted, e.g., to incorporate different
numbers of customers, to have different distributions for the characteristics of the
early and late requests, or to include other unforeseen events like canceled requests
and vehicle breakdowns.

The results are promising. Clustering of requests into routes is very profitable: the
estimated costs are much lower compared to the same instances when the individual
requests are considered. Taking into account the late requests decreases the estimated
costs with on average 4%. CPU times are, however, rather large. Further research will
be necessary to decrease CPU times.

Another point for future research is changing the assumption that all late requests
become known at the beginning of the day of operation. It is more realistic that they
become known one-by-one during the day, i.e., that they are revealed in an online
manner. Indeed, many studies (e.g. Attanasio et al. 2004; Cordeau and Laporte 2003a)
point out the importance of incorporating look-ahead features. In our model, such a
feature has already been included by considering the late requests. However, assum-
ing that the late requests are revealed online will make the look-ahead feature more
realistic. In a subsequent paper, this approach will be analyzed.
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