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Abstract
The article presents the results of a sensitivity analysis of artificial neural networks developed for a system which predicts the
durability of forging tools used in the selected hot die forging process. The developed system makes it possible to calculate the
geometric loss of the examined tool for the given values of its operating parameters (number of forgings, tool temperature at
selected points, type of the applied protective layer, pressure and path of friction) and estimates the intensity of the occurrence of
typical mechanisms of tool destruction, i.e. thermo-mechanical fatigue, mechanical wear, abrasive wear and plastic deformation.
Nine neural networks operate in the developed system. Five of them determine the geometric loss of the material used for tools
operating with protective layers, including a nitrided layer, a pad welded layer and three hybrid layers, i.e. AlCrTiSiN, Cr/CrN
and Cr/AlCrTiN. Four networksmake calculations determining the intensity of the occurrence of typical destructive mechanisms.
The developed sensitivity analysis allows for each neural network to show which input parameters are most important and have
the greatest impact on the explained variables. This is determined based on the network error analysis in the case of elimination of
individual variables from the input data. The greater the network error calculated after rejecting an input variable relative to the
error obtained for the network with all the input variables, the more sensitive the network to the lack of this variable. The best
compliance was obtained for the first developed set of networks regarding the geometric loss of material, while the lowest
compliance was obtained for the second developed set of networks regarding the applied protective layers, and in particular for
plastic deformation and mechanical fatigue, probably due to the smallest size of these sets in the knowledge base. The obtained
results of this analysis are important for the system operation, i.e. supporting the technologist’s decision in the selection of such
process parameter values that will increase the die’s lifetime.

Keywords Durability of forging tools . Loss of material, artificial neural network . Sensitivity analysis

1 Introduction

In forging companies producing hot die forgings, the durabil-
ity of forging tools is an important and at the same time com-
plex scientific and economic issue. This is due to the signifi-
cant contribution of the cost of forging tools to the total pro-
duction costs calculated per one forging item. Therefore, du-
rability is often expressed in the number of geometrically and
qualitatively correct forgings obtained from a single forging
tool. It is currently estimated that the cost of one forging con-
sumes on average 30% of the tool cost, depending on the
durability value (the number of forgings produced), but this
value can go up to as much as even 60% in some extreme
cases of intricate steel forgings or forgings made from austen-
itic steel. It means that the higher the durability, the lower the
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price of the forgings [1]. The wear process of forging instru-
mentation is also complicated and difficult to analyse, espe-
cially that it is affected by many, often simultaneously occur-
ring, phenomena and destructive mechanisms, such as
thermo-mechanical fatigue, abrasive wear, plastic deforma-
tion, mechanical fatigue and oxidation [2–4]. The contribution
of individual mechanisms varies depending on the type of the
die (its shape and size, thermal and thermo-chemical treat-
ment) as well as the working conditions (type of forging ma-
chine, lubrication, temperature of tool and forged material,
etc.). Moreover, the contribution of individual mechanisms
to the total wear of a given tool may also change during op-
eration. Usually, a grid of fatigue cracks appears at the begin-
ning, followed by abrasive wear, tempering of the material
and its local plastic deformation [5]. The phenomena of ther-
mal fatigue and combined thermal andmechanical fatigue also
appear [6–8], but abrasive wear is not necessarily dominant in
this case. Hence, thoroughly analysing the wear of forging
tools and predicting their life is a very important issue and a
huge challenge for technologists, tool designers, process en-
gineers and forging companies, as well as many research cen-
tres [9, 10]. Numerous studies described in the technical liter-
ature are devoted, on the one hand, to research works which
make it possible to increase the tool life by various techniques
of surface engineering [11–16] and, on the other, to improve-
ments of the technical and technological process parameters
[17], optimization of the tool shape [18], conversion of the
tool material to a material more resistant to the effect of de-
structive mechanisms [19, 20], or implementation of proper
heat treatment [21].

One could also not overestimate the possibility of using
modern information technologies (IT) for the support of the
processing operations. A development of the IT field can be
noticed both in the aspect of the increased possibilities of
measurement and storage of a very big number of technolog-
ical parameters and with respect to providing many new
methods and algorithms for the processing of the latter [22].
This makes it possible to construct computer systems which
enable a partial replacement of the costly and time-consuming
material experiments performed by way of computer simula-
tions. In the literature, one can findmany publications describ-
ing computer systems developed to support the forging pro-
cesses [22–34]. The main goal of all these works is to inves-
tigate the financial and ecological aspects of materials produc-
tion, combined with the scientific and cognitive goals aiming
at a continuous improvement of the forging process technol-
ogy and development of new solutions and technologies [1].In
[28], an artificial neural network was developed. It was used to
determine the relationship between the mechanical properties
and deformation as well as the technological parameters of a
titanium alloy. On the other hand, in work [29], based on the
measurement data, an optimal model of parameters for the hot
forming process of the Ti-6Al-4V alloy was developed, owing

to the use of a combination of artificial neural networks and
genetic algorithms. In turn, fuzzy logic was used to write the
rules for the knowledge base of a special decision system [30],
as well as to develop an expert system to forecast the results of
the finite element method analysis (FEM), while solving the
problem of rubber cylinder compression [31]. In paper [32],
an expert systemwas developed to forecast the loads and axial
stresses during forging, while paper [33] presents the use of
the finite element method and an intelligent system for the
prediction of the values of pressure during a radial forging
process.

The investigations carried out by the authors, both in the
area of analysing the forging tool durability, including many-
year studies of industrial forging processes, and the long-term
research related to the analysis of the formal methods of cre-
ating computer systems supporting these processes, have led
to the development of an expert system which predicts the
durability of forging tools and makes it possible to calculate
the value of the geometrical loss of the analysed tool for the
predetermined parameter values of its work. The system can
also estimate the intensity of the occurrence of typical destruc-
tion mechanisms. During the work on this system, many for-
mal methods of computer knowledge representation were
considered. The basis for its creation was the results of a
many-year industrial research collected in the elaborated da-
tabase, and so the analysis was performed mainly with the use
of formal methods, which, in their nature, make it possible to
model a phenomenon based on the collected data. As the
results of materials experiments are incomplete and burdened
with error, the investigations were carried out with the use of
fuzzy logic [34], which works perfectly with uncertain and
incomplete knowledge as well as neuro-fuzzy algorithms
ANFIS [35]. The best matching and the smallest error were,
however, achieved with the use of artificial neural networks.
The works [24–26] present a methodology of system creation,
the parameters and architectures of the developed networks as
well as an analysis of the results obtained by means of the
elaborated system.

This study concerns a sensitivity analysis of artificial neural
networks developed for a system predicting the durability of
forging tools used in hot die forging processes. There are nine
neural networks in the system subjected to the analysis.

A sensitivity analysis of the developed neural networks
gives the opportunity to assess the input variables in terms
of the importance of their impact on the output variable and
indicate insignificant variables.

This work is a completion of the research performed
by the authors. It makes it possible to confirm the impor-
tance of the variables applied in the neural networks as
well as to sequence them starting from the most impor-
tant ones to the ones of the least impact. Such informa-
tion can turn out crucial for the users of the system (tech-
nologists), whose task is to optimize the working
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parameters of the process in such a way so as to maxi-
mize the forging tool durability.

1.1 Characteristics of developed neural networks
operating in the decision support system

The developed system forecasting the durability of forging
tools used in the selected hot die forging process is precisely
this type of solution. A simplified schematic diagram of the
structure of this system is shown in Fig. 1.

1.2 Data set

As part of the research works aimed at the system develop-
ment, the following tasks were accomplished: operational
tests carried out on the selected industrial hot die forging pro-
cess after different numbers of cover-type forgings have been
manufactured. Additionally, the selected tools (punches used
in the second upper die forging operation) were covered with
three different variants of hybrid layers (gas nitrided layer GN
+ PVD coating) were applied, i.e. GN/AlCrTiN, GN/
AlCrTiSiN andGN/CrN, to increase their durability. The tools
with the hybrid layers were compared with standard tools
subjected only to gas nitriding and regenerative surfacing.
Material and simulation tests were carried out, which includ-
ed macroscopic testing of the tool surface—a macroscopic
surface analysis enabling a visual assessment of the degree
of tool wear, dimensional analysis—3D scanning of the
worn-out tools which were used to manufacture different
numbers of forgings and an analysis of selected areas on the
working surface of each tool applying the following research
techniques:

– numerical modelling (FEM) using the following calcula-
tion packages: Marc Mentat, QForm, Forge,

– HV 0.1 microhardness measurements,
– optical microscopy,
– scanning electron microscopy (SEM).

The developed set of training data included a collection of
about 900 knowledge records. Figure 2 presents a fragment of
the developed set, while the details related to the knowledge
acquisition are described in ref. [24, 25].

The input (explanatory) variables included the number of
produced forgings, the pressures, the temperature on selected
surfaces of the tool, the friction path and the type of protective
layer deposited on the tool surface. The output (explained)
variables included the geometric loss of the tool material and
the percentage contribution of the four main destructive
mechanisms.

1.3 Artificial neural network models

The second stage of the researchworkwas related to the use of
the developed database to design a model of the analysed
process. The main aim was to determine the following
parameters:

– the size of the tool’s geometric loss (Z) in the normal
direction (wear), in a specific area, with fixed values of
the forging process parameters: Lo—number of forgings;
N—pressure; Tm—tool temperature; dt—path of friction;
R—type of surface layer;

– contribution to die wear of the four basic wear mecha-
nisms (T): Zcm—thermal and mechanical fatigue; Zs—
abrasive wear; Opl—plastic deformation; Zm—mechani-
cal fatigue, for the examined PN + PVD hybrid layers, i.e.
GN/CrN, GN/AlCrTiN, GN/AlCrTiSiN and tools after
pad welding and sole nitriding.

In the case of the system described in this paper, the formal
method of knowledge representation was based on artificial
neural networks, which were developed with the use of a set of
training data collected in industrial research. The best values
showing the quality of the neural regression model were ob-
tained by multilayer perceptrons (MLP). To solve the posed
problems, a set of nine MLP neural network models was

Fig. 1 A simplified diagram of the system structure
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developed. The details related to the network design are de-
scribed in ref. [24].

When developing these types of systems, a mutual agree-
ment is required between the process engineer or technologist
and the knowledge engineer designing the phenomenon mod-
el. Often, based on analyses using IT tools, the process engi-
neer finds out new, so far overlooked dependencies, which are
of key importance.

1.4 Description of selected forging tool and hot die
forging process

For the research, the forging tool used in the hot forging pro-
cess of a lid-type (cover) forging was selected (Fig. 3a). This
process is realized on a crank press P-1800T (number of
strokes per min: 70), with the nominal force 18 MN, in three
forging operations; upsetting, roughing and finishing forging
(Fig. 3b). The elements (lid-type forging) were forged from
steel C45, from cylindrical billets with the dimensions: D =
55 cm, L = 95mm andmassM = 1.77 kg. The input material is
heated up to 1150 °C in an induction furnace. The tools are
preheated to the temperature of around 220 °C. The forging,

after the forging process, as well as normalizing and machin-
ing, is a component of the gearbox in truck cars, as a type of
seal at the exit of the drive shaft of the gearbox.

All the tools in this process are made of WCL steel
(1.2343). After the heat treatment, they are subjected to nitrid-
ing or different surface engineering processes, after which the
hardness of the surface layer is at the level of: about 1100 HV
(after nitriding) and over 3000 HV (after nitriding + PVD
coating. The research concentrated on the tools assigned for
the second operation (preliminary forging), which exhibited
the lowest hardness, and a detailed analysis was performed on
the punch of the upper die (Fig. 4).

This manuscript presents a sensitivity analysis of the artifi-
cial neural networks for the developed decision support sys-
tem, for the analysed forging tool (punch) shown in Fig. 4,
after different surface engineering methods have been applied.

1.5 The main aim of the study

The mathematical model in the form of a neural network is
called the “black box” model. There are, however, several
methods that allow us to assess the impact of the selected input

Fig. 3 A view of a a ready element (upper image); a hot forging directly after forging, piercing and trimming (lower image), and b the press station with
successive forging operations

Fig. 2 Fragment of the developed data set
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variables included in the neural network model on the output
variable. One of these methods is the sensitivity analysis.

It happens very often that input variables are not indepen-
dent, so deleting one variable does not always have to cause a
loss of model quality, because information about this variable
is stored in the values of another variable. Therefore, to check
the significance of the input parameters of the developed net-
works adopted for the analysis (number of forgings, pressure,
tool temperature, friction path, type of protective surface lay-
er), a decision was made to carry out these studies.

The most common measure of the network quality is mean
squared error (MSE), and it is minimized during the network
training process. The measure of the network sensitivity is the
so-called quotient of error increase—it indicates how many
times the network error will increase after a given variable is
removed in relation to the network error with all the analysed
variables.

The sensitivity analysis of the developed nine neural net-
works gives the opportunity to assess the input variables in
terms of the importance of their impact on the output variable
and also makes it possible to indicate those variables that can
be omitted without a loss of network quality as well as the key
variables, which are not worth ignoring.

This work proves that all the input variables selected for the
analysis are significant. Additionally, they have been ranked
in terms of their significance and this can be very useful for
technologists and process engineers using the developed
system.

1.6 Neural networks determining the geometric loss
of material

Five neural networks determine the geometric loss of material
for tools operating with protective layers, such as a nitrided
layer, a pad welded layer and hybrid layers, i.e. AlCrTiSiN,
Cr/CrN and Cr/AlCrTiN. The comparison and basic charac-
teristics of these networks are presented in Table 1. In the
training process, each network adopted the training cases

typical of the tool operating with a given protective layer.
Column 2 (Table 1) presents the number of training cases
for each of the developed networks. In the developed net-
works, the variable metric method, which includes the
Broyden-Fletcher-Goldfarb-Shanno (BFGS) method, was
adopted as a training algorithm. For each network presented
in Table 1, the number of epochs in which the training process
was completed was given next to the name of the training
algorithm (column 4). The next columns (columns 5 and 6)
specify the types of functions that were used to activate the
neurons in the hidden layer and in the output layer of the
network—tangensoidal, linear, logistic and exponential func-
tions were used here.

In columns 7–9 of Table 1, the results of the linear corre-
lation coefficient calculations are presented for each of the sets
(training, test and validation sets). Additionally, the last col-
umn (column 10) presents correlation charts for the validation
set. The Pearson’s linear correlation coefficient (R2) was de-
termined from Formula (1).

R2 ¼
∑n

i¼1 byi−y
� �2

∑n
i¼1 yi−y

� �2 ð1Þ

where yi is the actually observed value, byi is the theoretical
value of output variable determined on the basis of the model
and y is the arithmetic mean of empirical values of the output
variable.

Diagrams of the adopted neural networks to determine the
geometric loss of material (wear) for tools operating with pro-
tective layers are shown in Fig. 5.

1.7 Neural networks determining the intensity of the
occurrence of typical destructive mechanisms

Four neural networks determine the intensity of the occur-
rence of typical destructive mechanisms, i.e. thermal and me-
chanical fatigue, mechanical wear, abrasive wear and plastic

Fig. 4 Analysed process of forging of a lid (cover): a schematic view of the tools in the 2nd forging operation, b analysed tool—punch, c detailed
dimensions with characteristic areas (distance in mm): area 1 (different destructive mechanisms) and area 2 (assumed only abrasive wear)
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Table 1 A set of neural networks calculating the value of wear

Basic characteristics of developed networks Network quality assessment parameter R2

1 2 3 4 5 6 7 8 9 10
Network 
identifier 

Number of  
cases

Network 
architecture

Training 
algorithm 

Activation 
(Hidden) 

Activation 
(Output)

Training 
set

Test 
set

Validation 
set

Correlation charts for 
validation set

ANN-1-1
Nitrided layer 

(GN)

156 MLP 4-5-1 BFGS 170 Exponential Exponential 0.957 0.951 0.874

ANN-1-2
Pad welded layer

98 MLP 4-6-1 BFGS 41 Exponential Exponential 0.967 0.890 0.956

ANN-1-3
Hybrid layer  

GN/CrN

279 MLP 4-5-1 BFGS 78 Tanh Linear 0.900 0.964 0.923

ANN-1-4
Hybrid layer   

GN/AlCrTiN

193 MLP 4-10-1 BFGS 126 Exponential Linear 0.918 0.956 0.882

ANN-1-5
Hybrid layer   

GN/AlCrTiSiN

168 MLP 4-10-1 BFGS 74 Tanh Logistic 0.957 0.987 0.952

Fig. 5 Diagrams of adopted neural networks to determine the geometric loss of material (wear) for tools operatingwith protective layers: a nitrided layer,
b pad welded layer, c hybrid layers AlCrTiSiN, d hybrid layers Cr/CrN and e hybrid layers Cr/AlCrTiN
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deformation. Diagrams of the neural networks calculating the
intensity of the occurrence of destructive mechanisms are
shown in Fig. 6. Basic characteristics of these networks are
presented in Table 2.

It should be noted that the “layer type” variable is treated
here as one of the input variables, so these networks are char-
acterized by five neurons in the input layer. In developing the
source data used to design these networks, it has been as-
sumed that eachmechanism is represented by a number within
the range from 0 to 1. Value 0 means that the given mecha-
nism of destruction does not occur in a given case. Value 1
means that there is only onemechanism of destruction. In each
case, the sum of the values assigned to all four destruction
mechanisms can be 1. Thus, each of the developed networks,
i.e. ANN-2, ANN-3, ANN-4 and ANN-5, determines an ap-
proximate percentage contribution of each mechanism to the
tool destruction.

The studies of the system creation process and the results
generated therefrom are described in detail in ref. [24, 25]. The
research described in this work is devoted to the sensitivity
analysis of neural networks implemented in the system. Based
on the developed networks, in addition to predicting the
values of individual explained (output) variables, it is possible
to estimate which input variables have the greatest impact on
the result.

1.8 Sensitivity analysis

The adopted method of sensitivity analysis of the input vari-
ables is implemented after the network training process is
completed and the network error is determined (Error) -
Formula (2).

Error ¼ 1

n
∑n

i¼1 yi−byi
� �2

ð2Þ

where yi is the actually observed value and byi is the theo-
retical value of output variable determined on the basis of the
model.

The level of significance of input variables can be assessed by
way of eliminating them from the network input, re-implementing
the training process and determining a new network error (Errori).
If a certain amount of data is rejected, an increase in the network
error should be expected. Therefore, the basicmeasure of network
sensitivity is the quotient W of the error obtained at the network
startup for a data set without one variable Errori and the error
obtained for a dataset with all the variables Error (3).

W ¼ Errori
Error

ð3Þ

The analysis shows what loss is incurred when a specific var-
iable is rejected (Fig. 7). The greater the network error after the

Table 2 A set of neural networks calculating the intensity of the occurrence of destructive mechanisms

Basic characteristics of developed networks Network quality assessment
parameter R2

Network identifier Network
architecture

Training
algorithm

Activation
(hidden)

Activation
(output)

Training
set

Test
set

Validation
set

ANN-2 thermo-mechanical fatigue MLP 5-11-1 BFGS 428 Tanh Linear 0.916 0.871 0.871

ANN-3 abrasive wear MLP 5-6-1 BFGS 182 Tanh Exponential 0.889 0.874 0.874

ANN-4 plastic deformation MLP 5-6-1 BFGS 115 Tanh Tanh 0.824 0.896 0.776

ANN-5 mechanical fatigue MLP 5-3-1 BFGS 11 Exponential Logistic 0.788 0.699 0.700

Fig. 6 Diagrams of neural networks calculating the intensity of the occurrence of destructivemechanisms: a thermo-mechanical fatigue, b abrasivewear,
c plastic deformation and d mechanical fatigue
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variable is rejected compared to the original error (for a network
with all the input variables), the more sensitive the network to the
lack of this variable. If the error quotient is 1 or less, then deleting
the variable does not affect the network quality and even improves
it. After conducting a sensitivity analysis for all the analysed var-
iables, they can be ranked in order of importance [27].

2 The results of sensitivity analysis

2.1 Sensitivity analysis of neural networks
determining the geometric loss

The results of the sensitivity analysis of neural networks de-
termining the geometric loss of tools operating with different
surface layers are presented in Table 3. For each of the vari-
ables, the coefficient W was calculated as the quotient of the
network error obtained at the network startup for a data set
without one variable and the error obtained for a data set with
all the variables. The results are summarized in Table 3 and
illustrated in Fig. 8.

In the case of the geometric loss determined by the ANN-1-
1 network for the nitrided layer and the ANN-1-2 network for
the pad welded layer, the tool temperature has the greatest

impact on the results, which means that tools with a nitrided
layer and a pad welded layer are the most sensitive to changes
under thermal conditions. This confirms the observations
made in industrial practice showing that these surface treat-
ment variants applied to forging tools do not provide a resis-
tance to temperature but rather to abrasive wear. In the case of
the ANN-1-3 network for the GN/CrN hybrid layer and the
ANN-1-4 network for the GN/AlCrTiN hybrid layer, the fric-
tion path has the greatest impact on the obtained results. As in
the previous variants, these networks are more sensitive to the
forged material movement along the tool. It should also be
noted that the second factor affecting the network sensitivity
is temperature. Therefore, in industrial forging processes,
tools with applied hybrid layers, in particular with hybrid
layers containing chromium, are resistant to temperature
changes, but less resistant to abrasive wear.

The results obtained for the ANN-1-5 network (GN/
AlCrTiSiN) are very interesting because they indicate that
the use of the GN/AlCrTiSiN hybrid layer on forging tools
makes them sensitive to temperature, unlike tools coated with
the GN/CrN and GN/AlCrTiN hybrid layers. Moreover, the
second factor affecting sensitivity is pressure and not the path
of friction, which, in the ranking of sensitivity factors, is
placed after pressure. Probably, in the case of the ANN-1-5

Fig. 7 Scheme of analysis of the significance of input variables in neural networks: a) network with all input data, b) removing from the network
unsignificant, c) removing from the network significant [27]

Table 3 The results of the sensitivity analysis of neural networks determining the geometric loss

ANN-1-1                         
Nitrided layer (GN)

ANN-1-2                       
Pad welded layer

ANN-1-3                 
Hybrid layer

GN/CrN

ANN-1-4                 
Hybrid layer: 

GN/AlCrTiN

ANN-1-5
Hybrid layer 

GN/AlCrTiSiN

variable W variable W variable W variable W variable W

Temperature 67.29 Temperature 120.00 Friction path 21.353 Friction path 20.305 Temperature 36.126

Friction path 41.05 Pressure 86.41 Temperature 18.025 Temperature 19.394 Pressure 13.111

Pressure 6.70
Number of 

forgings
26.42

Number of 

forgings
10.574 Pressure 17.023 Friction path 12.409

Number of 

forgings
6.04 Friction path 22.64 Pressure 10.037

Number of 

forgings
9.667

Number of 

forgings
5.157
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network, the addition of Si to the hybrid layer makes this layer
slightly harder compared to the previous two types of layers,
which is further confirmed by the results of hardness tests.
This, in turn, confirms that this type of thermo-chemical treat-
ment, by making the tools more sensitive to temperature, pro-
vides a protection against thermal and thermo-mechanical fa-
tigue which is slightly inferior to the layers examined in the
ANN-1-3 and ANN-1-4 networks, while making them more
resistant to abrasive wear.

2.2 Sensitivity analysis of neural networks
determining the intensity of the occurrence of
destructive mechanisms

The results of the sensitivity analysis of neural networks
(ANN-2, ANN-3, ANN-4, ANN-5) determining the intensity
of the occurrence of destructive mechanisms such as thermo-
mechanical fatigue, abrasive wear, plastic deformation and
mechanical fatigue are presented in Table 4. Based on the
calculated coefficientW, the input variables occurring in these

networks have been ranked according to their significance for
each network.

In the case of the ANN-2 neural network, which determines
the intensity of the occurrence of the mechanism of thermo-
mechanical fatigue, it can be seen that the most significant
variables are temperature and pressure, i.e. precisely those
physical quantities that, also during industrial forging process-
es, most effectively encourage the occurrence of this mecha-
nism. The results obtained for the ANN-3 network, which
determines the intensity of the occurrence of abrasive wear,
indicate that the greatest significance is exhibited by the path
of friction, followed by temperature and pressure. However,
translating these results into the forging process, it seems that,
compared to temperature, pressure is slightly more responsi-
ble for the intensity of this mechanism. In the case of forging
tools, high pressure at large friction distances increases the
abrasive wear, while high temperature is more conducive to
the local tempering of tool material, as a consequence of
which there is an increase in plastic deformation. As regards
the results of the sensitivity analysis performed for the net-
works determining the occurrence of plastic deformation

Fig. 8 Presentation of the results of the sensitivity analysis of neural networks calculating the geometric loss for tools operating with different surface
layers

Table 4 The results of the sensitivity analysis of neural networks determining the intensity of the occurrence of destructive mechanisms

ANN-2                      
thermo-mechanical fatigue 

ANN-2                      
abrasive wear

ANN-4         
plastic deformation

ANN-5
mechanical fatigue

Variable W variable W variable W variable W

Temperature 8,4098 Friction path 9,2158 Temperature 1,0020 Pressure 1,0127

Pressure 6,6410 Temperature 7,2546 Friction path 1,0015
Number of 

forgings
1,0079

Number of 

forgings
4,4217 Pressure 6,2056 Pressure 1,0002 Friction path 1,0016

Friction path 1,9293
Number of 

forgings
2,0225

Number of 

forgings
1,0000 Temperature 1,0010

Layer 1,2053 Layer 1,1743 Layer 0,9998 Layer 1,0007
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(ANN-4) and mechanical fatigue (ANN-5), the order in which
individual factors exert their influence is somewhat puzzling,
because, as it has already been mentioned, the greatest impact
on plastic deformation in the industrial process is demonstrat-
ed by high temperature, followed by pressure and path of
friction. In forging processes, the occurrence of mechanical
fatigue is mainly caused by high pressure, and, to a lesser
extent, by the number of forgings, because, in the case of
sharp edges or right angles in the tool, microcracks may ini-
tially appear as a result of stress concentration. Over time, i.e.
with the increase in the number of produced forgings, propa-
gation and further development of cracks occurs, leading to
complete tool breakage. When the results obtained for the last
two networks (ANN-4 and ANN-5) are analysed, it can be
seen that they are incompatible with the tool behaviour ob-
served during its operation in industrial forging processes.
However, looking at the values of the coefficient W, one can
see that they are similar and almost at the same level.
Therefore, for these cases, it is difficult to speak about differ-
ences in the level of significance. The results show, which is
also in agreement with the quality parameters of these two
networks (Table 2), that they are characterized by the least
favourable matching parameters and thus by the largest pre-
dictive error. Additionally, as the analysis of the source data
showed, in the training process, these networks had the least
numerous training sets. Therefore, the training process should
be carried out again on a new complete training set.

2.3 Summary

The paper presents the results of a sensitivity analysis and
assessment of the developed nine sets of neural networks in
terms of the significance of selected key process parameters
and their impact on the size of the geometric loss of tool
material and the occurrence of major destructive mechanisms.
The sensitivity analysis was carried out to identify the most
important input parameters, which made it possible to rank
them in the order from the most significant to the least signif-
icant for the results obtained.

Based on the experience of expert technologists in indus-
trial forging processes, a verification of the obtained results
was performed. It was found that, in the case of the first five
networks regarding the geometric loss of the forging tool
(ANN-1-1 to ANN-1-5), the obtained results were consistent
with reality and confirmed the observations and analyses of
experts in industrial processes. The situation was similar in the
case of the next two networks regarding the intensity of the
occurrence of the main destructive mechanisms (ANN-2 and
ANN-3). In the case of the last two networks (ANN-4 and
ANN-5) regarding the intensity of the occurrence of plastic
deformation and mechanical fatigue, the obtained results de-
viated from reality, although, as the research has shown, the
values of the sensitivity indicators determined for individual

process parameters were almost at the same level, which can
be explained by the small training data sets used in these
networks.

The results of the sensitivity analysis obtained in this work
can be very useful for technologists and process engineers,
whose task is to optimize the operating parameters of the
process to make the forging tool life as long as possible.
Moreover, based on the obtained results, it can be concluded
that the developed sets of neural networks were designed cor-
rectly. It should be emphasized and remembered that the cor-
rectness of the obtained results must be verified and confirmed
under industrial conditions. Therefore, continuous coopera-
tion, exchange of knowledge and experience, and information
flow between knowledge engineers, IT specialists and process
technologists or engineers are necessary.

The results of the research and analysis can be very helpful
in the construction of various IT tools, such as the useful
decision support systems, which can successfully support en-
gineers and technologists working in R&D departments of
companies and industrial plants involved in the production
of die forgings.
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