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Abstract We analyze a two-node tandem queue with Brownian input. We first
derive an explicit expression for the joint distribution function of the workloads of
the first and second queue, which also allows us to calculate their exact large-buffer
asymptotics. The nature of these asymptotics depends on the model parameters,
i.e., there are different regimes. By using sample-path large-deviations (Schilder’s
theorem) these regimes can be interpreted: we explicitly characterize the most
likely way the buffers fill.

1 Introduction

Consider {B(t)−ct, t ≥ 0}, where B(t) is a standard Brownian motion, and c > 0
is a scalar. The distribution of the supremum Bc of such a Brownian motion with
drift is known: P(Bc > b) = exp(−2bc). The reflection of {B(t) − ct, t ≥ 0} at
0 could be called a Brownian queue. It can be argued (see Reich (1958)) that the
steady-state workload Q of such a Brownian queue is distributed as Bc, i.e., also
exponentially with mean 1/(2c).

The case of networks of Brownian queues is considerably less studied. In Mand-
jes (2004) and Dȩbicki et al. (2007a) a two-node tandem queue is analyzed: Mand-
jes (2004) derives the joint distribution function of the first and total queue length,
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whereas Dȩbicki et al. (2007a) focuses on the distribution function of the second
queue. Also, several papers consider the more general case of tandem systems
with Lévy input, i.e., arrival processes with stationary, independent increments
(this class comprises, besides Brownian motion, also compound Poisson input).
We remark that the solution presented in Kella and Whitt (1992) and Dȩbicki et al.
(2007b) is in terms of a joint Laplace transform; no explicit expression for the joint
distribution function is given.

We note that Brownian motions also appear in the analysis of queueing mod-
els, where the input process is no Brownian motion. Multi-dimensional reflected
Brownian motions are often used to approximate the behavior of open networks,
i.e., the joint queue-length or joint workload processes, under heavy traffic condi-
tions, e.g., see Harrison and Williams (1992); Majewski (1998).

In this paper we analyze a two-node tandem queue with Brownian input. Build-
ing on the work of Mandjes (2004), we explicitly derive the joint distribution func-
tion P(Q1 > b1, Q2 > b2), where Qi is the steady-state workload of node i .
By setting b1 = αb, b2 = (1 − α)b, with α ∈ [0, 1], and letting b → ∞, we
also obtain exact large-buffer asymptotics, i.e., we find a function f (·) such that
P(Q1 > αb, Q2 > (1 − α)b)/ f (b) → 1 as b → ∞. It turns out that the nature
of the asymptotics depends on the value of α and the service rates of both queues,
i.e., there are different regimes. These regimes can be further interpreted relying
on Schilder’s sample-path large-deviations theorem. In particular, we obtain the
so-called most probable path, i.e., the most likely way for the buffers to fill. Inter-
estingly, each regime has its own type of most likely path; either (a) queue 2 starts
to fill earlier than queue 1, but they reach b1 and b2 at the same time, or (b) both
queues start to grow at the same time, and reach b1 and b2 at the same time, or
(c) both queues start to grow at the same time, but at the time queue 1 reaches b1,
queue 2 is strictly larger than b2.

The remainder of the paper is organized as follows. In Sect. 2 we present a
detailed description of the two-node tandem queue, as well as a closely related
two-node parallel queue. We also give formal implicit expressions for the over-
flow probabilities, and we briefly discuss Schilder’s sample-path large-deviations
theorem. In Sect. 3 the two-node parallel queue is analyzed: we derive an exact
expression of the joint distribution function, large-buffer asymptotics, and the most
probable path. Then we argue that the two-node parallel queue is closely related
to the two-node tandem queue. Exploiting this property we obtain in Sect. 4 the
desired results for the tandem system. Finally, in Sect. 5 we further discuss our
results, and identify some open research questions.

2 Preliminaries

In this section we first describe our queueing models: the two-node parallel queue
and the two-node tandem queue. Next we by briefly discuss some large-deviations
results, which will be needed in the next sections. We conclude by presenting an
implicit expression for the joint overflow probability in each of the two models.

2.1 Queueing models

Section 3 considers a two-node parallel queue with service rate cI at queue I, and
cII at queue II. Traffic that enters the system has to be served at both queue I and
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Fig. 1 Left: Two-node parallel queue. Right: two-node tandem queue

II, which is done in parallel; see Fig. 1 for an illustration. The case cI = cII being
trivial, we assume without loss of generality that cI > cII > 0.

We assume that the input process is a standard Brownian motion {B(t), t ∈ R}.
It can be verified that �(s, t) := Cov(B(s), B(t)) = min{|s|, |t |} if s, t ≥ 0 or
s, t < 0, and �(s, t) = 0 otherwise.

In Sect. 4 we consider a two-node tandem queue, again with standard Brownian
input. Thus, the output of the first queue is fed into the second queue; see Fig. 1.
Assume constant service rates c1 and c2, respectively. To avoid the trivial situation
of the second queue remaining empty, it is assumed that c1 > c2 > 0. We note that
this model corresponds with the heavy-traffic limit of the two-node tandem queue
with Poisson arrivals, see Mandjes (2004).

2.2 Large deviations

In this subsection we recall two key large-deviations theorems, which are needed
in the analysis of Sect. 3.3 and 4.3.

Theorem 2.1 Let (X, Y ) ∼ Norm(0,�), for a non-degenerate 2-dimensional
covariance-matrix �. Then,

(i) − limn→∞ 1
n log P

( 1
n

∑n
i=1 Xi ≥ x

) = 1
2 x2/(�11)

2;
(ii) − limn→∞ 1

n log P
( 1

n

∑n
i=1 Xi≥x, 1

n

∑n
i=1 Yi ≥ y

)= infa≥x infb≥y �(a, b),

where �(a, b) := 1
2 (a b)�−1(a b)T.

We continue with a description of the framework of Schilder’s sample-path
LDP see Bahadur and Zabell (1979), and also Theorem 1.3.27 of Deuschel and
Stroock (1989) for a more detailed treatment). Define the path space � as

� :=
{
ω : R→ R, continuous, ω(0)=0, lim

t→∞
ω(t)

1+ |t | = lim
t→−∞

ω(t)

1+ |t | =0

}
.

We note that in Addie et al. (2000) it was pointed out that B(·) can be realized on �.
Then one can construct a reproducing kernel Hilbert space R ⊆ �, consisting of
elements that are roughly as smooth as the covariance function �(s, ·); for details,
see Adler (1990). We start from a ‘smaller’ space R∗, defined by

R∗ :=
{

ω : R→ R, ω(·) =
n∑

i=1

ai�(si , ·), ai , si ∈ R, n ∈ N

}

.
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The inner product on this space R∗ is, for ωa , ωb ∈ R∗, defined as

〈ωa, ωb〉R :=
〈

n∑

i=1

ai�(si , ·),
n∑

j=1

b j�(s j , ·)
〉

R

=
n∑

i=1

n∑

j=1

ai b j�(si , s j ); (1)

notice that this implies 〈�(s, ·), �(·, t)〉R = �(s, t). This inner product has the
following useful property, which is known as the reproducing kernel property,

ω(t) =
n∑

i=1

ai�(si , t) =
〈

n∑

i=1

ai�(si , ·), �(t, ·)
〉

R

= 〈ω(·), �(t, ·)〉R .

From this we introduce the norm ||ω||R := √〈ω, ω〉R . The closure of R∗ under
this norm is defined as space R. Now we can define the rate function:

I (ω) :=
{

1
2 ||ω||2R if ω ∈ R;
∞ otherwise.

(2)

As a side remark we mention that the above framework in fact holds for a gen-
eral and versatile class of input processes, covering a broad range of correlation
structures, viz. the class of centered Gaussian inputs (A(t), t ∈ R) (which obvi-
ously covers standard Brownian input). In that case one should set �(s, t) =
Cov(A(s), A(t)), s ≤ t . Using (1) and the definition of �(s, t) in case of standard
Brownian inputs (see Sect. 2.1), we find that, for ω(t) = ∑n

i=1 ai�(si , t), with
s1 < · · · < sn ,

1

2
||ω||2R =

1

2

k−1∑

i=1

k−1∑

j=1

ai a j min{|si |, |s j |} + 1

2

n∑

i=k

n∑

j=k

ai a j min{si , s j }

= 1

2

∫ 0

−∞
(ω′(t))2dt + 1

2

∫ ∞

0
(ω′(t))2dt,

where k := min{i ∈ {1, . . . , n} : si ≥ 0} if defined, and k := n + 1 otherwise. It
turns out that (2) is equivalent to

I (ω) =
{

1
2

∫∞
−∞(ω′(t))2dt if ω ∈ R;

∞ otherwise,
(3)

in case of standard Brownian inputs (see Theorem. 5.2.3 of Dembo and Zeitouni
(1998)).

Theorem 2.2 [Schilder] For standard Brownian inputs the following sample-path
large deviations principle (LDP) holds:
(a) For any closed set F ⊂ �,

lim sup
n→∞

1

n
log P

(
1

n

n∑

i=1

Bi (·) ∈ F

)

≤ − inf
ω∈F

I (ω);

(b) For any open set G ⊂ �,

lim inf
n→∞

1

n
log P

(
1

n

n∑

i=1

Bi (·) ∈ G

)

≥ − inf
ω∈G

I (ω).
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Remark Theorem 2.2 shows that the LDP consists of an upper and lower bound,
which apply to closed and open sets, respectively. We will use Theorem 2.2 for the
open sets U , S and T , to be defined in the next subsection. It can be verified that

inf
ω∈U

I (ω) = inf
ω∈U

I (ω),

where U is the closure of U . The way to prove this is to show that an arbitrarily
chosen path in U can be approximated by a path in U . This proof is completely
analogously to (Norros 1999) and Appendix A of Mandjes and van Uitert (2005).
The same holds for S and T .

2.3 Joint overflow probabilities

In this subsection we present an implicit expression for the joint overflow proba-
bility in each of the two queueing models.

Let QI and QII denote the steady-state workload of queue I and queue II,
respectively, in the two-node parallel queue We study the joint distribution of the
steady-state workloads of queue I and queue II:

P(QI > bI, QII > bII). (4)

Note that if bII < bI, then (due to cI > cII) the event {QI > bI} automatically
implies {QII > bII}. Hence, we concentrate on bII ≥ bI. Reich’s formula (see
Reich (1958)) states that

QI = sup
s≥0
{−B(−s)− cIs} and QII = sup

t≥0
{−B(−t)− cIIt}. (5)

Let s∗ and t∗ denote an optimizing s and t in (5). Now,−s∗ (−t∗) can be interpreted
as the beginning of the busy period of queue I (queue II) containing time 0. Hence,
cI > cII implies that s∗ ≤ t∗, and therefore (4) can be rewritten as P (B(·) ∈ S),
with

S := { f ∈ �|∃t ≥ 0 : ∃s ∈ [0, t] : − f (−s) > bI + cIs,− f (−t) > bII + cIIt} .
(6)

In the two-node tandem queue we focus on the joint probability that the sta-
tionary workloads of the first and second queue, Q1 and Q2, respectively, exceed
thresholds b1 and b2, with b1, b2 ≥ 0. For any queue in which traffic leaves the first
queue as fluid, the steady-state total workload QT in the two-node tandem queue
behaves as single queue emptied at rate c2, see e.g. Mandjes and van Uitert (2005)
and references therein. As a consequence,

Q1 = sup
s≥0
{−B(−s)− c1s} and QT = sup

t≥0
{−B(−t)− c2t}. (7)

As for the parallel system, we have that the optimizing s is not larger than the
optimizing t in (7). Hence, for bT ≥ b1 ≥ 0, P(Q1 > b1, QT > bT) equals
P (B(·) ∈ T ), with

T := { f ∈ �|∃t ≥ 0 : ∃s ∈ [0, t] : − f (−s) > b1 + c1s,− f (−t) > bT + c2t} .
(8)



280 P. Lieshout, M. Mandjes

Note that (6) and (8) coincide if c1 = cI, c2 = cII, b1 = bI, and bT = bII. We will
exploit this property in Sect. 4. Evidently, the distribution of (Q1, QT) uniquely
determines the distribution of (Q1, Q2). Using that Q2 = QT − Q1, we obtain
that P(Q1 > b1, Q2 > b2), with b1, b2 ≥ 0, equals P (B(·) ∈ U ), where

U :=
{

f ∈�

∣∣∣
∣∃t≥0 : ∃s∈[0, t] : ∀u∈[0, t] : − f (−s)>b1+c1s,

f (−u)− f (−t)>b2+c2t−c1u

}
.

(9)

3 Analysis of the two-node parallel queue

In this section we focus on the two-node parallel queue. We derive the joint dis-
tribution function of queue I and queue II, large-buffer asymptotics, and the most
probable path leading to overflow.

3.1 Joint distribution function

In this subsection we derive an exact expression for p(b) := P(QI > bI, QII >

bII), with b ≡ (bI, bII). For the sake of brevity, write χ ≡ χ(b) := (bII−bI)/(cI−
cII). Furthermore, let �(·) denote the distribution function of a standard Normal
random variable, φ(·) := �′(·), and 
(·) := 1 − �(·). We first present the main
theorem of this subsection.

Theorem 3.1 For each bII ≥ bI ≥ 0,

p(b) = −
(k1(b))+
(k2(b))e−2bIcI +
(k3(b))e−2bIIcII

+ (1−
(k4(b)))e−2(bI(cI−2cII)+bIIcII),

where

k1(b) := bI + cIχ√
χ
; k2(b) := −bI + cIχ√

χ
;

k3(b) := bI + (cI − 2cII)χ√
χ

; k4(b) := −bI + (cI − 2cII)χ√
χ

.

Proof In Mandjes (2004) an expression was derived for P(QI ≤ bI, QII ≤ bII) in
case of standard Brownian input. We give a short sketch of the proof. First note
that, due to time-reversibility arguments,

P(QI ≤ bI, QII ≤ bII) = P(∀t ≥ 0 : B(t) ≤ min{bI + cIt, bII + cIIt}).
Let y ≡ y(b) := bI + cIχ . Hence, (χ, y) is the point where bI + cIt and bII + cIIt
intersect. For t ∈ [0, χ ] the minimum is given by bI+ cIt , whereas for t ∈ [χ,∞)
the minimum is bII+cIIt . Now, conditioning on the value of B(χ), being normally
distributed with mean 0 and variance χ , one obtains that P(QI ≤ bI, QII ≤ bII)
equals

∫ y

−∞
1√
χ

φ

(
x√
χ

)
P(∀t ∈ [0, χ ] : B(t) ≤ bI + cIt |B(χ) = x)

×P(∀t ≥ 0 : B(t) ≤ y − x + cIIt)dx .
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The first probability can be expressed (after some rescaling) in terms of the
Brownian bridge:

P (∀t ∈ [0, 1] : B(t) ≤ b + ct |B(1) = 0) = 1− exp(−2b(b + c)),

whereas the second translates into the supremum of a Brownian motion: 1 −
exp(−2(y−x)cII). After substantial calculus we obtain that P(QI ≤ bI, QII ≤ bII)
equals

�(k1(b)−�(k2(b))e−2bIcI −�(k3(b))e−2bIIcII +�(k4(b))e−2(bI(cI−2cII)+bIIcII).

Furthermore, it is well known that P(Qi > bi ) = e−2bi ci , i = I, II. The stated
follows from

p(b) = 1− P(QI ≤ bI)− P(QII ≤ bII)+ P(QI ≤ bI, QII ≤ bII).

��

3.2 Exact large-buffer asymptotics

In this subsection we derive the exact asymptotics of the joint buffer content dis-
tribution. We write f (u) ∼ g(u) when f (u)/g(u) → 1 if u → ∞. Define

ζ(x) :=
(√

2πx
)−1

exp(−x2/2). Also,

α+ := cI

2cI − cII
; α0 := 2cII − cI

cII
; α− := cI − 2cII

2cI − 3cII
.

It can be verified that α0 < 0 < α− < α+ < 1 if cI > 2cII, whereas 0 ≤ α0 <
α+ < 1 if cI ≤ 2cII. Let us first present the following useful lemma.

Lemma 3.2 Let bI = αb and bII = b, with α ∈ [0, 1]. If b→∞, then


(k1(b)) ∼ ζ(k1(b));


(k2(b)) ∼
⎧
⎨

⎩

ζ(k2(b)) if α < α+;
1/2 if α = α+;
1 otherwise;


(k3(b)) ∼
⎧
⎨

⎩

ζ(k3(b)) if α > α0;
1/2 if α = α0;
1 otherwise;

1−
(k4(b)) ∼
⎧
⎨

⎩

1 if α < α− and cI > 2cII;
1/2 if α = α− and cI ≥ 2cII;
−ζ(k4(b)) otherwise.

Proof First determine for which values of bI/bII = α, ki (b), i ∈ {1, 2, 3, 4}, is
positive or negative. Note that k1(b) is always positive, given that bII ≥ bI ≥ 0.
Also, k4(b) is always negative if cI ≤ 2cII and bI > 0. Hence, we obtain α+, α0

and α− as critical values from ki (b), i = 2, 3, 4, respectively. Next use the fact
that 
(u) ∼ ζ(u) and 
(−u) ∼ 1 as u →∞. Observe that 
(0) = 1/2. ��
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Define

β(b) := 1√
2π

(
− 1

k1(b)
+ 1

k2(b)
+ 1

k3(b)
− 1

k4(b)

)
and

γ (b) := (bIIcI − bIcII)
2

2(bII − bI)(cI − cII)
.

Straightforward calculus also shows the following equalities:

exp

(

−k1(b)2

2

)

=exp

(

−k2(b)2

2

)

exp (−2bIcI)=exp

(

−k3(b)2

2

)

exp (−2bIIcII)

= exp

(

−k4(b)2

2

)

exp (−2(bI(cI−2cII)+bIIcII))=exp
(−γ (b)

)
.

(10)

Theorem 3.3 Let bI = αb and bII = b, with α ∈ [0, 1]. Suppose cI > 2cII. For
b→∞,

p(b) ∼

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

e−2(bI(cI−2cII)+bIIcII) if α ∈ [0, α−);
1
2 e−2(bI(cI−2cII)+bIIcII) if α = α−;
β(b)e−γ (b) if α ∈ (α−, α+);
1
2 e−2bIcI if α = α+;
e−2bIcI if α ∈ (α+, 1].

Proof We only prove the first statement, as the other four statements follow in a
similar way. We have to prove that

p(b) exp(2(bI(cI − 2cII)+ bIIcII))→ 1 as b→∞, for α ∈ [0, α−).

From Lemma 3.2 we obtain that for α ∈ [0, α−),


(k1(b)) ∼ ζ(k1(b)); 
(k2(b)) ∼ ζ(k2(b)); 
(k3(b)) ∼ ζ(k3(b));
1−
(k4(b)) ∼ 1− ζ(k4(b)).

Now it can be checked from (10) that, as b→∞,


(k1(b)) = o
(

e−2(bI(cI−2cII)+bIIcII))
)
,

and the same applies for 
(k2(b))e−2bIcI and 
(k3(b))e−2bIIcII . With
1−
(k4(b)) ∼ 1, Theorem 3.1 implies the stated. ��
Theorem 3.4 Let bI = αb and bII = b, with α ∈ [0, 1]. Suppose cI < 2cII. For
b→∞,

p(b) ∼

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

e−2bIIcII if α ∈ [0, α0);
1
2 e−2bIIcII if α = α0;
β(b)e−γ (b) if α ∈ (α0, α+);
1
2 e−2bIcI if α = α+;
e−2bIcI if α ∈ (α+, 1].
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Proof The proof is similar to that of Theorem 3.3. ��
Remark Note that for cI = 2cII, one obtains α0 = 0. It can be verified that in this
special case Theorem 3.4 reduces to

p(b) ∼

⎧
⎪⎪⎨

⎪⎪⎩

e−2bIIcII if α = 0;
β(b)e−γ (b) if α ∈ (0, α+);
1
2 e−2bIcI if α = α+;
e−2bIcI if α ∈ (α+, 1].

3.3 Most probable path

In the previous subsection it was shown that the nature of the large-buffer
asymptotics strongly depends on the model parameters α, cI and cII, i.e., there are
different regimes. In this subsection we will interpret and explain these regimes
by using sample-path large deviations. In particular, by using Schilder’s theorem
(Theorem 2.2) we show that in each of these regimes the system has a typical (most
likely) behavior, and we characterize this behavior for each regime.

Schilder’s theorem implies that the exponential decay rate of the joint overflow
probability in the parallel system is characterized by the path in S that minimizes
the decay rate. Among all paths such that queue I exceeds bI and queue II exceeds
bII, this is the so-called most probable path (MPP): informally speaking, given that
this rare event occurs, with overwhelming probability (bI, bII) is reached by a path
‘close to’ the MPP. The goal of this subsection is to find the MPP in S, and to relate
its form to the regimes identified in Sect. 3.2.

Consider the two-node parallel queue as described before. Now, in order to
apply ‘Schilder’, we feed this network by n i.i.d. standard Brownian sources. The
link rates and buffer thresholds are also scaled by n: ncI, ncII, nbI and nbII, respec-
tively. Now, pn(b) := P(QI,n > nbI, QII,n > nbII) can be expressed as

P

(
1

n

n∑

i=1

Bi (·) ∈ S

)

.

From ‘Schilder’ it follows that

J (b) := − lim
n→∞

1

n
log pn(b) = inf

f ∈S
I ( f ) = inf

t≥0
inf

s∈[0,t]ϒ(s, t), (11)

with

ϒ(s, t) := inf
f ∈Ss,t

I ( f ) and

Ss,t := { f ∈ �| − f (−s) > bI + cIs,− f (−t) > bII + cIIt} ,
using the fact that the decay rate of a union of events is the minimum of the decay
rates of the individual events. As mentioned in the remark of Sect. 2.2, we can
replace ‘>’ by ‘≥’ in Ss,t , without any impact on the decay rate.
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Fig. 2 The partitioning of A

We first show how, for fixed s, t , with 0 ≤ s ≤ t , the nfimum of ϒ(s, t) over
Ss,t can be computed. Define

g1(s) := bIIs

bI + (cI − cII)s
and g2(s) := s

cI

cII
+ bI − bII

cII
, s ≥ 0.

Note that g1(·) is a concave function, whereas g2(·) is a linear function. Further-
more, g1(s) > g2(s) if s<χ , g1(s)=g2(s) if s=χ , and otherwise g1(s) < g2(s).
Also, define

A1 := {(s, t)|0 ≤ s ≤ t ≤ g1(s)};
A2 := {(s, t)|0 ≤ s ≤ t ≤ g2(s)};
A3 := {(s, t)|t > max{g1(s), g2(s)}, s ≥ 0}.

Note that A := {(s, t)|0 ≤ s ≤ t} = A1 ∪ A2 ∪ A3, for disjoint A1, A2 and A3, as
illustrated in Fig. 2.

Lemma 3.5 For t ≥ 0, and s ∈ [0, t],

ϒ(s, t) =

⎧
⎪⎨

⎪⎩

h1(t) := (bII+cIIt)2

2t if (s, t) ∈ A1;
h2(s) := (bI+cIs)2

2s if (s, t) ∈ A2;
h3(s, t) := (bI+cIs)2

2s + (bII+cIIt−bI−cIs)2

2(t−s) if (s, t) ∈ A3.
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Proof The proof is analogous to Lemma 3.4 of (Mandjes and van Uitert 2005).
First note that the values of the Brownian input at times −s and −t are bivariate
Normally distributed, i.e., as (−B(−s),−B(−t)). Now, by using Theorem 2.1, we
find for y, z ∈ R and t ≥ 0, s ∈ [0, t],

ϒ(s, t) = inf
y≥bI+cIs

inf
z≥bII+cIIt

�(y, z), with �(y, z) = 1

2

(
y z
)
(

s s
s t

)−1 (
y
z

)
.

(12)
One can show that if

y0 := E(−B(−s)| − B(−t) = bII + cIIt) ≥ bI + cIs,

or, equivalently, t≤g1(s), then the optimum in (12) is attained at (y∗, z∗) =
(y0, bII + cIIt). Hence, the rate function is independent of s, and given by
�(y0, bII + cIIt) = h1(t).

In a similar way, if

z0 := E(−B(−t)| − B(−s) = bI + cIs) ≥ bII + cIIt,

or, after rewriting, t ≤ g2(s), then the optimum in (12) is attained at (y∗, z∗) =
(bI + cIs, z0). The rate function is then given by �(bI + cIs, z0) = h2(s) (inde-
pendently of t).

If y0 < bI + cIs and z0 < bII + cIIt , then the optimum in (12) is attained at
(y∗, z∗) = (bI + cIs, bII + cIIt). It is readily verified that this yields h3(s, t) for
t > max{g1(s), g2(s)}. ��

In order to obtain J (b), it follows from (11) that we have to compute

inf
(s,t)∈A

ϒ(s, t). (13)

We will obtain (13) by first deriving

inf
(s,t)∈A1

ϒ(s, t) = inf
(s,t)∈A1

h1(t); (14)

inf
(s,t)∈A2

ϒ(s, t) = inf
(s,t)∈A2

h2(s); (15)

inf
(s,t)∈A3

ϒ(s, t) = inf
(s,t)∈A3

h3(s, t), (16)

and subsequently taking the minimum of (14)–(16) (recall that A = A1∪ A2∪ A3).
We start by computing (14).

3.3.1 Area A1

The optimization over A1 reduces to

inf
(s,t)∈A1

ϒ(s, t) = inf
(s,t)∈A1

h1(t) = inf
t∈[0,χ ] h1(t). (17)

It can be verified that h1(t) is strictly decreasing on the interval [0, bII/cII), and
strictly increasing on the interval (bII/cII,∞). Therefore, if bII/cII ≤ χ then t∗ =
bII/cII and s∗ ∈ [g−1

1 (t∗), t∗], whereas otherwise t∗ = s∗ = χ .
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Lemma 3.6 Expression (17) equals
⎧
⎨

⎩

2bIIcII if cI ≤ 2cII and bI/bII ∈ [0, α0];
γ (b) if cI ≤ 2cII and bI/bII ∈ (α0, 1];
γ (b) if cI > 2cII.

Proof The condition bII/cII ≤ χ is equivalent to bI/bII ≤ (2cII − cI)/cII = α0.
Note that α0 is only non-negative if cI ≤ 2cII. Hence, evaluation of (17) for
t∗ = bII/cII proves the first statement. Similarly, evaluation of (17) for t∗ = χ
proves the second statement. ��

3.3.2 Area A2

The approach is very similar to above. We are to solve the following optimization
problem:

inf
(s,t)∈A2

ϒ(s, t) = inf
(s,t)∈A2

h2(s) = inf
s∈[χ,∞)

h2(s). (18)

The function h2(s) has a global minimum that is attained at s = bI/cI. Thus, if
bI/cI ≥ χ , then s∗ = bI/cI and t∗ ∈ [s∗, g2(s∗)], whereas otherwise s∗ = t∗ = χ .
The following lemma is proven analogously to Lemma 3.6.

Lemma 3.7 Expression (18) equals
{

γ (b) if bI/bII ∈ [0, α+);
2bIcI if bI/bII ∈ [α+, 1].

3.3.3 Area A3

Now we are to solve the following optimization problem:

inf
(s,t)∈A3

ϒ(s, t) = inf
(s,t)∈A3

h3(s, t) = inf
s≥0

inf
t>max{g1(s),g2(s)}

h3(s, t).

We can divide area A3 in two parts, namely: s ∈ [0, χ ] and t ∈ (g1(s),∞), and
s ∈ (χ,∞) and t ∈ (g2(s),∞) (see Fig. 2). Let us start with the second part:

inf
s∈(χ,∞)

inf
t∈(g2(s),∞)

h3(s, t). (19)

Clearly, (19) is bounded from below by

inf
s∈(χ,∞)

inf
t∈(g2(s),∞)

h2(s).

One can show that h3(s, t) reduces to h2(s) if t = g2(s) (s ∈ [χ,∞)). There-
fore, analogously to area A2, if bI/cI ≥ χ , then s∗ = bI/cI and t∗ = g2(s∗) =
(2bI − bII)/cII, whereas otherwise s∗ = t∗ = χ . We thus obtain the following
result.

Lemma 3.8 Expression (19) equals
{

γ (b) if bI/bII ∈ [0, α+);
2bIcI if bI/bII ∈ [α+, 1].
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We now turn to the first part:

inf
s∈[0,χ ] inf

t∈(g1(s),∞)
h3(s, t). (20)

First concentrate on the minimum of h3(s, t) over t ≥ 0, which is attained at

t = bII − bI

cII
+ s

2cII − cI

cII
=: g3(s)

if s ∈ [0, χ ] (for s > χ it is attained at t = g2(s), but this case is irrelevant here).
Note that g3(s) is linearly decreasing (increasing) if cI > 2cII (cI < 2cII). Also,
g3(χ) = χ . Hence, we have to distinguish between two cases:

• First concentrate on cI > 2cII. Then g3(s) > g1(s) for all s ∈ [0, χ) (as g3(s)
is non-increasing and g3(χ) = χ ). Substituting t = g3(s) in (20) gives

inf
s∈[0,χ ]

b2
I + 2bI(cI − 2cII)s + 4bIIcIIs + (cI − 2cII)

2s2

2s
. (21)

This is minimized for s∗ = bI/(cI − 2cII) and t∗ = g3(s∗) = (bII − 2bI)/cII if
bI/(cI − 2cII) ≤ χ , whereas otherwise s∗ = χ = t∗.

• Next consider cI ≤ 2cII. In this case it is not clear a priori whether g3(s) ≥ g1(s)
for all s ∈ [0, χ). For the moment assume that this is true. Then (21) is again
appropriate, and this is minimized for s∗ = bI/(2cII − cI) and t∗ = g3(s) =
bII/cII if bI/(2cII − cI) ≤ χ , whereas otherwise s∗ = χ = t∗. Now, in the
former case it can be checked that g3(s∗) = g1(s∗) = bII/cII, and in the latter
case we find g3(s∗) = g1(s∗) = χ , i.e., the minimizers satisfy g3(s∗) ≥ g1(s∗),
and hence we are done.

This reasoning leads to the following result.

Lemma 3.9 Expression (20) equals

⎧
⎪⎪⎨

⎪⎪⎩

2(bI(cI − 2cII)+ bIIcII) if cI > 2cII and bI/bII ∈ [0, α−];
γ (b) if cI > 2cII and bI/bII ∈ (α−, 1];
2bIIcII if cI ≤ 2cII and bI/bII ∈ [0, α0];
γ (b) if cI ≤ 2cII and bI/bII ∈ (α0, 1].

3.3.4 Exponential decay rate

In order to find J (b), we have to determine the minimum of (14), (15) and (16).
This minimum can be obtained by combining Lemmas 3.6–3.9. From this, we
already see that the minimum depends on the value of bI/bII ∈ [0, 1] and the sign
of cI − 2cII. We now present an exact expression for the rate function J (b). We
start with the case cI > 2cII.

Theorem 3.10 Suppose cI > 2cII. Then it holds that

J (b) =
⎧
⎨

⎩

2(bI(cI − 2cII)+ bIIcII) if bI/bII ∈ [0, α−];
γ (b) if bI/bII ∈ (α−, α+);
2bIcI if bI/bII ∈ [α+, 1].
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Proof By combining Lemmas 3.6–3.9, we find that there exist two critical val-
ues of bI/bII ∈ [0, 1], given that cI>2cII: α− and α+. Recall from Sect. 3.2 that
0 < α− < α+ < 1 if cI > 2cII. Now, if bI/bII ∈ [0, α−], then it follows from
Lemmas 3.6–3.9 that J (b) = min

{
2(bI(cI − 2cII)+ bIIcII), γ (b)

}
. Straightfor-

ward calculus shows that the first argument is smaller for these values of bI/bII.
Similarly, if bI/bII ∈ (α−, α+), then J (b) = γ (b). Finally, if bI/bII ∈ [α+, 1],
then J (b) = min

{
2bIcI, γ (b)

}
. Applying straightforward calculus yields that the

first argument is smaller if bI/bII ∈ (α+, 1]. ��
Schilder’s theorem says that knowledge of the MPP f ∗ for the buffers to fill,

also implies that the exponential decay rate is known: J (b) = I ( f ∗). Luckily, we
do not have to derive the MPPs corresponding to the three decay rates of Theo-
rem 3.10, because we have already implicitly obtained them. The values of −s∗
and −t∗, where s∗ and t∗ are the optimizers in Sects. 3.3.1–3.3.3 associated with
the three decay rates of Theorem 3.10, can be interpreted as the time where the
first and second queue, respectively, start to build up in the corresponding MPP.

The s∗ and t∗ associated with the decay rate of the first regime in Theorem 3.10
are s∗ = bI/(cI − 2cII) and t∗ = (bII − 2bI)/cII, see Sect. 3.3.3. Hence, in the
MPP of the first regime, queue I starts to build up at −s∗, whereas queue II starts
to build up at −t∗. The MPP is given by, for r ∈ [−t∗, 0],

f ∗(r) = E
(
B(r)| − B(−s∗) = bI + cIs

∗,−B(−t∗) = bII + cIIt
∗).

Let (Y, Z) be (1 + d)-variate Normally distributed (Y is 1-dimensional and Z is
d-dimensional). Now, using that the random variable (Y |Z = z), for some z ∈ R

d ,
is normally distributed with mean

E(Y |Z = z) = EY +
⎛

⎜
⎝

Cov(Y, Z1)
...

Cov(Y, Zd)

⎞

⎟
⎠

T

�−1

⎛

⎜
⎝

z1 − EZ1
...

zd − EZd

⎞

⎟
⎠ , (22)

where

� =

⎛

⎜⎜
⎝

VarZ1 Cov(Z1, Z2) . . . Cov(Z1, Zd)
Cov(Z1, Z2) VarZ2 . . . Cov(Z2, Zd)

...
...

. . .
...

Cov(Z1, Zd) Cov(Z2, Zd) . . . VarZd

⎞

⎟⎟
⎠ ,

it can be verified that

( f ∗)′(r) = 2cII if r ∈ [−t∗,−s∗);
( f ∗)′(r) = 2(cI − cII) if r ∈ [−s∗, 0].

Applying ‘Schilder’, i.e., using (3), one can verify that, as expected,

I ( f ∗) = 1

2

(
(2cII)

2(t∗ − s∗)+ (2(cI − cII))
2s∗
) = 2(bI(cI − 2cII)+ bIIcII),

so f ∗ is indeed the MPP. Note that given service rates cI and cII at queue I and
queue II, respectively, with cI > 2cII, the MPP yields QI(0) = bI and QII(0) = bII.
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Also note that we have not specified the MPP outside [−t∗, 0], because outside
this interval the MPP produces traffic according to the average rate EB(1), which
equals 0 (we are dealing with standard Brownian input), and therefore this does not
affect I ( f ∗). Below we will therefore also not specify the MPPs outside [−t∗, 0]
(for different values of t∗).

The s∗ and t∗ associated with the decay rate of the second regime in Theo-
rem 3.10 are s∗ = t∗ = (bII − bI)/(cI − cII) = χ , see Sects. 3.3.1–3.3.3, i.e., in
the second regime, both queue I and queue II start to build up at −t∗. The MPP is
given by, for r ∈ [−t∗, 0],

f ∗(r) = E
(
B(r)| − B(−t∗) = bI + cIt

∗). (23)

Using (22), it can be verified that that this MPP is such that traffic enters the net-
work with constant rate (bI/(bII − bI))(cI − cII)+ cI in the interval [−t∗, 0], and
this yields QI(0) = bI and QII(0) = bII. Using (3), we find

I ( f ∗) = 1

2

(
bI

bII − bI
(cI − cII)+ cI

)2

t∗ = γ (b),

so f ∗ is indeed the MPP.
The s∗ and t∗ associated with the decay rate of the third regime in Theorem 3.10

are s∗ = t∗ = bI/cI, see Sect. 3.3.2, i.e., in the third regime, both queues start to
build up at −t∗. The MPP is given by, for r ∈ [−t∗, 0],

f ∗(r) = E
(
B(r)| − B(−t∗) = bI + cIt

∗).

Again, using (22), we find that this MPP is such that traffic is produced at con-
stant rate 2cI in the interval [−t∗, 0], and this gives QI(0) = bI and QII(0) =
(bI/cI)(2cI − cII). Note that QII(0) is larger than bII if bI/bII ∈ (α+, 1], so there
is indeed exceedance of bII. From (3), it follows that

I ( f ∗) = 1

2
(2cI)

2 t∗ = 2bIcI,

as required.

Theorem 3.11 Suppose cI ≤ 2cII. Then it holds that

J (b) =
⎧
⎨

⎩

2bIIcII if bI/bII ∈ [0, α0];
γ (b) if bI/bII ∈ (α0, α+);
2bIcI if bI/bII ∈ [α+, 1].

Proof The proof is similar to that of Theorem 3.10. ��
The s∗ and t∗ associated with the decay rate of the first regime in Theorem 3.11

are s∗ = t∗ = bII/cII, see Sect. 3.3.1. Hence, in the MPP corresponding to the first
regime of Theorem 3.11, both queues start to build up at −t∗. The MPP is given
by, for r ∈ [−t∗, 0],

f ∗(r) = E
(
B(r)| − B(−t∗) = bII + cIIt

∗).
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Using (22), we find that traffic is generated at a constant rate 2cII in the interval
[−t∗, 0], and this results in QI(0) = (bII/cII)(2cII − cI) > bI and QII(0) = bII.
Applying ‘Schilder’, yields

I ( f ∗) = 1

2
(2cII)

2 t∗ = 2bIIcII.

The MPPs corresponding to the second and third regime are similar to the MPPs
corresponding to the second and third regime of Theorem 3.10.

3.4 Discussion

Using Theorems 3.3 and 3.4, also the logarithmic large-buffer asymptotics follow
directly. To this end, define

J ∗(bα) := − lim
b→∞

1

b
log P (QI > αb, QII > b) with α ∈ [0, 1], b ≥ 0,

where bα ≡ (αb, b). With αb = bI and b = bII, i.e., bα = b, it is not hard to see
that J ∗(bα) equals J (b); compare Theorems 3.10 and 3.11 with Theorems 3.3
and 3.4, respectively. Indeed, since we assumed that in the many-sources frame-
work the standard Brownian sources are i.i.d., and because a standard Brownian
motion is characterized by independent increments, J ∗(bα) and J (b) should match,
see for instance Example 7.4 of Ganesh et al. (2004).

In the analysis of the two-node parallel queue we assumed that the input process
was a standard Brownian motion, i.e., no drift and v(t) = t . We now show how
the results can be extended to general Brownian input, which have drift µ > 0
and variance v(t) = λt , λ > 0. Clearly, we should have that cI > cII > µ > 0
to ensure stability. We denote the input process of a general Brownian motion by
{B∗(t), t ∈ R}. Then, analogously to (6), p(b) = P(B∗(·) ∈ S) = P(B(·) ∈ S∗),
with

S∗ :=
{

f ∈ �

∣
∣∣
∣∃t ≥ 0 : ∃s ∈ [0, t] : − f (−s) >

bI + (cI − µ)s√
λ

,

− f (−t) >
bII + (cII − µ)t√

λ

}
.

Hence in order to generalize the results of Sect. 3 to general Brownian input, we
have to set ci ← (ci − µ)/

√
λ and bi ← bi/

√
λ, i = I, II.

4 Analysis of the two-node tandem queue

In this section we focus on the two-node tandem queue. Exploiting the results of
the two-node parallel queue in Sect. 3, we derive similar results for the two-node
tandem queue.
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4.1 Joint distribution function

In this subsection we derive an exact expression for q(b) := P(Q1 > b1, Q2 > b2),
with b ≡ (b1, b2). In Sect. 2.3 we argued that p(bI, bII) equals q(bT) := P(Q1 >

b1, QT > bT), with bT ≡ (b1, bT), given that bI = b1, bII = bT, cI = c1 and
cII = c2. In a first step to obtain q(b), we derive q f (bT) := −∂q(bT)/∂b1. With
mild abuse of notation, we also write q f (bT) = P(Q1 = b1, QT > bT). Define
τT ≡ τ(bT) := (bT − b1)/(c1 − c2) and τ ≡ τ(b2) := b2/(c1 − c2).

Lemma 4.1 For each bT ≥ b1 ≥ 0,

q f (bT) = −∂�1(bT)

∂b1
φ(�1(bT))+ 2c1
(�2(bT))e−2b1c1

+ ∂�2(bT)

∂b1
φ(�2(bT))e−2b1c1 + ∂�3(bT)

∂b1
φ(�3(bT))e−2bTc2

+ 2(c1 − 2c2)(1−
(�4(bT)))e−2(b1(c1−2c2)+bTc2)

− ∂�4(bT)

∂b1
φ(l4(bT))e−2(b1(c1−2c2)+bTc2),

where

�1(bT) := b1 + c1τT√
τT
; �2(bT) := −b1 + c1τT√

τT
;

�3(bT) := b1 + (c1 − 2c2)τT√
τT

; �4(bT) := −b1 + (c1 − 2c2)τT√
τT

.

Proof Use Theorem 3.1, with bI = b1, bII = bT, cI = c1 and cII = c2, to obtain
q(bT). Then recall that q f (bT) = −∂q(bT)/∂b1. We extensively use the chain
rule:

∂
( f (u))

∂u
= −∂ f (u)

∂u
φ( f (u)).

Applying straightforward calculus now gives the desired result. ��
Note that

q(b) = P(Q1 > b1, QT > b2 + Q1) =
∫ ∞

b1

P(Q1 = x, QT > b2 + x)dx

=
∫ ∞

b1

q f (x)dx, (24)

where x ≡ (x, b2 + x). Define

m1(b) := b1 + c1τ√
τ
; m2(b) := −b1 + c1τ√

τ
; m4(b) := −b1 + (c1 − 2c2)τ√

τ
.

We directly present the main theorem on tandem queues.
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Theorem 4.2 For each b1, b2 ≥ 0,

q(b) = c2

c1 − c2

(m1(b))+
(m2(b))e−2b1c1

+c1 − 2c2

c1 − c2
(1−
(m4(b)))e−2(b1(c1−c2)+b2c2).

Proof Use (24) in combination with Lemma 4.1. Note that q f (x) consists of 6
terms. Let us start with the first term:

∫ ∞

b1

−∂�1(x)

∂x
φ(�1(x))dx = 
(�1(x))

∣
∣∣
∞
b1
= −
(m1(b)). (25)

Similarly, for the second and third term:
∫ ∞

b1

(
2c1
(�2(x))e−2c1x + ∂�2(x)

∂x
φ(�2(x))e−2c1x

)
dx

= −
(�2(x))e−2c1x
∣∣∣
∞
b1
= 
(m2(b))e−2b1c1 . (26)

Proceeding with the fourth term:
∫ ∞

b1

∂�3(x)

∂x
φ(l3(x))e−2c2(b2+x)dx =

∫ ∞

b1

∂�3(x)

∂x

1√
2π

e−
�1(x)2

2 dx

=
∫ ∞

b1

∂�1(x)

∂x

1√
2π

e−
�1(x)2

2 dx = −
(�1(x))

∣
∣∣
∞
b1
= 
(m1(b)); (27)

here the first equality in (27) follows from the fact that exp(−�3(x)2/2) exp(−2c2
(b2 + x)) = exp(−�1(x)2/2), whereas the second equality holds due to
∂�3(x)/∂x = ∂�1(x)/∂x . We decompose the fifth term into two parts:

2(c1 − 2c2)(1−
(�4(x)))e−2(x(c1−c2)+b2c2)

= 2(c1−c2)(1−
(�4(x)))e−2(x(c1−c2)+b2c2)

+ 2c2(
(�4(x))−1)e−2(x(c1−c2)+b2c2).

Now, taking the first decomposed fifth term and the sixth term:
∫ ∞

b1

(
2(1−
(�4(x)))(c1−c2)e

−2(x(c1−c2)+b2c2)− ∂�4(x)

∂x
φ(�4(x))e−2(x(c1−c2)+b2c2)

)
dx

= −(1−
(�4(x)))e−2(x(c1−c2)+b2c2)
∣
∣∣
∞
b1

= (1−
(m4(b)))e−2(b1(c1−c2)+b2c2). (28)

We are left with the second decomposed fifth term:
∫ ∞

b1

2c2(
(�4(x))− 1)e−2(x(c1−c2)+b2c2)dx

= c2

c1 − c2

∫ ∞

b1

2(c1 − c2)(
(�4(x))− 1)e−2(x(c1−c2)+b2c2)dx

= c2

c1 − c2

(m1(b))− c2

c1 − c2
(1−
(m4(b)))e−2(b1(c1−c2)+b2c2); (29)
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here the second equality in (29) is obtained by applying integration by parts, but
requires tedious calculus. Adding up (25)–(29) yields the stated. ��
Remark For b1 > 0 and b2 = 0, we find q(b1, 0) = P(Q1 > b1) = exp (−2b1c1)
in Theorem 4.2, i.e., the well-known exponential distribution with mean 1/(2c1).
For b1 = 0 and b2 > 0, Theorem 4.2 yields

q(0, b2) = P(Q2 > b2) = c1

c1 − c2



(
c1√

c1 − c2

√
b2

)

+c1 − 2c2

c1 − c2
e−2b2c2

(
1−


(
c1 − 2c2√

c1 − c2

√
b2

))
,

which is in line with Theorem 4.3 in Dȩbicki et al. (2007a).

4.2 Exact large-buffer asymptotics

In this subsection we derive the exact asymptotics of the joint buffer content dis-
tribution. Define

α+ := c1

2c1 − c2
; α− := c1 − 2c2

2c1 − 3c2
.

It can be verified that 0 < α− < α+ < 1 if c1 > 2c2, and 0 < α+ < 1 if c1 ≤ 2c2.

Recall that ζ(x) =
(√

2πx
)−1

exp(−x2/2). First we present the counterpart of

Lemma 3.2.

Lemma 4.3 Let b1 = αb and b2 = (1− α)b, with α ∈ [0, 1]. If b→∞, then


(m1(b)) ∼ ζ(m1(b));


(m2(b)) ∼
⎧
⎨

⎩

ζ(m2(b)) if α < α+;
1/2 if α = α+;
1 otherwise;

1−
(m4(b)) ∼
⎧
⎨

⎩

1 if α < α− and c1 > 2c2;
1/2 if α = α− and c1 ≥ 2c2;
−ζ(m4(b)) otherwise.

Proof The proof is as in Lemma 3.2. ��
Define

θ(b) := 1√
2π

(
c2

c1 − c2

1

m1(b)
+ 1

m2(b)
− c1 − 2c2

c1 − c2

1

m4(b)

)
and

δ(b) := (b1(c1 − c2)+ b2c1)
2

2b2(c1 − c2)
. (30)
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The following equalities can shown to hold true:

exp

(

−m1(b)2

2

)

= exp

(

−m2(b)2

2

)

exp (−2b1c1)

= exp

(

−m4(b)2

2

)

exp (−2(b1(c1 − c2)+ b2c2)) = exp
(−δ(b)

)
. (31)

The proof of the following two theorems is similar to the proof of Theorem 3.3,
but now requires Lemma 4.3 and Eqs. (30) and (31). We omit the proofs.

Theorem 4.4 Let b1 = αb and b2 = (1 − α)b, with α ∈ [0, 1]. Suppose that
c1 > 2c2. For b→∞,

q(b) ∼

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

c1−2c2
c1−c2

e−2(b1(c1−c2)+b2c2) if α ∈ [0, α−);
1
2

c1−2c2
c1−c2

e−2(b1(c1−c2)+b2c2) if α = α−;
θ(b)e−δ(b) if α ∈ (α−, α+);
1
2 e−2b1c1 if α = α+;
e−2b1c1 if α ∈ (α+, 1].

Theorem 4.5 Let b1 = αb and b2 = (1 − α)b, with α ∈ [0, 1]. Suppose that
c1 ≤ 2c2. For b→∞,

q(b) ∼
⎧
⎨

⎩

θ(b)e−δ(b) if α ∈ [0, α+);
1
2 e−2b1c1 if α = α+;
e−2b1c1 if α ∈ (α+, 1].

Remark We note that for c1 < 2c2 and b1 = 0 (α = 0) the asymptotics are not
given by θ(b) exp(−δ(b)), as it can be verified that θ(b) equals 0 in this special case.

Therefore we have to rely here on the sharper asymptotic
(√

2πu
)−1

exp(−u2/2)−

(u) ∼

(√
2πu3

)−1
exp(−u2/2). Using this, it can be shown Dȩbicki et al.

(2007a) that

q(0, b2) ∼ 1√
2π

(
c1 − c2

b2

)3/2 4c2

c2
1(c1 − 2c2)2

e
− c2

1
2(c1−c2)

b2
.

4.3 Most probable path

Similar to the parallel system, the large-buffer asymptotics now depend on the
model parameters α, c1 and c2. Again, we will interpret the corresponding regimes
by determining the structure of the MPPs.

We feed n i.i.d. standard Brownian sources into the tandem system, and also
scale the link rates and buffer thresholds by n: nc1, nc2, nb1 and nb2 respectively.
By using (9), we can write

qn(b) := P(Q1,n > nb1, Q2,n > nb2) = P

(
1

n

n∑

i=1

Bi (·) ∈ U

)

.
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Clearly, U ⊆ U∗ ⊆ V , with

U∗:={f∈�|∃t≥0 :∃s∈[0, t] :− f (−s)>b1+c1s, f (−s)− f (−t)>b2+c2t−c1s};
V :={ f ∈�|∃t≥0 : ∃s∈[0, t] : − f (−s)>b1 + c1s,− f (−t) > b1 + b2 + c2t}.
Hence, ‘Schilder’ gives

K (b) := − lim
n→∞

1

n
log qn(b) = inf

f ∈U
I ( f ) ≥ inf

f ∈V
I ( f ). (32)

Let the MPP in set V be denoted by f ∗. If f ∗ ∈ U , then there is clearly equality
in (32).

Theorem 4.6 Suppose c1 > 2c2. Then it holds that

K (b) =
⎧
⎨

⎩

2(b1(c1 − c2)+ b2c2) if b1/(b1 + b2) ∈ [0, α−];
δ(b) if b1/(b1 + b2) ∈ (α−, α+);
2b1c1 if b1/(b1 + b2) ∈ [α+, 1].

Proof Consider Theorem 3.10 with cI = c1, cII = c2, bI = b1 and bII = b1 + b2,
i.e., we have U ⊆ V = S. The MPPs (in S = V ) corresponding to each of the
regimes of Theorem 3.10 were derived in Sect. 3.3. It can easily be checked that
these MPPs are also contained in U , and consequently they are the MPPs in U .
This implies that K (b) is given by Theorem 3.10. ��
Theorem 4.7 Suppose c1 ≤ 2c2. Then it holds that

K (b) =
{

δ(b) if b1/(b1 + b2) ∈ [0, α+);
2b1c1 if b1/(b1 + b2) ∈ [α+, 1].

Proof Consider Theorem 3.11 with cI = c1, cII = c2, bI = b1 and bII = b1 + b2.
Again, the MPPs corresponding to the second and third regime of Theorem 3.11,
are also contained in set U , so K (b) is given by Theorem 3.11 for b1/(b1 + b2) ∈
(α0, 1]. However, the MPP corresponding to the first regime, i.e., b1/(b1 + b2) ∈
[0, α0], is not contained in U , so we need a different approach here. In order to
obtain a workload in queue 2 at least as large as b2 at time 0, queue 2 needs to start
building up at −τ = −b2/(c1 − c2) at the latest. Set U can now be rewritten as
{

f ∈�

∣∣
∣∣∃t ≥ τ : ∃s ∈ [0, t] : ∀u ∈ [0, t] : − f (−s) > b1 + c1s,

f (−u)− f (−t) > b2 + c2t − c1u

}
,

which is contained in

{ f ∈�|∃t≥τ : ∃s∈[0, t] : − f (−s)>b1+c1s,− f (−t)>b1 + b2 + c2t} =: W.

Using the results of Sect. 3.3, with bI = b1, bII = b1 + b2, cI = c1 and cII = c2,
one can show that if b1/(b1 + b2) ∈ [0, α+) and c1 ≤ 2c2, then the MPP in W is
given by (23). As (23) is contained in U , it is also the MPP in U , implying that
K (b) = δ(b). ��
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Fig. 3 The most probable storage path in {Q1 ≥ b1, Q2 ≥ b2} corresponding to each of the
regimes of Theorem 4.6. The most probable storage path corresponding to each of the two
regimes of Theorem 4.7, is also given by the most probable storage paths of the last two regimes
of Theorem 4.6

Figure 3 depicts for each of the regimes of Theorem 4.6 the most likely way
the buffers fill. Clearly, the most likely way the buffers fill for each of the two
regimes of Theorem 4.7, coincides with the most probable storage paths of the last
two regimes of Theorem 4.6. Interestingly, three types of MPPs are possible. In
the first type queue 2 starts to build up earlier than queue 1, but they reach b1 and
b2 at the same time. In the second type both queues start to grow at the same time,
and reach b1 and b2 at the same time, whereas in the third type both queues start
to build up at the same time, but at the time queue 1 reaches b1, queue 2 is strictly
larger than b2.

Remark If we set b1 > 0 and b2 = 0, then Theorems 4.6 and 4.7 give K (b) =
2b1c1, which indeed is the exponential decay rate of the overflow probability in
single queue with standard Brownian input, emptied at rate c1. For b1 = 0 and
b2 > 0, Theorems 4.6 and 4.7 yield

K (b) =
{

2b2c2 if c1 > 2c2;
c2

1
2(c1−c2)

b2 otherwise,

which is in line with Sect. 4.1 in Mandjes and van Uitert (2005).

4.4 Discussion

As in the two-node parallel queue, we can derive the logarithmic large-buffer as-
ymptotics by using Theorems 4.4 and 4.5. That is,

− lim
b→∞

1

b
log P (Q1 > αb, Q2 > (1− α)b)=:K ∗(bα) with a ∈ [0, 1], b ≥ 0,
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where bα ≡ (αb, (1 − α)b). With b1 = αb and b2 = (1 − α)b, i.e., bα = b, it
is not hard to see that K ∗(bα) and K (b) coincide; compare Theorems 4.6 and 4.7
with Theorems 4.4 and 4.5, respectively.

Again the results can also be generalized immediately to general Brownian
input. Assuming that c1 > c2 > µ > 0, this is done by setting ci ← (ci −µ)/

√
λ

and bi ← bi/
√

λ, i = 1, 2.

5 Conclusions

In this paper we analyzed a two-node tandem queue with Brownian input. We
obtained the joint distribution function of the workload of the first and second
queue, large-buffer asymptotics, and the most probable path leading to overflow.
These results were derived by first considering the closely related two-node parallel
queue, for which similar results were obtained.

Future research directions include: (1) Analysis of the joint overflow proba-
bility in a two-class generalized processor sharing (GPS) system with Brownian
inputs. (2) Extending the results obtained in this paper to other input processes.
The main approach used in this paper relies on the fact that Brownian motions are
characterized by independent increments. Therefore, we expect our approach to
be also valid for other input processes that have independent increments (and an
LDP), e.g., light-tailed Lévy processes.

Acknowledgment The authors wish to thank two anonymous referees for providing helpful
comments.
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