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Abstract An attractive way to control attribute data from high quality processes is
to wait till r ≥ 1 failures have occurred. The choice of r in such negative binomial
charts is dictated by how much the failure rate is supposed to change during Out-
of-Control. However, these results have been derived for the case of homogeneous
data. Especially in health care monitoring, (groups of) patients will often show large
heterogeneity. In the present paper we will show how such overdispersion can be taken
into account. In practice, typically neither the average failure rate, nor the overdisper-
sion parameter(s), will be known. Hence we shall also derive and analyze the estimated
version of the new chart.
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1 Introduction and motivation

In this paper we consider high-quality processes, in which the proportion of non-
conforming items is expected to be (very) small. First of all, due to constant efforts
to improve quality in production, such a setup will be encountered more and more
often in industrial settings. Moreover, in the quite different, but equally important,
field of health care monitoring, this is in fact the standard situation: negative events
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68 W. Albers

[malfunctioning equipment, unsuccessful surgery, excessive delay before help arrives,
detection of (the return of) a serious disease] should typically be (very) rare.

In review papers on health care monitoring [see e.g. Woodall (2006); Thor et al.
(2007); Shaha (1995) and Sonesson and Bock (2003)], the use of SPC methods is
strongly advocated, with special emphasis on control charts as the key tools. Now
a standard choice for controlling attribute data is a p-chart, based on the number of
failures in a series of given sampling intervals. However, for the really small pro-
portions p we encounter in high-quality processes, substantial improvements can be
achieved by applying a different type of chart, which goes by a variety of names,
such as ‘time-between-events’ or ‘geometric’. All such charts essentially employ the
number of successes between failures, see e.g. Liu et al. (2004); Yang et al. (2002);
Xie et al. (1998); Ohta et al. (2001); Zhang et al. (2004) and Wu et al. (2001).

A known drawback of this geometric chart, however, is that it requires a rather long
time to react to a moderate increase of the failure rate p. Only large deteriorations
quickly produce an Out-of-Control (OoC) signal. Clearly, in particular for health care
applications, this can be quite unacceptable. Most of the authors quoted above [and
also Bourke (1991, 2006)] therefore suggest as a remedy to essentially use a nega-
tive binomial chart: postpone the decision whether to stop until r > 1 failures have
occurred. Some guidance on how to choose r in practice can be found in Ohta et al.
(2001), but a systematic treatment of this issue was given in Albers (2010), resulting
in a simple rule of thumb for choosing the optimal r as a function of the desired false
alarm rate (F AR) and the supposed degree of increase of p compared to its value dur-
ing In-Control (I C). As expected, the larger the increase one has in mind, the smaller
r should be, with again the geometric chart (r = 1) as the ultimate result. In passing,
we mention that yet another way to extend the geometric chart is the so-called sets
method introduced by Chen (1978) [also see Gallus et al. (1986) and Chen (1987)].
Here the criterion is not the sum of the numbers of successes in r consecutive intervals
between failures, but rather their maximum.

The second problem addressed in Albers (2010) concerns the estimation step
involved. Note the general nature of this issue: typically, control charts have one or
more unknown parameters which first have to be estimated on the basis of a so-called
Phase I sample. Contrary to popular optimism, the effects of this estimation step are
only negligible when (much) larger sample sizes are used than is customary in practice.
Hence as a rule, such effects have to be taken into account and, if possible, corrections
should be applied to the control limits to neutralize these. This program is indeed
carried out in Albers (2010) for the negative binomial charts when p is unknown, and
the result is a chart which is both simple to understand and to apply.

As such it thus offers a very satisfactory solution to the problem of monitoring
high quality processes, characterized by an incoming sequence D1, D2, . . . , of inde-
pendent identically distributed (i.i.d.) random variables (r.v.’s) with Pr(D1 = 1) =
1− Pr(D1 = 0) = p, where p is (very) small. However, note the underlying homoge-
neity assumption, which is made explicit by this more formal description. For industrial
processes this assumption usually is quite reasonable, although it will certainly not
always be warranted. But in medical applications, patients will often show large het-
erogeneity, and we really have to take such variation between subjects into account
on a rather regular basis.
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Control charts for health care monitoring 69

Roughly speaking two types of situations should be distinguished. In the first, we
essentially only know that such heterogeneity does occur. It is e.g. due to the existence
of different subgroups, each with its own probability of failure, but we lack further
information. The only way in which it becomes apparent, is through an increase of
variance over what would be expected under the homogeneous model. This is the
well-known phenomenon of overdispersion. See e.g. Poortema (1999) for a general
review, and more specifically in connection with attribute control charts, Christensen
et al. (2003) and Fang (2003) for an industrial setting and Marshall et al. (2004) and
Grigg et al. (2009) for health care monitoring applications. The present paper will be
devoted to demonstrating how negative binomial charts can be adapted to cover the
overdispersion situation as well.

However, before addressing this issue, in passing we consider the second of the two
situations mentioned above. Here we do have knowledge about the underlying struc-
ture. For example, incoming patients are classified into different risk categories, for
each of which the corresponding pi is known or can be estimated. This opens the pos-
sibility for so-called risk adjustment [see Grigg and Farewell (2004a) for an overview
and Grigg and Farewell (2004b) for a risk-adjusted version of the sets method]: the
base-line risk of each patient can be taken into account, thus allowing a more accurate
appraisal of e.g. a surgeon’s performance on a series of such patients. Clearly, this is
an interesting option, giving rise to various questions. For what type of application is
risk adjustment advisable, how should it be applied, what are the (typically larger!)
estimation effects and how can these be controlled? As moreover the approach to be
used will be quite different from what is needed in the overdispersion case, we prefer
to treat risk-adjusted negative binomial charts in a separate, forthcoming paper.

In Sect. 2 we demonstrate how the extension to the overdispersion case can be
made from the negative binomial chart. Next, Sect. 3 is devoted to the performance of
the new chart during OoC . In Sect. 4 the estimation aspects are covered. Finally, the
procedure is summarized in Sect. 5.

2 Overdispersion

In the homogeneous case we have that D1, D2, . . . is a sequence of i.i.d. r.v.’s, with
Pr(D1 = 1) = 1 − Pr(D1 = 0) = p during I C . Once the process goes OoC , the
failure probability p is replaced by θp for some θ > 1 and a signal should follow as
soon as possible. (Note that θ > 1 is of primary interest, but a two-sided version can
be derived in a completely similar way.). The ‘time-between-events’ approach means
that we do not work with fixed-length blocks of D’s, but instead wait each time till
the r th failure occurs, for some r ≥ 1. Let Xi , i = 1, 2, . . . be the successive numbers
of D’s involved, then these Xi clearly are i.i.d. copies of a negative binomial r.v. Xr,p

such that

Pr(Xr,p = k) =
(

k − 1

r − 1

)
pr (1 − p)k−r , (2.1)
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where k = r, r + 1, . . .. Unless confusion might occur, we suppress the indices when-
ever possible, here as well as in the sequel, and thus simply write X instead of Xr,p.
As θ > 1, a signal should result when an r th failure arrives too soon, i.e. at the first
time an Xi ≤ n, for some suitable lower limit n = nr,p.

Next we drop the assumption of homogeneity, according to which the Di were
identically distributed. Instead, each Di has its own pi , but we have no further knowl-
edge about the underlying mechanism. All that is clear is that overdispersion causes
an inadequate fit for the single parameter homogeneous model. Hence we need to
consider a larger parametric family, by at least adding one (overdispersion) parame-
ter. Clearly, this wider family cannot be expected to be ‘true’ either: it also remains
an approximation of the underlying unknown structure. But, being wider, it should
provide a better approximation.

Bearing the above in mind, we proceed as follows. In the homogeneous case, stop-
ping at the r th failure led to the negative binomial Xr,p from (2.1). To incorporate
overdispersion, let P be a r.v. on (0, 1] (or, more generally, on (0,∞), with Pr(P > 1)

negligible) such that

E
p

P
= 1, var

p

P
= τ, (2.2)

where p is interpreted as the average failure rate and τ ≥ 0 is the overdispersion
parameter. Typically, τ will not be really large, but also not sufficiently small to be
negligible. Nevertheless, homogeneity (i.e. τ = 0) is included as a boundary case. As
our stopping time we now use Xr,P , i.e., given P = p∗, it is distributed as Xr,p∗ . A
straightforward calculation shows that

E Xr,P = r

p
, var(Xr,P ) = var(Xr,p) + r(r + 1)τ

p2 = r

p2 {1 − p + (r + 1)τ }. (2.3)

Hence the relative increase due to overdispersion is ≈ (r + 1)τ , expressing the joint
effect of the length of the waiting sequence and the variation in failure rates.

Next we use these new r.v.’s to extend the basic homogeneous model as follows: once
again we consider a sequence of i.i.d. r.v.’s, but now these will be copies of Xr,P rather
than of Xr,p. In other words, for each ‘time-between-events’-sequence of length r ,
a new realization of P is chosen independently. As already argued above in general
terms, this is just a modeling step, without the intention of precisely grasping the true
underlying structure. Acting as if the basic sequence of Di ’s conveniently selects a
new value of P exactly if and only if an r th failure occurs, clearly is a simplification of
reality. The point is that it is a considerably less stringent simplification than assuming
homogeneity.

The obvious advantage of the parameterization above is that it allows us to keep
using the results from the negative binomial case. In particular, given P = p∗, we
have Pr(Xr,p∗ ≤ n) ≈ Pr(Znp∗ ≥ r), where Znp∗ is a Poisson r.v. with parameter
np∗. Taking expectations w.r.t. P thus leads to

Pr(Xr,P ≤ n) ≈ Pr(Zn P ≥ r). (2.4)
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Control charts for health care monitoring 71

Note that with (2.4) we have arrived at a classical overdispersion setup: a Poisson
r.v. Z with random parameter. For the next modeling step, by far the most prominent
choice [see e.g. Poortema (1999)] is to let this random parameter be Gamma distrib-
uted, resulting in a (shifted) negative binomial r.v.. To be more precise, let G(ζ, η)

denote the gamma distribution with density

fG(x) = ηζ xζ−1 e−ζ x

�(ζ )
, x > 0, (2.5)

and let Yn∗,p∗ denote a binomial r.v. with parameters n∗ and p∗. Then we have for the
present setup:

Lemma 2.1 Let τ > 0. If P is G(2 + τ−1, (1 + τ−1)/p), then (2.2) holds. Moreover,
for this choice (2.4) specializes to

Pr(Xr,P ≤ n) ≈ Pr
(
Y(r+1+τ−1),1/{1+(1+τ−1)/(np)} ≥ r

)
. (2.6)

Proof See the Appendix.

Remark 2.1 For τ → 0, clearly n∗ = r + 1 + τ−1 → ∞ and p∗ = 1/{1 + (1 +
τ−1)/(np)} → 0, while n∗ p∗ → np. Hence in this case the binomial approxima-
tion from (2.6) boils down to the Poisson approximation Pr(Znp ≥ r) used in the
homogeneous case. The difference between these two approximations thus precisely
reflects the overdispersion effect we want to quantify. �	

Using Lemma 2.1, we can now obtain an approximation to the lower limit n. As a
criterion we shall use that, for some small α > 0,

Pr(Xr,P ≤ n) = rα. (2.7)

In this way, the average run length (ARL) during I C will attain the same value
r/(rα) = 1/α for all r , thus allowing a fair comparison among the negative binomial
charts for r ≥ 1. Solving n numerically from Pr

(
Y(r+1+τ−1),1/{(1+(1+τ−1)/(np)} ≥ r

)
= rα for given p, r , α and τ is not difficult, but a further approximation step is most
convenient. We have:

Lemma 2.2 The lower limit n = nτ such that Pr
(
Y(r+1+1/τ),1/{1+(1+1/τ/(np)} ≥ r

)
= rα can be approximated for p ≤ 0.01, r ≤ 5, α ≤ 0.01 and 0 < τ ≤ 1/(r + 1) by

ñτ = αrτ

1 + ζrτ

p
, with αrτ = v

(
rα(
v+r

r

)
) l

r

(2.8)

and moreover ζrτ = αrτ (v + r + 1)/{v(r + 1)} + 1
2 (α2

rτ [(3r + 5)(v + r + 1)2/{(r +
1)2(r + 2)v2} − (v + r + 1)/{(r + 2)v2}] , with v = 1 + τ−1.

Proof See the Appendix.
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Remark 2.2 As concerns the behavior for various τ , we note:

(i) (upper bound). For τ = 1/(r + 1) the variance has already doubled [cf. (2.3)].
Beyond this level simply adapting the homogeneous approach probably no
longer suffices and more detailed information should be gathered (cf. the remarks
about risk adjusted charts from the Introduction).

(ii) (lower bound). For τ → 0, the quantities from (2.8) converge to their counter-
parts from Lemma 2.1 in Albers (2010) (cf. Remark 2.1). Hence for really small
τ the additional effort to accommodate overdispersion is no longer worthwhile
and a lower bound like τ ≥ 0.05/(r + 1) might be added as well. We did not
do this because technically it is not needed, but in the estimation part (Sect. 4)
it will reoccur.

(iii) (given τ ). Using some algebra, it is not difficult to verify in (2.8) that αrτ

decreases in τ , and that this is also true for α2
rτ (v + r + 1)/{v(r + 1)}, the next

coefficient in the expansion for ñτ . Hence ñτ typically decreases in τ , as should
be the case, because overdispersion has a widening effect and thus forces us to
lower the control limit ñτ in comparison to the result ñ0 from the homogeneous
case. �	

Next we check the quality of ñτ as an approximation for nτ . (See the Appendix for
some details on how nτ can be computed). In Table 1 below some illustrative values
are collected. Following Albers (2010), we use α = 0.001, 0.005 and 0.01. For the
present purpose, the focus no longer is on comparing the various values of r , so we
can restrict ourselves to representative values like r = 3 and r = 5. The emphasis
now is on the relative overdispersion increase (r + 1)τ , for which we let the values
range from 0 (homogeneous case) to 1 (upper limit in Lemma 2.2). The value of p
(as long as it is at most 0.01) fortunately has no impact on the approximation quality,
which allows us to summarize the results in terms of nτ p and ñτ p.

Table 1 Comparison of the approximation ñτ p from (2.8) to the exact nτ p (cf. A.3), for various α, r and
(r + 1)τ

α\β 0 0.05 0.1 0.2 0.5 1

r = 3

0.001 0.282 0.281 0.275 0.275 0.269 0.269 0.258 0.258 0.234 0.234 0.206 0.206

0.005 0.509 0.506 0.497 0.496 0.487 0.486 0.469 0.467 0.427 0.425 0.380 0.378

0.01 0.665 0.660 0.652 0.647 0.639 0.634 0.616 0.611 0.562 0.557 0.503 0.497

r = 5

0.001 1.08 1.07 1.06 1.05 1.04 1.03 1.00 0.99 0.91 0.90 0.81 0.80

0.005 1.62 1.58 1.59 1.55 1.57 1.52 1.52 1.47 1.40 0.135 1.25 120

0.01 1.97 1.88 1.94 1.86 1.91 1.82 1.85 1.77 1.71 1.62 1.55 1.45
The first value is nτ p; the second one is ñτ p
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Control charts for health care monitoring 73

In Albers (2010) it was concluded that the approximation performs quite well over
the region considered. Fortunately, Table 1 shows that this conclusion can be extended
to the case of positive (r + 1)τ , all the way to the upper limit 1. Another important
result from Table 1 is the observation that the effect of (r + 1)τ indeed can be consid-
erable: as it grows, the resulting values decrease quite a bit in comparison to those for
the homogeneous case τ = 0. Remember that this decrease serves to accommodate
the overdispersion effect and to maintain the value of F AR during I C at rα. By way
of illustration we show in Table 2 what happens to this F AR if the overdispersion is
ignored and nτ p for τ = 0 is used while in fact τ is positive. Indeed, the realized
F AR can be doubled, or even tripled, if overdispersion effects become substantial,
thus producing on the average far too short runs during I C .

To illustrate that application of the resulting chart is still quite simple, we conclude
this section with:

Example 2.1 Suppose an ARL of 200 is considered acceptable, i.e. α = 0.005 is
chosen. If we want to decide about stopping or continuing at each third failure, we
should use r = 3. In the homogeneous case [cf. Example 2.1 from Albers (2010)], we
used n such that Pr(Znp ≥ 3) = 0.015 here, leading to np = 0.509 (or ñ p = 0.506).
However, assume now that in fact τ = 1/8, and thus (r + 1)τ = 1/2. According
to Table 2, using the homogeneous np would produce F AR = 0.0234 rather than
0.0150. Hence we proceed by noting that 1+τ−1 = 9, and thus obtain nτ p from solv-
ing Pr(Y12,1/(1+9)/(np)) ≥ 3) = 0.015 [cf. (A.3)] or, more directly, ñτ p from (2.8),
leading to nτ p = 0.427 and ñτ p = 0.425 (cf. Table 1). To complete the example, fix
a value of p as well, e.g. by letting p = 0.001. During I C , the third failure should
then on average arrive after 3,000 observations. In the homogeneous case, action is
taken if this already happens before at most 509 (or 506) observations. Taking the
overdispersion into account now actually lowers these limits to 427 (or 425) in the
present case. �	

3 The OoC situation

In this section we let the process go OoC , in the sense that p is replaced by θp,
for some θ > 1. Hence ARL = r/Pr(Xr,θ P ≤ n) ≈ r/Pr(Zθn P ≥ r) [cf. (2.4)].
If a r.v. T is G(ζ, η), then θT is G(ζ, η/θ), and in analogy to (2.6) we thus obtain
that Pr(Xr,θ P ≤ n) ≈ Pr(Y(r+1+1/τ),1/{1+(1+τ−1)/(θnp)} ≥ r). Consequently, under

Table 2 Realized F AR’s (in %) when using the homogeneous values for n0 p for various α, r and (r +1)τ

r = 3 r = 5

α\ β 0 0.05 0.1 0.2 0.5 1 0 0.05 0.1 0.2 0.5 1

0.001 0.300 0.322 0.341 0.382 0.501 0.693 0.500 0.546 0.590 0.681 0.973 1.49

0.005 1.50 1.59 1.68 1.85 2.34 3.07 1.50 2.68 2.85 3.20 4.21 5.83

0.01 3.00 3.16 3.32 3.62 4.50 5.75 5.00 5.30 5.58 6.14 7.76 10.1
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74 W. Albers

overdispersion we arrive at

ARL = ARLr,θ = r

P R(Y(r+1+τ−1),1/{1+(1+τ−1)/(θnp)} ≥ r)
(3.1)

with n such that Pr(Y(r+1+1/τ),1/{1+(1+τ−1)/(np)} ≥ r) = rα. Hence, just as in the
homogeneous case, going out of control leads to replacement of the relevant np by
θnp. Not surprisingly, this means that the corresponding result from Albers (2010)
can be adapted in a straightforward manner to

Lemma 3.1 The ARL from (3.1) can be approximated for p ≤ 0.01, r ≤ 5, α ≤ 0.01,
(r + 1)τ ≤ 1 and 3/2 ≤ θ ≤ 4 by AR̃L = AR̃Lr,θ,τ =

r

1 − v
(v+θαrτ )v+r

[
1 + θαrτ (v+r)

v
+ · · · + (

v+r
r−2

)
( θαrτ

v
)r−2 + (

v+r
r−1

)
( θαrτ

v
)r−1{1 − θαrτ ξrτ (v+1)

v+θαrτ [1+ξrτ ] }
] ,

(3.2)

with αrτ , ζrτ and v as in (2.8).

Proof Apply the method of Lemma 3.1 from Albers (2010) (which is the boundary
case of (3.2) as τ → 0] to the relevant binomial rather than Poisson probabilities. �	

The range of values of interest for θ obviously remains the same as in Albers (2010).
Just as in that paper, we are interested in the quality of the approximation provided,
but now the focus is on the behavior with respect to τ . In Table 3 some illustrative
values are collected, with α and r as in Tables 1 and 2 and θ as in Table 3 from

Table 3 Comparison of AR̃L from (3.2) to ARL from (3.1) for various α, r , τ and θ

α\θ 3/2 2 3 4

r = 3

0.001 329 338 154 162 55.7 61.3 28.7 32.7

332 344 155 164 56.2 62.1 28.9 33.0

0.005 71.2 74.5 36.0 39.1 15.1 17.5 9.04 10.7

73.4 77.9 36.9 40.6 15.4 17.9 9.10 10.9

0.01 37.6 39.7 20.0 22.0 9.32 10.9 6.04 7.27

39.3 42.2 20.7 23.3 9.47 11.2 6.06 7.37

r = 5

0.001 203 224 73.7 88.0 22.2 29.1 11.6 15.7

233 160 82.1 69.6 23.5 25.4 11.8 14.4

0.005 49.8 56.3 21.9 26.8 9.31 12.1 6.44 8.22

61.7 59.0 25.4 28.6 9.71 12.7 6.31 8.42

0.01 28.2 32.1 13.9 17.0 7.12 8.96 5.60 6.74

36.3 39.4 16.2 20.2 7.21 9.87 5.30 7.05

In each 2 ×2 cell the upper values are ARL’s and the lower ones AR̃L’s, while the left column is for τ = 0
(homogeneity) and the right one for (r + 1)τ = 1
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Albers (2010). Since the behavior in τ is again monotone (cf. Tables 1 and 2), we just
present the boundary cases τ = 0 and (r + 1)τ = 1.

Several interesting observations can be made from Table 3. As expected, the
required numbers of observations increase as (r + 1)τ goes from 0 to 1. Do note
that this fact should not be interpreted as a ‘drawback’ of the adjusted charts, in the
sense that avoiding this adjustment would in fact have produced a lower ARL and
thus a better OoC performance. From Table 2 it is evident that such an ‘improve-
ment’ can only be obtained by cheating on the requirement that ARL = 1/α during
I C . Nevertheless, it is gratifying to observe as well that the impact of changing τ

is much smaller under OoC than under I C . In the latter case, Table 2 shows that
even tripling of the intended value can occur, while the relative increase in Table 3
is considerably smaller. Note that this phenomenon is of a general nature and by no
means special for the present situation. In addition, Table 3 shows that in general the
approximation works well in the region considered, with again a decreasing quality
as rα increases. Moreover, observe that for small α and θ at r = 5 the approximation
no longer increases as (r + 1)τ goes from 0 to 1, which also indicates that here the
limits of its usefulness are reached.

Yet another conclusion is that the pattern with respect to the optimal choice of r
for given θ obviously hardly changes in going from the homogeneous case τ = 0 to
the opposite end at (r + 1)τ = 1. Consequently, there is no need to adapt the analysis
from Albers (2010) at this point, and we can stick to the rule of thumb from that paper:
for given α and θ the value r opt that minimizes ARLr is adequately approximated by

min(5, r̃ opt), (3.3)

where r̃ opt = 1/{α(2.6θ + 2) + 0.01(4θ − 3)} [cf. Table 3.2 from Albers (2010)]. The
reason for the truncation of r̃ opt suggested in (3.3) is twofold: (i) the main part of the
improvement over the geometric chart usually is already achieved within the range
2 ≤ r ≤ 5; (ii) having to collect a really large number of failures before being allowed
to stop, might be considered undesirable in practice. To illustrate matters, we conclude
the present section with:

Example 3.1 Using Example 2.1 as a starting point, let once more α = 0.005, p =
0.001 and r = 3. Homogeneity in this situation gave np = 0.509 (or 0.506) and thus
n = 509 (or 506). Suppose now that in fact τ = 1/4, i.e. (r +1)τ = 1, then during I C
this choice would actually produce F AR = 3.07%, instead of 1.50%. Hence the cor-
responding ARL would be less than 100, instead of the intended 200. Consequently,
we definitely prefer to repair this defect by lowering our limit to n = 380 (or 378).
The price for this correction during OoC boils down at θ = 4 to an increase in ARL
from 9.04 to 10.7 (or from 9.10 to 10.9), which seems quite moderate. Even after
correction, 3 to 4 blocks of 3 failures on the average will suffice for a signal to occur.

Next observe that (3.3) suggests r = 5 as optimal choice for α = 0.005 and θ = 4.
Then the lower limit n = 1, 620 (or 1,580) should be lowered to n = 1, 280 (or
1,200), in order to avoid a rise of the I C − F AR from 2.50 to 5.83%. As a conse-
quence, the OoC − ARL at θ = 4 will rise from 6.44 to 8.22 (or from 6.31 to 8.42).
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76 W. Albers

Indeed some further improvement over r = 3 is achieved: 1 to 2 blocks of 5 failures
will now suffice on average.

Finally, to illustrate that most of the gain with respect to the geometric chart
(i.e. r = 1) typically is achieved within the range 2 ≤ r ≤ 5, note the following.
The geometric chart has ARL ≈ 1/(θα) [see (2.2) in Albers (2010)], which means
an ARL of about 50 here. The step towards r = 3 gives the main reduction to 9.04,
with a slight further improvement for r = 5 to 6.44. The latter two values are those for
the homogeneous case. Accommodating overdispersion means a renewed increase to
10.7 and 8.22, respectively, which is very mild compared to the starting value of 50.
Hence also in this respect, the price for correcting for overdispersion seems quite fair.

�	

4 The estimated chart

Typically the underlying parameters of the chart will be unknown in practice. In the
present setup not only the failure rate p is involved, but also the overdispersion param-
eter τ from (2.2). Hence these will have to be estimated and a Phase I sample is needed
before monitoring can start. Let m be the size of such a sample, in the sense that we
observe the sequence D1, D2, . . . until m failures have been gathered. Note that m does
not depend on the r we choose: in this way, also with respect to estimation, fairness
in comparing charts for different r is preserved. Also observe that the r.v.’s involved
are typically not simply distributed as Xr,p from (2.1) for the homogeneous case, but
also not necessarily as Xr,P from (2.3), since this latter choice was proposed as a
convenient modeling step (cf. the discussion in Sect. 2). Hence we prefer to adopt the
following general notation: for simplicity (and without essential loss of generality),
let k = m/r be an integer, then our Phase I sample consists of k r.v.’s Yr,p. Here each
Yr,p is an overdispersed waiting time till the r th failure, so let us use here as well
[cf. (2.3)] the notation

EYr,p = r

p
, var(Yr,p) = r

p2 {1 − p + (r + 1)τ }. (4.1)

In this way, for both Yr,p and Xr,P , the relative increase due to overdispersion is
denoted by (r + 1)τ/(1 − p) ≈ (r + 1)τ .

For briefness’ sake denote the k Yr,p’s from Phase I by Y1, . . . , Yk and let

Y ∗ = m−1
k
i=1Yi , S2

r = (m − r)−1
k
i=1(Yi − rY ∗)2, (4.2)

then we suggest the following estimators (see the Appendix for some details)

p̂ = 1

Y ∗ , τ̂ = max

(
0,

S2
r

(Y ∗)2 − 1

) /
(r + 1). (4.3)

The maximum in (4.3) has been included since nonpositive values of S2
r /(Y ∗)2 −1 can

occur. However, this is a negligible complication, because it will typically only happen
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if the underlying τ is really small. Such τ are not at all interesting and taking the trouble
to accommodate the overdispersion effect can be reserved for e.g. τ ≥ 0.05/(r + 1)

[cf. Remark 2.2 (ii)]. Hence the proper reaction in practice to finding such a nonposi-
tive value is to refrain from additional effort, i.e. to stick to the homogeneous approach.
That is precisely what (4.3) does: τ̂ = 0 in that case.

Basically, the above is all that is needed to transform the chart into its estimated ver-
sion: just replace p and τ in Sects. 2 and 3 by their estimated counterparts p̂ and τ̂ . For
example, instead of the lower limit n = nτ solving Pr(Y(r+1+τ−1),1/{1+(1+τ−1)/(np)} ≥
r) = rα, we now have n = n̂τ such that

Pr
(
Y(r+1+τ̂−1),1/{1+(1+τ̂−1)/(n p̂)} ≥ r

) = rα. (4.4)

Likewise, ñτ from (2.8) becomes ˆ̃nτ = αr τ̂ (1 + ζr τ̂ )/ p̂ (just substitute v̂ = 1 + τ̂−1

for v = 1 + τ−1 everywhere in αrτ and ζrτ ). Once such an estimated lower limit n̂τ

(or ˆ̃nτ ) has been obtained from the Phase I sample, the actual monitoring can start:
each time we wait till the r th failure, and if this occurs at or before this lower limit,
a signal is given. Hence, straightforward application of the estimated chart remains
easy.

However, it remains to note that as a consequence of the estimation step the per-
formance characteristics F AR and ARL will now be stochastic, rather than fixed at
rα and 1/α, respectively. To be able to control this effect, we include the possibility
to apply a small correction c to the estimated limit n̂τ from (4.4):

n̂τ,c = n̂τ (1 − c) and ̂F ARc = Pr(Xr,P ≤ n̂τ,c|Y ∗, S2
r ). (4.5)

Hence for c = 0 we again have the uncorrected case: n̂τ,0 = n̂τ . A quantity of interest
now e.g. is the exceedance probability Pr(̂F AR0 > rα(1 + ε)) for the uncorrected
case, and moreover the value of c such that, for some prescribed small δ

Pr(̂F ARc > rα(1 + ε)) ≤ δ. (4.6)

In this connection note that Pr(̂ARLc < (1−ε)/α) = Pr(r/̂F ARc < (1−ε)/α)) =
Pr(̂F ARc > rα(1+ ε̃)), where ε̃ = ε/(1+ ε). Hence control of ̂F ARc through (4.6)
automatically provides that of ̂ARLc, and vice versa.

To evaluate this exceedance probability, as well as to find c such that (4.6) holds,
we introduce

U = p

p̂
− 1, W = − (r − np)(τ̂ − τ)

{1 + (r + 1)τ }(1 + τ)
, (4.7)

and denote the standard deviation of (U + W ) by σ(U+W ). Moreover, let

γτ = Pr(Y(r+1+1/τ),1/{1+(1+1/τ)/(np)} = r)

rα{1 + np/(1 + τ−1)} , (4.8)
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and write uδ for the upper δ-point of the standard normal d.f. �, i.e. 1 − �(uδ) = δ.
Then we have

Lemma 4.1 The uncorrected exceedance probability satisfies

P(̂F AR0 > rα(1 + ε)) ≈ 1 − �

(
ε

γτ rσ(U+W )

)
, (4.9)

while equality in (4.6) is achieved by using n̂τ,c from (4.5) with

c = σ(U+W )uδ − ε

γτ r
. (4.10)

Moreover γτ satisfies 1 − (r + 2 + τ−1)/{(1 + (1 + τ−1)/(np))(r + 1)} < γτ <

1/{1 + np/(1 + τ−1)}.
Proof See The Appendix.

Once again, letting τ → 0 reproduces the results from the homogeneous case. In
particular, γτ → γ with 1 − λ/(r + 1) < γ < 1 and σ(U+W ) → σU , which for τ = 0
simply equals m−1/2 to first order. In the present case, some effort is needed to obtain
σ(U+W ). The expressions involved are more complicated and an additional estimation
step is required. For some details, see the Appendix. In addition to p̂ and τ̂ , moment
estimators μ̂ j = k−1
k

i=1(Yi − Y ) j , j = 3 and 4, are needed. The resulting σ̂(U+W )

still is of order m−1/2, implying that the correction c from (4.10) will indeed be small
if the Phase I sample size m is sufficiently large.

5 Summary

For convenience, we summarize the application of the overdispersion chart as dis-
cussed in the previous sections:

1. Select a desired I C − ARL = 1/α and a degree of change θ > 1 for p
during OoC that should be optimally protected against.

2. Apply rule of thumb (3.3) to obtain the best r for this α and θ .
3. For known p and τ , compute the lower limit ñτ from (2.8).
4. If desired, use (3.2) to check whether the OoC − ARL is satisfactory.
5. Start monitoring: at each r th failure, signal if ≤ ñτ observations were

observed.
6. If p and τ are unknown, select an m = kr and first collect Y1, . . . , Yk .
7. Apply (4.2) and (4.3) to obtain p̂ and τ̂ . Use these values at step 3.
8. If desired, analyze exceedance probabilities through (4.9) and (4.10).

As argued in the Introduction (also see the references mentioned there), this chart
is especially suited for medical applications, where failures are supposed to be quite
rare (congenital malformations, cancer incidence, surgical errors) and overdispersion
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is quite common [varying patient characteristics, multiple units (hospitals, general
practices)]. Woodall (2006) states that many issues on how to best adjust control
charts for overdispersion remain unresolved. The present proposal is meant to offer a
contribution in this respect. In particular, it is easy to implement, uses the best r for
chosen θ , allows a simple check of the resulting OoC − ARL , as well as an appraisal
of the effect if overdispersion had been ignored. Moreover, the—typically needed—
estimated version is simple as well, while appraisal of and/or correction for the esti-
mation effects are available.

The properties just mentioned have been illustrated already in Examples 2.1 and 3.1.
Hence to avoid repetition, here we just give a short numerical example of the summary
above. Suppose some ongoing stream of health care or public health surveillance data
are gathered in the form of waiting times till observed failures. An I C − ARL = 200
is chosen and the focus is on possible quadrupling of the failure rate, i.e. θ = 4 (step 1).
This results in r = 5: waiting till each fifth failure before deciding on a signal (step 2).
But as p and τ are unknown, first a Phase I sample consisting of m = 150 failures is
collected, leading to k = 30 r.v.’s Yi (step 6). Suppose these produce p̂ = 0.002 and
τ̂ = 1/12, indicating that overdispersion cannot be neglected (step 7). Using these
values, compute ˆ̃nτ p̂ = 1.35 and thus n̂τ = 675 (step 3). In principle, monitoring
starts right now: a signal arises as soon as a fifth failure arrives at or before the 675th
patient. (If desired, first check OoC − ARL (step 4) and/or exceedance probabilities
(step 8). Modify the choice of α, θ and/or m if considered necessary, and repeat the
steps involved).

Appendix

Proof of Lemma 2.1 Let T be a r.v. with d.f. G(ζ, η) (cf. (2.5)), then E(1/T ) =
η/(ζ−1) , E(1/T )2 = η2/{(ζ−1)(ζ−2)}, and thus var(1/T ) = {η/(ζ−1)}2/(ζ−2).
For the special case T = P , we have ζ = 2 + τ−1 and η = (1 + τ−1)/p, and thus
E(1/P) = 1/p, var(1/P) = τ/p2. Hence (2.2) indeed holds. From (2.5) it is imme-
diate that Pr(ZT = k) = ∫ ∞

0 Pr(Z X = k) fG(x)dx = �(ζ + k)/{k!�(ζ )}{1/(η +
1)}k{η/(η + 1)}ζ , k = 0, 1, . . .. This means that ZT + ζ is distributed as the negative
binomial Xζ,η/(η+1) from (2.1). Consequently,

Pr(ZT ≥ r) = Pr(Xζ,η/(η+1) > ζ + r − 1) = Pr(Yζ+r−1,η/(η+1) < ζ )

= Pr(Yζ+r−1,1/(η+1) ≥ r). (A.1)

As T = n P in (2.4), application of (A.1) with ζ = 2 + τ−1 and η = (1 + τ−1)/(np))

produces the desired result (2.6). �	
Proof of Lemma 2.2 This is a straightforward extension of the proof of Lemma 2.1
from Albers (2010). There a result from Klar (2000) for Poisson probabilities is
applied, which shows that the error committed by replacing Pr(Znp ≥ r) by

r+2

j=r Pr(Znp = j) is sufficiently small. But Klar (2000) contains a similar result
for the binomial case, and this can be used here for Y(r+1+τ−1),1/{1+(1+τ−1)/(np)}
in precisely the same manner. The second step in that proof consists of expanding

123



80 W. Albers


r+2
j=r Pr(Zλ = j) w.r.t. λ = np to third order. By equating the result obtained to rα

and inverting w.r.t. λ, the desired expansion follows. Again, the same procedure, be it
a bit more laborious, can be applied here. To provide some details, note that after the
first step, we have the approximation

rα =
(

v + r

r

)
λrvv

(v + λ)v+r

{
1 + λ

r + 1
+ (v − 1)λ2

(r + 1)(r + 2)v

}
, (A.2)

from which it is immediate that (αrτ )
r = λr {1 + O(λ)}, and thus λ = αrτ to first

order. The refinement in (2.8) follows by solving (A.2) to third, rather than just first,
order. �	
Computation of nτ . According to Lemma 2.2, we are looking for the solution n = nτ

of the equation

Pr(Y(r+1+τ−1),1/{1+(1+τ−1)/(np)} ≥ r) = Pr(Xr,1/{1+(1+τ−1)/(np)} ≤ r + 1 + τ−1)

= rα. (A.3)

By way of illustration, first consider the geometric case r = 1, where a direct approach
is feasible. Here (A.3) boils down to α = Pr(X1,1/{1+v/(np)} ≤ v + 1) = 1 − {1 −
1/(1+v/(np))}v+1, with again v = 1+τ−1. Hence (1+np/v)−(v+1) = 1−α and thus
the solution nτ p = v{(1−α)−1/(v+1)}−1 is readily obtained. Indeed, expanding this
expression leads to ñτ p = vα/(v+1){1+ 1

2 (v+2)α/(v+1)+(v+2)(2v+3)α2/[6(v+
1)2]}, which agrees with (2.8) for r = 1. In passing also observe the following. In
the geometric case r = 1 we directly have that Pr(X1,P ≤ n) = 1 − E(1 − P)n =
1−
n

k=0

(n
k

)
(−1)k E Pk , with E Pk = pk{(v+1) . . . (v+k)}/vk , as P is G(v+1, v/p)-

distributed (cf. Lemma 2.1). Using the Poisson approximation subsequently gives
Pr(X1,P ≤ n) ≈ Pr(Zn P ≥ 1) = 1 − Ee−n P = 1 − {v/(v + np)}v+1, which in its
turn agrees with the result derived just above, using Pr(X1,1/{1+(1+τ−1)/(np)} ≤ v+1).

For r > 1, obtaining nτ is less straightforward. Let ξ = 1/(1 + v/(np)), then for
given ξ we have from (A.3) that v + r = F−1

r,ξ (rα), the rαth quantile of the negative
binomial df Fr,ξ . (We shall use an interpolated version.) Consequently, we obtain

np =
(

ξ

1 − ξ

)
{F−1

r,ξ (rα) − r}, τ = {F−1
r,ξ (rα) − r − 1}−1, (A.4)

for given r , α and ξ . By adapting the value of ξ , selected values for (r + 1)τ can be
obtained iteratively in (A.4), and thus the corresponding n = nτ as well.

Proof of Lemma 4.1 The result for γτ follows by once more using Klar (2000).
Together, (A.5) from Lemma A.1 below and (4.8) imply that ̂F ARc ≈ rα(1 +
γτ r{U + W − c}). Hence the exceedance probability from (4.6) to first order equals
Pr(γτ r{U + W − c} > ε). As U + W is asymptotically normal with mean 0 and var-
iance σ 2

(U+W ), this probability approximately equals 1 − �({c + ε/(γτ r)}/σ(U+W )).
For c = 0, this produces (4.9). If instead the prescribed δ should result, c + ε/(γτ r)

has to equal σ(U+W )uδ , and hence c should be chosen as in (4.10). �	
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Lemma A.1 it To first order ̂F ARc equals

rα + r

1 + np/(1 + τ−1)
{U + W − c}Pr(Y(r+1+τ−1),1/{1+(1+τ−1)/(np)} = r) (A.5)

in which n = nτ solves Pr(Y(r+1+τ−1),1/{1+(1+τ−1)/(np)} ≥ r) = rα.

Proof As n = n̂τ is such that Pr(Y(r+1+τ̂−1,1/(1+τ̂−1)/(n p̂))} ≥ r) equals rα as well
(cf. (4.4)), it follows that (r + 1 + τ̂−1)/{1 + (1 + τ̂−1)/(n̂τ p̂)} to first order equals
(r +1+τ−1)/{1+(1+τ−1)/(nτ p)}. Consequently, n̂τ p̂/(nτ p)−1 ≈ (r −nτ p)(τ −
τ̂ )/{(1 + τ)(1 + (r + 1)τ̂ }, which agrees to first order with W in (4.7). Hence, in
view of (4.5), n̂τ,c/nτ = {n̂τ p̂/(nτ p)}(p/ p̂)(1 − c) ≈ 1 + U + W − c. In view of
(A.3), this implies that ̂F AR ≈ Pr(Y(r+1+τ−1),1/{1+(1+τ−1)/(np)} ≥ r), where now
n = nτ (1 + U + W − c). Since ∂ Pr(Yn,p ≥ r)/∂p = (p/r)Pr(Yn,p = r), a first
order expansion around 1/{1 + (1 + τ−1)/(nτ p)} then produces the result in (A.5).

�	

Derivation of p̂ and τ̂ . Clearly, Y ∗ = r−1Y , with Y = k−1
k
i=1Yi , and thus Y ∗ is just

the average waiting time till the first failure, with EY ∗ = 1/p. Moreover, S2
r = r−1 S̃2

r ,
where S̃2

r = (k − 1)−1
k
i=1(Yi − Y )2, the sample variance of the Yi ’s. Consequently,

E S̃2
r = var(Y1){1 − [k(k − 1)]−1

i 
= jρ(Yi , Y j )}. Obviously, if the Yi are distrib-

uted as in (2.1) (i.e. homogeneity holds after all), all correlations involved will be 0.
More important, however, is the fact that this remains true if the Yi are distributed
according to (2.3), i.e. as Xr,P . Then not only all underlying D’s are independent, but
also a new and independent P is drawn after each r th failure. Note that this observa-
tion indicates what will happen for general Yi . Typically, the effect of the correlation
terms in E S̃2

r will remain negligible, as the only contribution comes from carryover
effects, due to carrying on for a while with the same p after an r th failure. Only if the
stretches involved are too large, problems will arise in this respect. However, as stated
before, under such circumstances a closer scrutiny of the underlying process seems
indicated (risk adjustment methods etc.). The present approach focuses on the simple
setup where the information available essentially consists only of waiting times till
r th failures. Hence we may assume that E S2

r ≈ r−1var(Y1) ≈ {1 + (r + 1)τ }/p2

[cf. (4.2)]. Then it follows that p = 1/EY ∗ and τ ≈ {E S2
r /(EY ∗)2 − 1}/(r + 1),

leading to (4.3).
Estimation of σ(U+W). As before, we assume that possible dependencies between
the Yi are negligible. For their marginal distribution, we might use that of Xr,P and
accordingly express the 3rd and 4th central moments involved in terms of r , p and τ .
However, the resulting expressions are rather complicated. Moreover, simplification
by using expansion w.r.t τ only works quite locally, as the coefficients of the higher
order terms tend to grow considerably. But, apart from these technical aspects, it seems
better anyhow not to rely on such an assumption and to just use moment estimators
like μ̂ j = k−1
k

i=1(Yi − Y ) j for μ j , j = 3 or 4. Then we can proceed as follows:
first note that W from (4.7) to first order can written as −a{(1 + U∗)/(1 + U )2 − 1},
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where

a = r − np

(r + 1)τ
and U∗ = p2 S̃2

r

r{1 + (r + 1)τ } − 1. (A.6)

Hence U + W ≈ (1 + 2a)U − aU∗. From (4.7) and (4.3) it follows that
σ 2

U = p2var(Y ∗), which in view of (4.2) and (4.1) leads to σ 2
U = (p/r)2var(Y ) =

(p/r)2(r/p2){1 − p + (r + 1)τ }/k ≈ m−1(1 + (r + 1)τ ). Consequently, σ 2
U

can be estimated by m−1(1 + (r + 1)τ̂ ). For Cov(U, U∗) and σ 2
U∗ similar steps

can be taken. We obtain that Cov(U, U∗) ≈ p3/{r2(1 + (r + 1)τ )}Cov(Y , S̃2
r ) =

p3/{r2(1 + (r + 1)τ )}μ3/k = m−1 p3/{r(1 + (r + 1)τ )}μ3 and σ 2
U∗ ≈ p4/{r2(1 +

(r + 1)τ )2}Var(S̃2
r ) = [p4/{r2(1 + (r + 1)τ )2}μ4 − 1]/k = m−1[p4/{r(1 + (r +

1)τ )2}μ4 − r ]. Hence σ(U+W ) now readily follows, after which replacement of p, τ

and μ j by their respective estimators gives the desired σ̂(U+W ). Note that σ̂(U+W ) still
is of order m−1/2, implying that the correction c from (4.10) will indeed be small if
the Phase I sample size m is sufficiently large.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.
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