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Abstract This paper studies two classes of two-person zero-sum games in which
the strategies of both players are of a special type. Each strategy can be split into two
parts, a taking and a guessing part. In these games two types of asymmetry between
the players can occur. In the first place, the number of objects available for taking
does not need to be the same for both players. In the second place, the players can be
guessing sequentially instead of simultaneously; the result is asymmetric information.
The paper studies the value and equilibria of these games, for all possible numbers of
objects available to the players, for the case with simultaneous guessing as well as for
the variant with sequential guessing.
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1 Introduction

This paper studies two classes of take-and-guess games. In both classes of games, each
of the two players (I and II) has to take a number of objects out of a given private finite
set of objects. After that, they both have to guess the total amount of objects taken by
both players. For the objects, one can think of fingers, coins or matches. Player 1 has
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m ∈ N objects available: he can take any number in {0, 1, . . . , m}. His opponent has
n objects available. The values of m and n are common knowledge.

In the first class, the morra games, the objects used in general are the fingers of
one hand of the player. Both players have to announce their guesses simultaneously.
A player wins a particular play of this game if he guesses the total number of fingers
correctly, while his opponent guesses a wrong number. If both players guess correctly,
the play is a draw. This is also the case if both players guess a wrong total.

In morra with an equal number of fingers for both players, the player roles are
symmetric. As expected, these games turn out to be fair (i.e., their value is zero). We
prove this in Sect. 2 and we also show that if one player can use more fingers than his
opponent (m �= n), then this player has an advantage in the game.

In the other class of take-and-guess games, the so-called (m, n)-coin games, the
players announce their guesses sequentially. The second player is not allowed to guess
the same total as the first player. In the naming of the games, we follow Schwartz
(1959), who studied the games with m = n. He called these games n-coin games. If
a player guesses right, he wins. If neither player guesses the total correctly, the play
ends in a draw.

Since coin games are not symmetric for any m and n, it is not clear at first sight if
any of these games is fair. However, Schwartz (1959) has shown that the games with
m = n are fair. We show in Sect. 3 that a much larger class of coin games is fair: the
game value is zero for any coin game in which the starting player has at least as many
coins as the opponent (m ≥ n). Furthermore, (m, n)-coin games with m < n are not
fair. We give an overview of the values for all these games and we describe optimal
strategies for both players for all m and n.

The remainder of this paper is organized as follows. Morra is discussed in Sect. 2.
In Sect. 3, we study coin games in detail. Section 4 presents some concluding remarks
and comparisons of morra and coin games.

2 Games of morra

Morra is a game that has been played since ancient Egyptian times. It is still played
throughout different parts of the world, especially in Europe and Northern Africa. For
a more detailed historic description we refer to Ifrah (1985, pp. 67–70) and Perdrizet
(1898). The game is fairly simple and can be played by two or more players, but it is
usually played by two. The players face each other, each holding up a closed fist. At
a given signal, they both hold up zero to five fingers and at the same time announce
a number from 0 to 10. If both hands are used, the number can range from 0 to 20.
A player wins if the number he calls out is the total number of fingers shown by both
players. However, if the opponent guesses the same number, the play ends in a draw.
Also if neither of the players guesses the correct number, then there is no winner.
Winning will be formally represented by getting one unit from the opponent. Payoffs
in this zero-sum game can therefore only be −1, 0 and 1.

Variants of morra are a popular subject in game theory lectures (see, e.g., Rector
(1987)). The proof of the result that we derive in this section (or parts or variants of
it), appears as an exercise in various course notes concerning non-cooperative game
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theory. Proposition 2.1 is mainly included to be able to compare morra with the coin
games that are studied in Sect. 3.

In the general version of morra that we study in this paper, the first player is allowed
to hold up a maximum of m ∈ N fingers, while his opponent can choose to hold up
at most n ∈ N fingers. We will refer to this game as (m, n)-morra, or briefly Mm,n .
In the analysis of these games and the coin games that are studied in Sect. 3, we will
often encounter sets of integers of the form {a, a + 1, . . . , b − 1, b}. It is therefore
convenient to introduce a shorthand notation for such a set: [a, b].

A pure strategy for player I in Mm,n will be denoted by (x1, y1), where x1 is the
number of fingers he decides to hold up and y1 is the sum he guesses. Clearly, with a
strategy for which y1 < x1, player I can never win. Neither can he win with a strategy
for which y1 > x1 +n. Such a strategy is called infeasible. We will restrict attention to
feasible strategies. That is, the pure strategy space for player I is S1 = {(x1, y1) | (x1 ∈
[0, m]) ∧ (y1 ∈ [x1, x1 + n])}. Analogously, the pure strategy space for player II is
given by S2 = {(x2, y2) | (x2 ∈ [0, n]) ∧ (y2 ∈ [x2, x2 + m])}. The cardinalities of
the strategy spaces are equal: |S1| = |S2| = (m + 1)(n + 1).

The game (m, n)-morra can be modelled as a matrix game and is then completely
defined by the matrix A = [a(x1,y1),(x2,y2)], where

a(x1,y1),(x2,y2) =
⎧
⎨

⎩

1 if (y1 = x1 + x2) ∧ (y1 �= y2),

−1 if (y2 = x1 + x2) ∧ (y1 �= y2),

0 otherwise.

Proposition 2.1 Let m, n ∈ N. The value v(Mm,n) of (m, n)-morra is m−n
(m+1)(n+1)

.

Proof Let x1 ∈ [0, m] and y1 ∈ [x1, x1 + n]. The strategy (x1, y1) of player I will
win against all strategies (x2, y2) ∈ S2 of player II for which x2 = y1 − x1 and
y1 �= y2. Player II has exactly m strategies that fulfil these conditions. On the other
hand, (x1, y1) will cause a victory for player II if he uses a strategy (x2, y2) ∈ S2
for which y2 = x2 + x1 and y2 �= y1. That is, player I will lose against any of the n
elements of the set {(x2, x2 + x1) | x2 ∈ [0, n]\{y1 − x1}}. Against any other strategy
of player II, (x1, y1) will cause a tie. Therefore, the elements of each row of A sum to
m −n. Consequently, by playing all (x2, y2) ∈ S2 with equal probability, 1

|S2| , player II

can guarantee that player I will not get more than m−n
(m+1)(n+1)

.

In an analogous way, one can show that player I can guarantee himself m−n
(m+1)(n+1)

by playing each of his pure strategies with probability 1
|S1| . This completes the proof.

��
From the proof of Proposition 2.1, we can see that optimal strategies in this game

are rather simple. Both players just have to play all their pure strategies with equal
probability. It is interesting to notice that v(Mm,n) = −v(Mn,m). Furthermore, one
can easily derive the following results by studying the effect of varying m and n on
the value v(Mm,n).

Corollary 2.2 Only the (m, n)-morra games with m = n are fair. For m �= n, the
advantage is for the player who can use more fingers.
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Corollary 2.3

lim
m→∞ v(Mm,n) = lim

m→∞
m − n

(m + 1)(n + 1)
= 1

n + 1
.

The intuition behind the limit of Corollary 2.3 is that if one of the players has extremely
many objects available (in terms of fingers it becomes difficult to imagine), then his
opponent will not be able to guess the number of objects he takes. The value of the
game is therefore completely determined by the probability that this player guesses
correctly the number of objects chosen by the other player.

3 Coin games

In this section we study a second class of take-and-guess games, the (m, n)-coin games.
In contrast to morra, the players have to announce their guesses sequentially in these
games. Schwartz (1959) studied the games with m = n and called these games n-coin
games. In the naming of our generalization, we also generalize the name he suggested.

The taking part of the (m, n)-coin game (or briefly Cm,n) is the same as in (m, n)-
morra. The first player is allowed to take a maximum of m ∈ N objects, while his
opponent can pick at most n ∈ N objects. The numbers m and n are common knowl-
edge. When played in practice, the objects are not fingers, but things that can be hidden
in a hand. As the name of the game suggests, coins are suitable. In Dutch bars the
game used to be played with matches.

The difference with morra lies in the guessing part. The players have to announce
their guesses sequentially instead of simultaneously. Player II hears the guess of
player I and is not allowed to guess the same total as his opponent. If a player guesses
right, he wins (i.e., obtains one unit of his opponent). If neither player guesses the total
correctly, the play ends in a draw.

Now we can formally write down the strategy spaces of the players. Since coin
games are games of perfect recall, the result of Kuhn (1953) tells us that we can
restrict our analysis to behavioural strategies. A pure behavioural strategy for player I
in Cm,n is a choice (x1, y1(x1)) ∈ S1, where S1 = [0, m] × [0, m + n]. As in morra,
x1 represents the number of coins he takes in hand, while y1 is his guess of the total
number of coins taken by him and his opponent. Note that y1 may depend on x1.
Player II picks a combination (x2, y2(x2, y1)) ∈ S2, where S2 = [0, n] × [0, m + n],
such that y2(x2, y1) �= y1 for all x2 ∈ [0, n]. Here, x2 is the number of coins taken by
player II and y2 is the total that he guesses.

Notice that infeasible strategies, like guessing a total that is less than what one
has taken in hand, are included in the strategy spaces. In the analysis of morra we
did not take this kind of strategies into account. Here we do, and there is a reason
for this difference. It is easy to see that infeasible strategies cannot help a player in
morra, since the players’ decisions are made simultaneously. Misleading the opponent
does not make sense. In coin games, however, infeasible strategies could be useful for
player I, at least in theory. If the game is advantageous for player II, then it may
be interesting for player I to mislead his opponent by guessing a total of coins that

123



Take-and-guess games 119

cannot be correct, given his own hand. In this way, he could try to reduce player II’s
probability of guessing the right sum. Although he thereby reduces his own probability
of guessing right to zero, the combined effect might be in his advantage. For this reason
we include infeasible strategies in the strategy spaces. However, we show that for each
Cm,n we can find optimal behavioural strategies for both players in which the infeasible
strategies are unused.

Let us give a short overview of the organization of the remainder of this sec-
tion. We start by introducing a graphical model for (m, n)-coin games in Sect. 3.1.
Sections 3.2–3.6 describe equilibria and provide formulas to compute the value for
Cm,n for all (m, n) ∈ N

2. The results are grouped into a number of classes of combi-
nations of m and n, such that within each class, the presented equilibrium strategies
have a similar structure.

Specifically, in Sect. 3.2 we present the equilibria for a large class of fair Cm,n ,
all games with m ≥ n. Section 3.3 studies the games in which player II has one
coin more available than his opponent. Section 3.4 deals with two special cases of
(m, n)-coin games, based on the relation n(m, k) = k(m + 1) − 1 with k ≥ 2.
Section 3.5 studies the games in which player II has two coins more available than
his opponent. Section 3.6 studies the rest of the coin games, i.e. (m, n)-coin games
with n ∈ [n(m, k − 1) + 1, n(m, k)] for k ≥ 3. The main results are divided over five
theorems (3.3, 3.4, 3.7–3.9). Table 1 illustrates these theorems by listing the values for
the (m, n)-coin games with small values of m and n. The fractions are not simplified
to make it easier to recognize the numbers from the general formulas.

From Table 1 we observe the following interesting facts.

• Although coin games are never symmetric, there is a surprisingly large collection
of fair (m, n)-coin games: all Cm,n with m ≥ n.

• For fixed values of m (and m < n), the value v(Cm,n) is constant for series of
m + 1 values of n. Within this series, player II is not necessarily better off with
more coins available. As an example, consider the game C3,5. The game becomes
more favourable for player II, only if he gets at least three more coins available.
One or two extra coins would not help him.

• On the other hand, if m < n, player I is always better off with one more coin if
he has less coins available than his opponent. Formally, m < n ⇒ v(Cm,n) <

v(Cm+1,n).
• If n = m + 1, i.e. if player II has only one more coin available than his opponent,

player II cannot take the “regular advantage” that leads to the values for n ≥ m+2.

For illustrative examples of the optimal strategies for a number of (m, n)-coin games
we refer to Dreef and Tijs (2004) and Dreef (2005, Chap. 7).

3.1 A graphical model of an (m, n)-coin game

The structure of coin games is more difficult than morra. We will see that for many
combinations of m and n, finding the optimal strategies takes some smart construction
work. To keep our arguments clear, and to make the constructions and proofs readable,
we introduce a graphical representation of a coin game in (x1, x2)-diagrams. In such a
diagram, it is not too difficult to see what a player can achieve with a specific strategy.
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Table 1 Values for Cm,n for small values of m and n

To illustrate the interpretation of the diagrams, we compute the expected payoff that
results from a specific combination of strategies. Moreover, we show how to derive
for each player a best reply against a given strategy of the opponent. Let us introduce
the diagrams that we will use to depict strategies for coin games. For the (m, n)-coin
game, an (x1, x2)-diagram is a grid with m+1 columns (corresponding to x1 ∈ [0, m])
and n + 1 rows (corresponding to x2 ∈ [0, n]). In the taking part of the game, player I
picks a column and player II picks a row. Then player I guesses a sum y1, where his
guess can depend on x1. In the (x1, x2)-diagram, this choice can be represented by a
point in the column that was chosen by player I. On the line with slope −1 that goes
through this point are all points in the grid for which x1 + x2 = y1. Points on this line
cannot be guessed by player II. Player II has to guess a different line with slope −1. For
each combination of x2 (the number of coins in his own hand) and y1 (the opponent’s
guess) he has to make such a decision. Different choices of x2 correspond to different
rows, but for each possible value of y1 we have to draw a separate (x1, x2)-diagram
to represent a strategy of player II. To describe a behavioural strategy (with mixed
decisions per information set), we give the conditional probability with which each of
the actions is played.

Let us clarify this description with an example. The diagrams in in Fig. 1 give three
graphical representations of one specific behavioural strategy of player I in C1,2.
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Fig. 1 Strategy for player I in
C1,2

Figure 1a gives the general representation for the strategy. This (x1, x2)-diagram
should be read as follows. Player I picks the left column (x1 = 0) with probability
1
3 and he picks the right column (x1 = 1) with probability 2

3 . Next, he has to pick
y1. Given x1 = 0, he picks the point (0, 1) (corresponding to y1 = 0 + 1 = 1)
with probability 1

4 and (0, 2) (corresponding to y1 = 2) with probability 3
4 . Similarly,

given x1 = 1, player I picks (1, 0) and (1, 1) with probabilities 1
4 and 3

4 , respec-
tively.

Since the conditional probabilities for the choice of y1 are the same for x1 = 0 and
x1 = 1, we can depict this strategy of player I also a little simpler. This is done in
Fig. 1b. This figure gives the same probabilities for the choices of the two columns, but
summarizes the probabilities for the guessed sum, y1, in the two lines with slope −1
that are chosen with the probabilities 1

4 (y1 = 1) and 3
4 (y1 = 2). Such a representation

is only possible if the player’s conditional probabilities of guessing y1 are the same
for all x1 that are chosen with positive probability. For many values of m and n, we
present equilibrium strategies for the (m, n)-coin game that can be written in this
simple form.

Part c shows the numbers as joint probabilities for taking and guessing. For example,
player I picks the combination (x1, y1) = (0, 1) with a probability of 1

12 .
For player II we have also depicted a strategy in C1,2 in (x1, x2)-diagrams. These

diagrams are given in Fig. 2. We draw one diagram for each possible value of y1 ∈
[0, m + n], since the decisions of player II may depend on this value.

Fig. 2 Strategy for player II in C1,2, represented in four (x1, x2)-diagrams
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In the first place, player II has to pick a number of coins, i.e., he has to choose a
row in the grid. A mixed decision is a probability distribution over the rows of the
(x1, x2)-diagram. Clearly, this distribution cannot depend on y1, so it is constant over
the four diagrams in Fig. 2. Player II takes one coin with probability 1

2 and he takes
zero or two coins, both with probability 1

4 .
Next, after choosing x2 and hearing the opponent’s guess, y1, player II has to decide

what sum to guess. So for each row in each of the four diagrams, player II can give
a probability distribution over the guesses that are interesting for him. In the first
diagram, corresponding to y1 = 0, we see that if player II has two coins in his hand,
he chooses randomly between y2 = 2 (the point (0, 2)) and y2 = 3 (the point (1, 2)).
If x2 = 1, he picks y2 = 1 with probability 1

3 and y2 = 2 with probability 2
3 . For

x2 = 0, player II has no choice. He is not allowed to guess the same number as his
opponent and we can see in the diagram that y2(0, 0) = 1. We omit the 1, the value
of the conditional probability of choosing y2(0, 0) = 1, since it is clear anyway. For
y1 = 1, we recognize two of those fixed guesses: y2(0, 1) = 0 and y2(1, 1) = 2. In
the diagram that corresponds to y1 = 2, we illustrate how we deal with probability
zero: we simply do not draw the dot. Since it is clear now that the probability of
choosing y2(0, 2) = 0 must be equal to one, we do not write this number explicitly in
the figure.

Note that it is not possible to display all so-called infeasible strategies for the players
in the diagrams. For example, to enable player I to guess a sum y1 < x1, we would
have to extend the (x1, x2)-diagram at the bottom. Also, to display a strategy in which
player II guesses a sum of m + n while he picks x2 = 0 himself, we would have
to make an extension of the diagram to the right. As we already mentioned in the
introduction of this section, these types of strategies are never needed in equilibria.
Therefore, this “flaw” of the diagrams is not a problem. For player II it is immediately
clear that there is no point in not trying to win. For player I infeasible strategies could
be useful, at least in theory, to try to deceive the opponent with his irrational guess.
However, also for the first player these strategies turn out to be redundant when we
look for an equilibrium for any Cm,n .

For the combination of the strategies in Figs. 1 and 2, we can compute the expected
payoff for player I (and directly derive the expected payoff for player II, since it is
a zero-sum game) by summing over all possible combinations of takes and guesses
that occur with positive probability. For example, the combination (x1, x2, y1, y2) =
(0, 0, 1, 0) occurs with probability

Pr{x1 = 0} Pr{x2 = 0} Pr{y1(0) = 1} Pr{y2(0, 1) = 0} = 1

3
× 1

4
× 1

4
× 1 = 1

48
.

With this combination of takes and guesses player II wins, for y2 = x1 + x2 = 0. The
payoff for player I is therefore −1. By repeating this exercise for the other combinations
of takes and guesses one can compute that the expected payoff for player I is 11

288 .
A more detailed illustration of these computations can be found in Dreef and Tijs
(2004). So far, we have introduced our graphical representation of strategies for coin
games and we have illustrated how to compute the expected payoff that results from
a combination of strategies. Since we are going to study equilibria, best replies will
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play an important role in the remainder of this paper. Let us see how we derive best
replies for each player against the given strategy of the opponent.

First, we study the possibilities of player II against the strategy of player I that is
depicted in Fig. 1. The easiest way to study the possibilities of player II, is to consider
each possible value of x2 separately and see what the optimal corresponding choices
y2(x2, y1) are. To see what is the best reply, we compare the results for all x2 ∈ [0, n].
Please observe the following: given the strategy of player I and the choice of x2
by player II, the probability with which player I wins the play is fixed. Therefore,
optimality regarding the selection of y2(x2, y1) only concerns the probability with
which player II wins.

The probabilities in this example can be read directly from Fig. 1c. Suppose first
that player II chooses a strategy with x2 = 0. Then he loses if player I selects one
of the points on the corresponding row, (0, 0) and (1, 0). This happens with proba-
bility 0 + 2

12 = 2
12 . What choices of y2 are optimal for player II, given his choice

x2 = 0? He must make a decision for y2(0, y1) for each value of y1 that player I
can guess. Player I guesses either y1 = 1 or y1 = 2. Let us focus on the case
y1 = 1 first. Two of the points that are chosen with positive probability, corre-
spond to y1 = 1: (0, 1) and (1, 0). In the first case, the correct total number of
coins taken by the players is 0 + 0 = 0, in the second case the total is 1 + 0 = 1.
Since y1 = 1, player II is not allowed to guess y2 = 1, so the only choice for
y2(0, 1) with which he can win is 0. His probability of winning is then 1

12 . For
y1 = 2, the analysis is slightly more difficult. The points that correspond to this
guess are (0, 2) and (1, 1). Given x2 = 0, the correct totals for these points are 0
and 1 respectively. Both totals are allowed as a guess, so player II has a choice. He
can select the point on the line y1 = 2 for which the conditional probability that
player I chooses it, given y1 = 2, is maximal. This is equivalent to selecting the
point on the line y1 = 2 for which the probability shown in Fig. 1c is maximal.
In this case, the optimal choice is y2(0, 2) = 1. With this choice, player II wins
with probability 6

12 , the probability with which player I plays (x1, y1) = (1, 2). The
total probability with which player II wins is now 1

12 + 6
12 = 7

12 . Combining this
with the probability of player I winning, 2

12 , results in an expected payoff of 5
12 for

player II.
We can apply similar reasoning to strategies of player II with x2 = 1 and x2 = 2

and find that the maximal expected payoffs for player II in these cases are − 2
12 and 5

12 ,
respectively. A (but not the unique) best reply of player II against the strategy of player I
from Fig. 1 is therefore the strategy that we discussed, with x2 = 0, y2(0, 1) = 0 and
y2(0, 2) = 1. The corresponding expected payoff for player II is 5

12 .
Finding a best reply for player I against player II’s strategy from Fig. 2 is easier.

We simply compute the expected payoffs for all (x1, y1) ∈ S2 and compare them.
Consider (x1, y1) = (0, 1). With this strategy, player I wins with probability 1

2 , the
probability that x2 = 1, but he loses with probability Pr{(x2, y2(x2, 1)) = (0, 0)} +
Pr{(x2, y2(x2, 1)) = (2, 2)} = 1

4 + 1
4

1
2 = 3

8 . His expected payoff with this strategy
is therefore 1

2 − 3
8 = 1

8 . By computing the expected payoff for all his strategies, we
can conclude that the unique best reply of player I is (x1, y1) = (1, 2), for which the
expected payoff equals 1

2 − 1
4 = 1

4 .
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3.2 Fair coin games

Before we start with the analysis of the (m, n)-coin games for which m ≥ n, we
formulate a trivial but helpful result in using the value of Cm,n for a certain combination
(m, n) to derive bounds for the values of games with a different number of coins for
one of the players. The value of Cm,n is denoted by v(Cm,n).

Lemma 3.1 For all m, n ∈ N, the following two statements hold:

(a) v(Cm,n) ≤ v(Cm+1,n),
(b) v(Cm,n) ≥ v(Cm,n+1).

Proof The validity of both statements is easily verified by realizing that a player can
ignore the extra possibilities he gets by the increase of the number of coins that is
available to him. By copying his equilibrium strategy from Cm,n , player I will be able
to guarantee himself at least v(Cm,n) in the game Cm+1,n . This is what statement (a)
says. Analogous reasoning leads to statement (b). ��
As we have already mentioned, Schwartz (1959) has studied the special class of (m, n)-
coin games for which m = n. He called the games n-coin games.

Proposition 3.2 (Schwartz (1959)) Let m ∈ N. Then the (m, m)-coin game is fair,
i.e., v(Cm,m) = 0.

Proof We show that v(Cm,m) ≥ 0 and postpone the other half of the proof to (the
proof of) Theorem 3.3. Consider the behavioural strategy µ for player I that is shown
in Fig. 3 and defined by the probabilities µ(x1, y1) = µ1(x1)µ2(y1), where

µ1(x1) = 1
m+1 for each x1 ∈ [0, m],

µ2(y1) =
{

1 if y1 = m,
0 otherwise.

When player I plays according to µ, then his probability of winning is exactly 1
1+m

against any strategy (x2, y2) ∈ S2 of player II. Player II wins with probability 1
m+1

if he uses only feasible strategies (i.e., if he puts all of his conditional probability of

Fig. 3 An optimal strategy for
player I in Cm,m
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choosing y2(x2, 1) inside the (x1, x2)-diagram) and with a lower probability otherwise.
Therefore, for any (x2, y2) ∈ S2 the expected payoff of player I is

U (µ, (x2, y2)) = Pr{I wins} − Pr{II wins} ≥ 1

1 + m
− 1

1 + m
= 0.

Therefore, v(Cm,m) ≥ 0. ��
In the next theorem we show that a much larger class of (m, n)-coin games is fair.

Theorem 3.3 The (m, n)-coin game is fair if m ≥ n.

Proof The combination of Lemma 3.1(a) and (the proven part of) Proposition 3.2
already shows that v(Cm,n) ≥ 0. We will define a strategy ν for player II, which
guarantees him that he will not have to pay more than zero. In this way we show that
v(Cm,n) ≤ 0. Before we can define this strategy, we have to define the sets

C(y1) = [y1 − n, y1] ∩ [0, m].

For a given y1, C(y1) is the set of values for x1 for which (x1, y1) is a feasible strategy.
We use this set to define a set of points in N

2, F(x2, y1) = {(a, x2) | a ∈ C(y1)}.
Figure 4 illustrates such a set in an (x1, x2)-diagram.

Now we are ready to define the mixed strategy ν for player II, which is determined
by the probabilities ν(x2, y2|y1) = ν1(x2)ν2(y2|x2, y1), where

ν1(x2) = 1

n + 1
for all x2 ∈ {0, . . . , n}

and

ν2(y2|x2, y1)

=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1
|F(x2,y1)|−1 if ((y2 − x2, x2) ∈ F(x2, y1) \ {(y1 − x2, x2)})

∧((y1 − x2, x2) ∈ F(x2, y1)),
1

|F(x2,y1)| if ((y2 − x2, x2) ∈ F(x2, y1)) ∧ ((y1 − x2, x2) /∈ F(x2, y1)),

1 if (x2 = 0) ∧ (y1 = 0) ∧ (y2 = 1),

1 if (x2 = n) ∧ (y1 = m + n) ∧ (y2 = m + n − 1),

0 otherwise.

Fig. 4 The set F(x2, y1)
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Fig. 5 Sketch of the structure of
an optimal strategy for player II
in Cm,n with m ≥ n

The third and fourth lines of the specifications of ν2 are arbitrary, but necessary for
ν to be properly defined. Figure 5 shows the structure of ν for a specific y1. Conditional
probabilities for the choice of y2 are omitted to keep the figure clear. On each x2-row
in the grid, all dots are chosen with equal probability, such that these probabilities
sum to one. With infeasible strategies of the form (x1, y1) with x1 /∈ C(y1), player I
cannot win, so his expected payoff is non-positive. With a feasible strategy, (x1, y1)

with x1 ∈ C(y1), the probability that player I wins is 1
n+1 . It is immediately clear from

Fig. 5 that the probability that player II wins against this strategy is

Pr{II wins} = 1

n + 1

(

(|C(y1)| − 1)
1

|C(y1)| − 1
+ ((n + 1) − |C(y1)|) 1

|C(y1)|
)

= 1

n + 1
+ (n + 1) − |C(y1)|

(n + 1)|C(y1)| ≥ 1

n + 1
,

with equality for the y1 for which [y1 − n, y1] ⊆ [0, m]. As a result,

U ((x1, y1), ν) = Pr{I wins} − Pr{II wins} ≤ 1

1 + n
− 1

1 + n
= 0.

��

An informal explanation of the result of Theorem 3.3 is as follows. For any guess of
player I, the set of choices with which he could potentially win has cardinality n + 1
at most. Using the information of player I’s guess, player II can exploit this fact. In
this way he essentially turns the game into Mn,n .

Note that the result of Schwartz (1959), Proposition 3.2, can now be seen as a
corollary of Theorem 3.3, since the case m = n clearly is included in the case m ≥ n.
In particular, the strategy ν in the proof of Theorem 3.3 can therefore also be used for
the second half of the proof of Proposition 3.2.
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Fig. 6 Optimal strategy for
player I in Cm,m+1

3.3 Games in which player II has one coin more

In the next theorem, we give the value of all coin games in which player II has one
coin more than player I.

Theorem 3.4 Let m ∈ N and let n = m + 1. Then v(Cm,n) = − 1
2m+3 .

Proof Consider the strategy µ for player I that is depicted in Fig. 6. The strategy
is defined by the following taking and guessing probabilities: µ(x1, y1) =
µ1(x1)µ2(y1|x1), where

µ1(x1) =
{

5
4m+6 if x1 ∈ {0, m},

4
4m+6 if x1 ∈ [1, m − 1],

µ2(y1|x1) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2 if (y1 ∈ [m, m + 1]) ∧ (x1 ∈ [1, m − 1]),
2
5 if (y1 = m) ∧ (x1 = 0),
3
5 if (y1 = m + 1) ∧ (x1 = 0),
3
5 if (y1 = m) ∧ (x1 = m),
2
5 if (y1 = m + 1) ∧ (x1 = m),

0 otherwise.

��
Without giving the formal proof of optimality of the µ, we demonstrate how one

can quickly check what player II can achieve against this strategy. In our reasoning,
we will follow the lines of the best reply computations in Sect. 3.1. First observe that
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one can compute the conditional probability that player I has chosen x1, given that he
has guessed a specific y1. For example,

Pr{x1 = 0|y1 = m + 1} =
3
5

5
4m+6

3
5

5
4m+6 + (m − 1) 1

2
4

4m+6 + 3
5

5
4m+6

= 3

2m + 4
.

Now, let us see, for example, what player II can achieve against µ by taking x2 = m
and selecting his guesses optimally. Player II knows that he will lose with x2 = m if
his opponent plays (x1, y1) ∈ {(0, m), (1, m + 1)}. Player I will select one of these
two strategies with probability 5

4m+6
2
5 + 4

4m+6
1
2 = 2

2m+3 . According to µ, player I
guesses either y1 = m or y1 = m +1. To maximize his winning probabilities, player II
has to compute for which x ∈ [0, m] \ (y1 − m) the probability Pr{x1 = x |y1 = m}
is maximized. He has to do the same for the probability Pr{x1 = x |y1 = m + 1}. For
the case y1 = m, this conditional probability is maximal for x1 = m, Pr{x1 = m|y1 =
m} = 5

4m+6
3
5 = 3

4m+6 . For player II, it is therefore optimal to choose y2(m, m) = 2m.
If y1 = m + 1, the maximal probability is assigned to x1 = 0, and it is also equal
to 3

4m+6 . So player II should choose y2(m, m + 1) = m. If he does this, he will win

against µ (with x2 in his hand) with probability 2 3
4m+6 = 3

2m+3 . So the expected

payoff for player I will be 2
2m+3 − 3

2m+3 = − 1
2m+3 . By considering all other possible

values of x2, we can show that the expected payoff for player I is never lower than
− 1

2m+3 .
Next, consider the strategy ν for player II that is shown in (x1, x2)-diagrams in

Fig. 7. The taking probabilities can be read directly from the diagrams. We do not
explicitly list all underlying guessing probabilities, but we give the idea behind the
construction of the strategy-diagrams. Let us fix y1 for a moment. The corresponding
y1-line crosses at least one of the rows that player II selects with positive probability,
say p. The column in which this crossing occurs, corresponds to a value of x1. With
this number of coins in hand, player I wins with probability p. In order to guarantee
a value v < 0 for player II, the strategy must imply a probability p + v of winning
for player II against this combination of x1 and y1. This probability should come from
the other x2-rows that are selected with positive probability. In this way we ensure
column-wise compensations for each possible value of y1. This guarantees the value
v for player II against any choice of (x1, y1) by player I.

3.4 Two special cases: Cm,n(m,k) and Cm,n(m,k−1)+1

The games Cm,n in the following proposition turn out to be special (boundary) cases
(see Table 1), with respect to their values, within the collection of (m, n)-coin games
with m < n. The proposition gives lower bounds for the values for Cm,n(m+k) with
n(m, k) = k(m + 1) − 1. These lower bounds will turn out to be tight later in the
paper.

Proposition 3.5 Let m ∈ N and let k ∈ N with k ≥ 2. Define n(m, k) = k(m +1)−1.
Then v(Cm,n(m,k)) ≥ m−n(m,k)

(m+1)(n(m,k)+1)
.
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Fig. 7 Optimal strategy for player II in Cm,m+1

Proof Consider the behavioural strategy µ for player I that is shown in Fig. 8a and
defined by the probabilities µ(x1, y1) = µ1(x1)µ2(y1), where

µ1(x1) = 1
m+1 ∀ x1 ∈ [0, m],

µ2(y1) =
{

1
k if y1 ∈ { j (m + 1) − 1 | j ∈ [1, k]},
0 otherwise.

The idea behind the strategy is that each x2-row is covered by exactly one (x1, y1)

combination, played with probability 1
k(m+1)

. We can apply the same line of reasoning
as in the proof of Theorem 3.4, using maximum conditional probabilities of having
chosen x1, given y1. In this way, the reader can verify that player I loses with the
strategy µ with a probability that is at most equal to 1

m+1 , so that µ guarantees the
value that is given in Proposition 3.5. ��

Next, we study another class of special combinations of m and n, which is also
based on the relation n(m, k) = k(m + 1) − 1. In the games of the next proposition,
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Fig. 8 Optimal strategies for player I in Cm,n for two cases: (a) n = k(m + 1) − 1 (k ∈ N, k ≥ 2) and (b)
n = m + 2

player II has (roughly speaking) one coin more than in the games of the special case
that was the topic of Proposition 3.5. For this collection of games, which also turns
out to form a boundary case (see Table 1), we derive an upper value.

Proposition 3.6 For all m ∈ N and all k ∈ N with k ≥ 2, we define n(m, k) =
k(m + 1) − 1. Let k ∈ N with k ≥ 3.1 Then

v(Cm,n(m,k−1)+1) ≤ m − n(m, k)

(m + 1)(n(m, k) + 1)
.

Proof Consider the following mixed strategy ν for player II. Define, for all
(x2, y2) ∈ [0, n(m, k − 1) + 1] × [0, m + n(m, k − 1) + 1] and all y1 ∈ [0, m +
n(m, k − 1) + 1],

ν(x2, y2|y1) = ν1(x2)ν2(y2|x2, y1),

where

ν1(x2) =
{

1
k if x2 mod (m + 1) = 0,

0 otherwise.

1 Although we require k ≥ 3 in Proposition 3.6, the value of n that we consider is n(m, k − 1) + 1. So,
also for the case k = 2 in Proposition 3.5, the game in which player II has one coin more is included here.

123



Take-and-guess games 131

and

ν2(y2|x2, y1) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1
m if (y1 ∈ [x2, x2 + m]) ∧ (y2 ∈ [x2, x2 + m] \ {y1}),
α if (y1 /∈ [x2, x2 + m]) ∧ (y2 ∈ [x2, x2 + m])

∧(|y2 − y1| mod (m + 1) = 0),

β if (y1 /∈ [x2, x2 + m]) ∧ (y2 ∈ [x2, x2 + m])
∧(|y2 − y1| mod (m + 1) �= 0),

0 otherwise.

Here, α = k+m
(k−1)(m+1)

and β = (k−1)m−(m+1)
(k−1)m(m+1)

. It is easy to check that

∑

x2∈[0,n(m,k−1)+1]
ν1(x2) = 1 and

∑

y2∈[0,m+n(m,k−1)+1]
ν2(y2|x2, y1) = 1 for all (x2, y1).

and that 0 ≤ α ≤ 1 and 0 ≤ β ≤ 1. Thus, ν1 and ν2 are well defined probability
distributions. Figure 9a gives an illustration of the (conditional) probabilities that ν

prescribes for a game Cm,n(m,k−1)+1 for a specific value of y1. The idea behind the
strategy is as follows. The given y1-line crosses exactly one of the x2-rows that is
chosen with positive probability. The column in which this crossing occurs, indicates
with which choice of x1 player I will win. This winning probability of player I should

Fig. 9 An optimal strategy for player II for two cases: (a) Cm,n(m,k−1)+1 and (b) Cm,m+2
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be made up for by generating a probability of winning for player II in the same column.
This compensation is taken care of by the αs. The values of α and β are chosen in such
a way that the excess probability of winning for player II is the same in all x1-columns.

Now, let (x1, y1) ∈ [0, m]× [0, m +n(m, k −1)+1]. Then, if U (x, y) denotes the
expected payoff for player I for the (mixed) strategy profile (x, y), we can determine
U ((x1, y1), ν) by distinguishing two cases:

(i) |y1 − x1| mod (m + 1) = 0 (a positive probability of winning for player I),
(ii) |y1 − x1| mod (m + 1) �= 0 (probability zero of winning for player I).

Case (i):

U ((x1, y1), ν) = ν1(y1 − x1) −
∑

x2∈[0,(k−1)(m+1)]\(y1−x1)

ν1(x2)ν2(x1 + x2|x2, y1)

= 1

k
−

∑

x2:x2 mod (m+1)=0

x2 �=y1−x1

ν1(x2)ν2(x1 + x2|x2, y1)

= 1

k
− 1

k

∑

x2:x2 mod (m+1)=0

x2 �=y1−x1

ν2(x1 + x2|x2, y1)

= 1

k
− 1

k
(k − 1)α = 1

k

(

1 − (k − 1)
k + m

(k − 1)(m + 1)

)

= m + 1

k(m + 1)
− k + m

k(m + 1)
= −k − 1

k

1

m + 1

= m − n(m, k)

(m + 1)(n(m, k) + 1)

Case (ii):

U ((x1, y1), ν) = −
∑

x2∈[0,(k−1)(m+1)]
ν1(x2)ν2(x1 + x2|x2, y1)

= −1

k

∑

x2:x2 mod (m+1)=0

ν2(x1 + x2|x2, y1)

= −1

k

1

m
− 1

k

∑

x2:x2 mod (m+1)=0,

y1 /∈[x2,x2+m]

ν2(x1 + x2|x2, y1)

= −1

k

1

m
− 1

k
(k − 1)β
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= −1

k

(
1

m
− (k − 1)

(k − 1)m − (m + 1)

(k − 1)m(m + 1)

)

= −
(

(m + 1) + (k − 1)m − (m + 1)

km(m + 1)

)

= −k − 1

k

1

m + 1

= m − n(m, k)

(m + 1)(n(m, k) + 1)

The combination of the payoffs in both cases shows that the (mixed) strategy ν guar-
antees an expected payoff of U ((x1, y1), ν) = n(m,k)−m

(n(m,k)+1)(m+1)
for player II. ��

3.5 Games in which player II has two coins more

In the next theorem, we give the value of all coin games in which player II has two
coins more than player I.

Theorem 3.7 Let m ∈ N. Then v(Cm,m+2) = − 1
2(m+1)

.

Proof We leave it to the reader to verify that the strategy µ for player I that is depicted
in Fig. 8b guarantees the value given in the theorem. The strategy is defined by the
following taking and guessing probabilities: µ(x1, y1) = µ1(x1)µ2(y1), where

µ1(x1) = 1
m+1 ∀ x1 ∈ [0, m],

µ2(y1) =
{

1
2 if y1 ∈ {m, m + 2},
0 otherwise.

Next, consider the strategy ν for player II that is shown in (x1, x2)-diagrams in Fig. 9b.
We do not give a formal description of the taking and guessing probabilities, but we
give the intuition behind the construction of the strategy. An y1-line will intersect
at most two of the four rows player II selects with positive probability. The winning
probabilities for player I that result from these intersections can be compensated within
these two rows (in Fig. 9b, the two dots in the rows for x2 ∈ {m + 1, m + 2} do the
trick). The remaining rows can be used to generate an excess probability of winning
for player II of at least 2 1

4
1

m+1 = 1
2(m+1)

. When the y1-line only crosses of the four
rows, then any of the other three rows can be used for compensation. The remaining
points on the crossed row can, for example, be selected with equal probability. ��

3.6 The remaining coin games

For a large number of (m, n)-coin games we have not yet derived the value. That is
what we do in this section. One class is defined by the values of n is the class with
n ∈ [n(m, k − 1) + 1, n(m, k)] for k ≥ 3. Recall that Propositions 3.6 and 3.5 both
are based on the relation n(m, k) = k(m + 1) − 1. Therefore, combining these two
propositions with Lemma 3.1(b) yields the following result.
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Theorem 3.8 Let m ∈ N, let k ∈ N with k ≥ 3 and let n ∈ [n(m, k −1)+1, n(m, k)].
Then v(Cm,n) = m−n(m,k)

(m+1)(n(m,k)+1)
.

This result states that for each m there is a value of n such that when increasing the
number of coins for player II starting from that value, v(Cm,n) decreases only every
m +1 steps, but is constant for n ∈ [n(m, k −1)+1, n(m, k)]. These series of constant
values are clearly visible in Table 1.

The last class of games for which we need the value is related to the class from
Theorem 3.8; it concerns the games Cm,n with n ∈ [m + 2, 2m + 1]. Observe that the
value of Cm,m+2, which is derived in Theorem 3.7, is exactly the lower bound v of the
value of Cm,2(m+1)−1 that we derived in Sect. 3.4:

v(Cm,2(m+1)−1)
Prop 3.5

=
m − n(m, 2)

(m + 1)(n(m, 2) + 1)
= m − (2(m + 1) − 1)

(m + 1)2(m + 1)

= − 1

2(m + 1)

Thm 3.7
= v(Cm,m+2).

Therefore, we can combine the results of Theorem 3.7 and Proposition 3.5 and use
Lemma 3.1(b) to obtain the following result.

Theorem 3.9 Let m ∈ N and let n ∈ [m + 2, 2m + 1]. Then v(Cm,n) = − 1
2(m+1)

.

Although Theorem 3.9 completes our list of values for all (m, n)-coin games (see the
overview in Table 1), we did not yet present optimal strategies for both players for all
the games. In particular, for at least one of the players we did not mention how he play
optimally in the games Cm,n with k ∈ N (k ≥ 3) and n ∈ [(k−1)(m+1), k(m+1)−2]
and in the games Cm,n with m ∈ N (m ≥ 3) and n ∈ [m + 3, 2m + 1]. These are
the games for which the values are derived in Theorems 3.8 and 3.9. Following the
argument of the proof of Lemma 3.1, an equilibrium strategy for Player II can be
copied from a game Cm,n with a smaller value of n. Of course, this strategy is not
defined for high guesses y1, since these guesses are not allowed in the game from
which player II’s strategy is copied. For these values of y1, player II has to play all
feasible guesses with equal probability for each value of x2 that he takes with positive
probability.

For player I, the reader can verify that the strategy with the structure that is displayed
in Fig. 10 is optimal in all these games.

The strategy structure of Fig. 10 is formally defined by the probabilities µ(x1, y1)

= µ1(x1)µ2(y1), where

µ1(x1) = 1
m+1 ∀ x1 ∈ [0, m],

µ2(y1) =
{

1
k if y1 ∈ { j (m + 1) − 1 | j ∈ [1, k − 1]} ∪ {n},
0 otherwise,

where k = � n+1
m+1�. This strategy is similar to the strategy of player I in the boundary

case of Sect. 3.4 (see Fig. 8a). Compared to these strategies, the value of the highest
guess is shifted down.
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Fig. 10 An optimal strategy for
player I in the remaining
(m, n)-coin games (k = � n+1

m+1 �)

To finish this section, it is interesting to see what happens if the amount of coins
available to one of the players becomes extremely large. This is the subject of the
following proposition.

Proposition 3.10 Let Cm,n be an (m, n)-coin game. Then

lim
m→∞ v(Cm,n) = 0,

and

lim
n→∞ v(Cm,n) = − 1

m + 1
.

Proof The first part of the proposition is trivial. We will prove the second part by using
the expression given in Theorem 3.8.

lim
n→∞ v(Cm,n) = lim

k→∞
m − n(m, k)

(m + 1)(n(m, k) + 1)
= lim

k→∞
m − (k(m + 1) − 1)

(m + 1)((k(m + 1) − 1) + 1)

= lim
k→∞

1 − k

k(m + 1) − 1
= − 1

m + 1
.

��

Comparing the result with Corollary 2.3, we see that the limiting value for the case
where the number of coins of player II goes to infinity coincides with the limiting
value for this case in morra.
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4 Concluding remarks

We have studied two classes of two-person take-and-guess games: morra and coin
games. In both games, the players first have to take a number of objects and then guess
the total number of objects taken by both players. In a game of morra, the players
guess simultaneously, while in a coin game player II has to wait for player I’s call and
is not allowed to guess the same number.

The structure of coin games is less symmetric than the structure of morra. Surpris-
ingly, all coin games in which player I has at least as many objects as player II are fair,
while morra is only fair if both players have the same number of fingers available. For
all other take-and-guess games in the two classes, the advantage is for the player who
has more objects available than his opponent.

Unfair coin games, i.e., (m, n)-coin games with m < n, have the same value as
(m, n)-morra only in the boundary case of Sect. 3.4, where n = k(m + 1) − 1 for
some k ∈ N. For all other unfair combinations of m and n, the (m, n)-coin game is
more favourable for player II than (m, n)-morra: v(Cm,n) < v(Mm,n).

Finally, we want to mention some interesting extensions of the analysis in this
paper, which are possible subjects for further research. The first extension that deserves
attention in the future, is formed by take-and-guess games with more than two players.
The winner of such a game receives one unit of all of his opponents. In the case of morra,
where there can be multiple winners for the same play, the losers all pay one unit and
the winners share the pot equally. A general difficulty in the analysis of games with
more than two players, is that optimal play is not defined anymore. Multiple Nash
equilibria can exist and the equilibrium strategies are not interchangeable between
equilibria. Moreover, the payoffs to the players are not necessarily the same in each
equilibrium; there is no such thing as a value in these games.

A second interesting modification of the game would be to make the payoffs
dependent of the total number of objects taken by the players. Instead of winning
one unit, the winning player receives an amount equal to this total. Guessing higher
totals correctly becomes more profitable and at the same time taking higher numbers
in hand becomes more risky.

The third extension we want to mention, is one that is inspired by the way coin
games were played in Dutch bars. Instead of playing one round of the take-and-
guess game, the player roles are interchanged after each draw until there is a winner.
Such a modification turns the game into a stochastic game, which requires a more
sophisticated analysis. Especially for coin games with m < n this change will probably
affect the optimal strategies within a round of play too. It might become useful for
player I to play infeasible strategies, since apart from winning the game it is interesting
now to try to get in the advantageous role of the second player.

The fourth extension one can think of is to introduce a parameter d for coin games.
Player II has to keep distance d from the guess of player I when guessing. For the
games in Sect. 3 we have d = 1. It would be interesting to investigate what happens
to the values and the optimal strategies for different values of d.
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