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Abstract The article presents a new methodology for model-
ling the influence of parameters and conditions of surface
grinding process on the value of roughness and grinding
forces. Grinding processes are characterised by numerous fac-
tors influencing results of the process with a complex mecha-
nism of the cumulative effects of their interactions. Therefore,
authors for the development of the model used an artificial
neural network. The input parameters of the model, apart from
the processing parameters, were the properties of the work-
piece and features of the grinding wheel. In the selection pro-
cess of the neural model structure, an evaluation criterion was
proposed which included the character of the influence of
processing parameters on the resultant values of the grinding
process for the given pair workpiece–tool. A high ability to
data generalisation by the developed neural model was
demonstrated.

Keywords Grinding .Modelling . Roughness . Grinding
forces . Neural networks

Nomenclature
ae depth of cut, (μm),
c workpiece specific heat, (J ∙ kg−1 ∙ K−1)
dns grinding wheel mean grain dimensions, (FEPA

designation),
Em workpiece Young’s modulus, (GPa),

Enn neural network error function,
EU neural network error for learning data,
EV neural network error for validation data,
ETest neural network error for test data,
F

0
t tangential component of the specific grinding force,

(N/mm),
F

0
n normal component of the normal grinding force,

(N/mm),
f(i)(.) neuron activation function in i-th layer of a neural

network,
Hm workpiece hardness, (HRC),
Hn grinding wheel hardness,
Hns grinding wheel abrasive material hardness Hns, (Mohs

scale),
K number of outputs of a neural network,
Km neural network penalty function,
M number of neurons in the hidden layer of a neural

network,
N number of inputs of a neural network,
Rm workpiece tensile strength, (MPa),
Sa workpiece surface roughness average, (μm),
T neural network targets,
Vns grinding wheel percentage pore contribution, (%),
vc grinding wheel peripheral speed, (m/s),
vft table tangential speed, (m/min),
vfa axial table feed speed, (mm/stroke),
W weights of a neural network,
X neural network inputs,
Xm workpiece material properties,
Xn grinding wheel properties,
Xp grinding parameters,
Y neural network outputs,
α workpiece thermal expansion, (10−6 ∙ K−1),
λ workpiece thermal conductivity, (W ∙ m−1 ∙ K−1),
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1 Introduction

Grinding processes are one of the basic methods of finishing.
This processing aims at obtaining the determined parameters
of a processed surface and the shape and dimensions accuracy
of processed elements. A significant parameter determining
the geometric microstructure of ground surface is its rough-
ness [1]. Roughness parameters influence i.a. corrosion resis-
tance, the surface area of the contact zone between mating
surfaces of machine parts and the fatigue life of the processed
elements [2, 3]. Grinding forces constitute the variable used
for monitoring the grinding process and indirectly for the
evaluation of the phenomena occurring during the process
[4, 5]. Two grinding force components are distinguished in
grinding processes: tangential grinding force and normal
grinding force. The values of individual components and their
interactions enable determining the dominant character of the
removal of processed material. Moreover, the values of force
components enable determination of the changes on the grind-
ing wheel active surface [6]. The increasing of the abrasive
wear and the loading up of the grinding wheel active surface
result in the increase of component grinding forces, increase
of thermal interactions within the grinding zone as well as the
increase of residual stress in the workpiece surface layer.

An appropriate selection of the grinding process parame-
ters that ensures obtaining the expected roughness parameters
of the processed surface has been the subject of numerous
studies. An overview of studies on the issue indicates the
use of both analytical modelling methods and soft computing
methods. In the papers [7–9], the influence of machining pa-
rameters on the values of grinding forces, temperature, specif-
ic energy and surface quality of the grinding process was
analysed. Models have been developed to predict the rough-
ness of the machined surface and the grinding temperature
using both analytical methods and neural networks.

Choi et al. [10] presented a generalised model enabling the
prediction of roughness and burns of the surfaces occurring in
the grinding process of cylindrical surfaces with aluminium
oxide grinding wheels. Stępień [11] proposed a probabilistic
model for the prediction of surface roughness in the grinding
process. The model included the randomness of distribution of
active grains on the grinding wheel active surface and its in-
fluence on the undeformed chip thickness and the processed
surface formation was determined. In the study [12], a model
determining the influence of the grinding process parameters
on the values of component grinding forces including the
forces resulting from the chip formation and friction in the
contact zone with the workpiece was presented. Younis et al.
[13] proposed a model of component grinding forces includ-
ing three stages of interaction between the abrasive grain and
the workpiece: rubbing, ploughing and cutting. However, the
developed empirical models require a series of experimental
tests in order to determine their coefficients.

The determination of the influence of parameters and con-
ditions of processing on the values of component grinding
forces and the roughness parameters of the processed surface
is a difficult task due to the multitude of factors influencing
their value and the complex mechanism of cumulative effects
of their interactions [1, 4]. As a result of this, the developed
analytical models are created with the range of assumptions
enabling simplification of the modelling process. Artificial
neural networks enable an efficient approach to modelling
the influence of numerous factors with unknown cumulative
effects of their interactions. Numerous attempts have been
presented in the literature to model the influence of processing
parameters and conditions on the resultant values of process-
ing [14], although only a small portion of these studies con-
cerned grinding processes.

The use of neural network models in grinding processes
was focused primarily on the issues of processing parameter
selection and monitoring of the processes. In the study [15], a
multilayer neural network was used for the prediction of
roughness of the processed surface. The obtained neural net-
work models were characterised by high degree of fit to the
experimental data for both low and high work speeds.
Ammamou et al. [16] demonstrated that the use of a multilayer
neural network for the prediction of values of specific compo-
nent grinding forces provides better results obtained from the
regression model, the power model and the genetic algo-
rithms. The use of neural network models for monitoring of
grinding processes applies primarily to the modelling of inter-
actions between the processing variables and the values
explaining the state of abrasive tool or parameters of the proc-
essed surface parameters. The validity of using artificial intel-
ligent methods for the estimation of processed surface rough-
ness [17, 18], tool wear [19–21] and precision of the shape and
dimensions of processed elements [22] was demonstrated.

The present study developed a neural model for grinding
process of surfaces determining the influence of processing
parameters and the parameters characterising the pair work-
piece–grindingwheel on the roughness of the processed surface
and values of the component grinding forces. The model was
developed based on experimental test results conducted for dif-
ferent pairs of workpiece–grinding wheel. For the selection of
neural network, a newmethodology was proposed based on the
criterion including, apart from the value of mean squared error,
the direction and influence of processing parameters on the
resultant values of the grinding process for the given pair work-
piece–grinding wheel. This enabled obtaining the neural model
with good ability to data generalisation.

2 Grinding process assumptions

The result of the grinding process is the effect of interactions
of the grinding wheel active surface and the surface of the

1336 Int J Adv Manuf Technol (2018) 94:1335–1347



workpiece. The character and type of these interactions de-
pends on, i.e. parameters of grinding Xp, properties of the
processedmaterialXm and properties of the grindingwheelXn:

X ¼ Xp;Xm;X n
� � ð1Þ

In terms of kinematics, the course of grinding primarily
depends on the parameters of the grinding process Xp and
properties of the grinding wheel Xn. These parameters deter-
mine the conditions of contact between grinding wheel and
workpiece. Among others, they influence [1, 4] the length of
the contact zone between grinding wheel and workpiece,
number of active grains, mean distance between active grains,
mean and maximum chip cross section. The main parameters
of surface grinding Xp include grinding wheel peripheral
speed vc, tangential table speed vft, axial table feed speed vfa
and depth of cut ae.

X p ¼ vc; vft; vfa; ae
� � ð2Þ

The size and shape of abrasive grains, properties of the
processed material Xm and the parameters of the cooling pro-
cess and characters of the processing fluid influence working
conditions of cutting edges and the wear processes of abrasive
grains and tool [23].Mechanical and physical properties of the
processed material Xm have an effect on the phenomena oc-
curring in the contact zone between abrasive grain and the
processed material. They influence the chip formation process
and the size and shape of ridges in the cutting zone of the
single grain. Moreover, they influence the depth of thermal
impact zone. The basic parameters characterising the mechan-
ical and physical properties of the processed material Xm were
assumed as follows: tensile strength Rm, Young’s modulus Em,
hardness Hm, thermal expansion α, thermal conductivity λ
and specific heat c.

Xm ¼ Rm;Em;Hm;α;λ; c½ � ð3Þ

Significant parameters influencing both the course and
the result of the grinding process are the parameters
linked to the type and structure of grinding wheel Xn.
The size of abrasive grains influences the number of ac-
tive grains per active area unit of grinding wheel. An
important parameter determining the grinding wheel
structure is the percentage contribution of abrasive grains
and the related percentage contribution of pores. This pa-
rameter influences the topography of grinding wheel
influencing the mean distance between abrasive grains.
Moreover, high porosity of the grinding wheel facilitates
the cooling process of the processing zone as well as the
removal of chips from grinding wheel working zone.
Therefore, the main parameters describing the structure
and type of grinding wheel Xn in the developed neural
model were assumed as follows: abrasive material

hardness Hns (Mohs scale), mean grain dimensions
(FEPA designation) dns, grinding wheel hardness Hn and
percentage pore contribution Vns.

X n ¼ Hns; dns;Hn;Vns½ � ð4Þ

The selection of the elements of the output signal results
from the assumption to use the neural model, i.e. for the eval-
uation of the grinding process. The evaluation of the grinding
process and thus obtained results is possible through the anal-
ysis of among others [1, 4, 23]: roughness of the processed
surface and component grinding forces. Surface roughness
constitutes one of the main parameters for the evaluation of
the ground surface quality. Moreover, it is one of the main
criteria for the determination of abrasive tool life. It influences
the operating properties of the workpiece, including its tribo-
logical and fatigue properties. Along with the decrease of
surface roughness, fatigue limit of the processed elements
increases and the intensity of abrasive and fatigue wear de-
creases [24].

Among multiple parameters describing the 3D topography
[25] of the processed surface, parameter Sa plays an important
role, which is the equivalent to the Ra parameter determined
for the profile:

Sa ¼ 1

MrNr
∑

Mr−1

i¼1
∑

Nr−1

j¼1
z xi; yið Þj j ð5Þ

where

Sa arithmetic means of surface roughness deviation from
the mean surface

Mr.,
Nr

number of measurement points on the length and
width of the surface, respectively

x, y, z surface coordinates

Grinding forces constitute the indicator characterising
grinding capability of processed materials and they enable
the assessment of the wear degree of an abrasive tool. The
value of grinding forces is linked to the energy transformed
during processing. Moreover, the coefficient of component
grinding forces is a significant indicator demonstrating the
character of the phenomena occurring in the grinding zone:

F
0
t

F
0
n

¼ 2

π
∙cosβ þ μ ð6Þ

where

F
0
t tangential component of the specific grinding force

F
0
n normal component of the normal grinding force

β abrasive grain rake angle
μ friction coefficient between abrasive tool and the

processed surface
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Considering the above, the output signal Yof the developed
neural model is defined as follows:

Y ¼ Sa; F
0
n; F

0
t

� �
ð7Þ

The assumed output parameters of the neural model enable
the use of the developed model for the prediction of the rough-
ness of the processed surface and for monitoring and evalua-
tion of the grinding process based on the course of values of
component grinding forces.

3 Artificial neural networks

The use of neural networks for modelling is based on their
ability to generalise relationships occurring in the process de-
spite the presence of noise in learning signals and in cases of
the occurrence of redundant or correlated signals [26, 27].
Issues explaining the principles of operation of artificial neural
networks and their applications for modelling were discussed
in numerous overview studies [14, 26]. The structure most
commonly used in the literature for process modelling is a
feedforward multilayer network.

Figure 1 presents the structure of a two-layer
feedforward network with N input signals, M neurons in
the hidden layer and K neurons in the output layer. A

single neuron of such network processes input signal fol-
lowing the relationship:

y ¼ f uð Þ ¼ f ∑
N

i¼0
xi∙wi

� �
ð8Þ

where

f(.) neuron activation function
u product of the input signals and neuron weights
n number of neuron inputs
xi i-th input signal
wi i-th neuron weight

A multilayer network consists of neurons logically ar-
ranged in layers. The hidden layer of a neural network is the
intermediary layer for the processing of the input data. The
structure of a multilayer network may contain any number of
hidden layers; however, for practical uses rarely more than
two layers are used. The output layer is responsible for the
generation of output signal. The network presented in Fig. 1 is
a feedforward one (signals flow in the direction from input to
output) with full connections, i.e. each neuron of the preced-
ing layer is connected to each neuron of the following layer.

Mathematical explanation of i-th output yi of the above
network is as follows:

Fig. 1 Multilayer network
structure
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yi ¼ f 2ð Þ ∑
m

j¼0
w 2ð Þ

i; jf g∙ f
1ð Þ ∑

n

k¼0
w 1ð Þ

j;kf g∙xk
� �" #

ð9Þ

where

f (i)(.) neuron activation function in i-th layer
m number of neurons in the hidden layer
n number of network inputs
w(i){j,k} weight connecting the j-th neuron from i-th layer

with k-th neuron of the preceding layer
xi i-th network input signal

Multilayer neural network learning, understood as a mod-
ification of the weights W of network is conducted in the
supervised learning mode. In the process, knowledge of both
input signals X in the network and their target T signals is
necessary.

Selection of weightWof a neural model is conducted in the
manner ensuring minimization of the error function E, under-
stood as:

E ¼ 1

n
∑
n

i¼1
net X i;Wð Þ−Tið Þ2 ð10Þ

where

n number of signals in the learning set
net neural model
Xi i-th input signal
W neural model weights
Ti target signal for i-th input signal

The neural model learning process assumes the presenta-
tion of neural network of subsequent examples of input signal
Xi followed by such modification of the parameters of model
W for the response of model Y = net(Xi,W) to be the most
similar to the target signal Ti.

4 Methodology of neural model validation

The validation of neuron models learned in supervised mode
assumes a validation based on dependence (7). This dependence
verifies only the degree of consistency of the model’s response
with the data obtained from the experiment. The process of cre-
ating a neural model does not assume the selection of modelling
function. Thus, the verification of a neural model based solely on
the dependence (7) does not provide an answer to the correctness
of the modelled relationship between the points of the experi-
ment. This issue is of particular importance if the developed
models are to be used to monitor, optimise or supervise grinding
processes. In this case, evaluating the correctness of data interpo-
lation becomes a key issue.

On the basis of experimental data, it is possible to assess the
direction andmagnitude of the influence of the parameters and

conditions of machining Xp on the output variables of the
grinding process Y for a given workpiece–grinding wheel pair.
By determining the direction of the neural model response
gradient, it is possible to evaluate the correctness of model
interpolation.

Figure 2 shows a diagram of the neural model interpolation
accuracy. For the specified setting parameter of the process
xi ∈ Xp, the values of gradient ΔYxi for i..P are determined.
The value of function Km is then determined according to the
following relationship:

Km ¼ numel ΔY ≤0ð Þ
numel ΔYð Þ ð11Þ

where

ΔY ¼ ΔYx1 ;ΔYx2 ;…;ΔYxi½ � gradient of the modelled
relationship for the process
parameters xi ∈ Xp of a
given pair workpiece–
grinding wheel

numel(.) number of elements in the
data set

Fig. 2 The neural model interpolation accuracy, a Gradient
determination, b Example of the course of modelled relationship for
different Km values
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The above relationship assumes non-zero values for cases
where the behaviour of the modelled dependence is nonin-
creasing. By changing the sign of inequality in the numerator,
it is possible to analyse the different influence mature of the
input parameters of the model.

The following relationship was used to validate the neural
model:

Enn ¼ mse ETð Þ þ Km ð12Þ
where

mse(ET) mean square error of the model response for test
data

Km penalty function (following Eq. 8)

5 Experimental study

The surface grinding process was examined. Peripheral
grinding was performed with the process parameters and
conditions described in Table 1. Samples used in experi-
mental studies were made of: bearing steel 100Cr6, titani-
um alloy Ti-6Al-4V, Inconel® alloy 718. Parameters of the

processed materials describing its physical and mechanical
properties are listed in Table 2.

The measurement of the grinding force components was
done using a piezoelectric dynamometer 9257B and a multi-
channel amplifier 5070A12100 by Kistler. The measurement
data was registered at 10 kHz frequency using a 16-bit mea-
surement card 2855A4 by Kistler.

Material was ground with aluminium oxide grinding
wheels with different hardness. All used grinding wheels
had the same dimensions, i.e. external diameter D = 250 mm
and grinding wheel height H = 25 mm. The properties of
grinding wheels and abrasive materials are presented in
Table 3.

Parameters of the dressing operation of the grinding wheel
active surface and parameters and conditions of cooling pro-
cess were constant during all tests. The grinding parameters
were selected to ensure the appropriate quality of the ground
surfaces without the signs of chatter and burns. For the range
of processing parameters presented in Table 1, a full factorial
experiment was performed.

In order to determine repeatability of the obtained results,
the tests were conducted three times. After the grinding pro-
cess had been accomplished, processed surface roughness was
analysed. A Talysurf CCI 6000 profilometer by Taylor
Hobson was used for the measurement of surface topography.
Twenty times magnification lens were used to enable the mea-
surement of a surface with dimensions 0.9 mm × 0.9 mm. To

Table 1 Grinding parameters
and conditions Materials

100Cr6 Ti-6Al-4V Inconel 718

Grinding wheel Grinding wheel A

Grinding wheel C

Grinding wheel A

Grinding wheel B

Grinding wheel A

Grinding wheel peripheral speed vc 30 m/s 30 m/s 30 m/s

Tangential table speed vft 5 m/min

15 m/min

25 m/min

25 m/min 2 m/min

3 m/min

4 m/min

Axial table feed speed vfa 3 mm/stroke – 1 mm/stroke

2 mm/stroke

4 mm/stroke

Depth of cut ae 5, 10, 20 μm 5, 10, 20 μm 5, 10, 20 μm

Table 2 Mechanical and physical properties of materials

Materials

100Cr6 Ti-6Al-
4 V

Inconel 718

Tensile strength Rm, MPa 720 880 1100

Young’s modulus Em, GPa 210 114 200

Hardness Hm, HRC 65 33 34

Thermal expansion α, 10−6 ∙ K−1 10 9.7 13

Thermal conductivity λ, W∙ m−1∙ K−1 25 7.1 11.2

Specific heat c, J ∙ kg−1 ∙ K−1 460 553 435

Table 3 Properties of used grinding wheels and abrasive materials

Grinding wheel no.

A B C

Grinding wheel hardness Hn K M P

Abrasive material hardness Hns 9 (Mohs scale)

Mean grain size dz 120 μm

Pore volume Vn 40.5% 37.5% 33.5%
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record the data, a CCD sensor with resolution 1024 × 1024
points was used enabling the measurement of the processed
surface with the horizontal resolution of 0.88 μm. Vertical
resolution of the profilometer is up to 10 pm. For each of the
samples, measurement was conducted three times in random
places. The measurement results of each of the analysed sam-
ples were averaged.

6 Modelling assumptions

6.1 Structure of learning, verifying and test data

A set of input data of the neural model was developed based
on the conducted experiments:

X ¼ ae; vfa; vft;Hn;Vn;Rm;Em;Hm;α; λ; c
� � ð13Þ

and their target values:

T ¼ Sa; F
0
n; F

0
t

� �
ð14Þ

The set of data used for neural network learning was divid-
ed into three subsets:

& Learning data subset U—enabling mapping of the
modelled relationship—used at the network learning stage;

& Verifying data subset V—a subset separated from the
learning data; prevents the phenomenon of excessive
matching of network responses to data included in the
learning subset—used at the network learning stage;

& Test data subset Test—subset of data determining the
quality of modelled relationship, and not used at the net-
work learning stage; ability to map the test data set by the
network is the measure of the ability to generalise the
modelled relationship.

Data obtained from the experiment were divided into the
above subsets in 70:15:15 ratio for each workpiece–grinding
wheel pair.

6.2 Selection of the neural model structure

For artificial neural networks being used for process model-
ling, determination of the proper network architecture is a
significant issue. The problem of neural network architecture
optimisation is complex due to the multitude of factors
influencing the result of modelling, which includes:

& A large number of neural network structures, resulting
from the direction of the weight connections, number of
neurons in the hidden layer as well as the used functions of
neuron activation

& Large set of neural network learning algorithms
& Random selection of the initial values of weights in a

neural network, thus random starting point of optimisation
of the weight modification algorithm

The results of numerous studies demonstrate that a single-
layer feedforward network constitutes the most commonly
used network type. In reference to this structure, numerous
studies and mathematical proofs have been conducted [28,
29] indicating the fact that a multilayer network is a universal
approximator of complex nonlinear functions.

For the modelling of relationships occurring in the grinding
process, a multilayer network with sigmoidal functions of ac-
tivation in the hidden layers and linear functions of activation
in the output layer was used. For the search of an optimised
architecture of the neural model, the following procedure was
implemented:

Stage 1. The creation of neural models with one and two
hidden layers. The maximum number of neurons in the
first hidden layer was established as N = 50, and in the
second hidden layer M = 20. Networks with a given ar-
chitecture were created for K = 20 times for each of them
generating the initial weight values at random. As a re-
sult,N ×K of two-layer networks andN ×M ×K of three-
layer networks were obtained.
Stage 2. Estimation of the modelling error value Enn for
the created neural networks. Experimental data used for
the creation of the models indicate a monotonous
(increasing) character of the modelled relationships for
each of the pairs of workpiece–grinding wheel. The use
of penalty functionKm enables determination whether the
developedmodels of relationships between the influences
of processing parameters on the results of the process
reflect the influence character. Thus, the modelling error
was determined using the relationship (9).
Stage 3. Selection of the neural model minimising the
error value Enn.

6.3 Neural network learning method

The supervised learning method with the backpropagation
algorithm was used in the created neural models. Weight ma-
trices were modified following the Lavenberg-Marquardt al-
gorithm:

ΔW tð Þ ¼ − H þ ηIð Þ−1 δE W t−1ð Þð Þ
δW

� �
ð15Þ

where

W weight matrix
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H objective function hessian
η Marquardt’s coefficient
I identity matrix
t learning step

Adaptive value of coefficient η was used. Initial value of
the coefficient was set at 0.001, the increase coefficient to the
value 10 and reduction coefficient to value 0.1. In the case,
when as a result of weight modification in the subsequent
learning step the value of the error E is reduced, the value of
the coefficient η is also reduced. Close to minimum of error
function the algorithm behaves like a gradient algorithm,
whereas at a large distance from the minimum like the steepest
descent algorithm. This results in a considerable increase of
the convergence of the neural network learning process.

7 Analysis of the results

7.1 Analysis of the results of neural network structure
selection

Results of modelling using two-layer networks presented in
Table 4 indicate that the best results were obtained for the 11-
4-3 network containing four neurons in the hidden layer.
Values of the error Enn were the lowest for this network.
Increase of the number of neurons in the hidden layer leads
to the decrease of the mean square error value for learning data
together with the increase of this value for test data. This
indicates the occurrence of neural network overfitting; thus,
a loss of the ability to generalise relationships included in the
experimental data.

Penalty function Km for the developed two-layer neural
models takes a non-zero value. It indicates that not all
modelled relationships properly reflect character of grinding
parameters influence on output values. The observed non-zero
value of the penalty function Km for the two-layer model may

stem from the occurrence of discontinuity between the values
of the modelled data for individual pairs of workpiece–grind-
ing wheel. An improvement of the ability to model discontin-
uous relationships requires the use of an additional hidden
layer.

Results of modelling with the use of three-layer net-
works presented in Table 5 demonstrate the validity of
mapping of the monotonous relationships for individual
pairs of workpiece–grinding wheel. In the case of each
neural model included in Table 5, the penalty function
Km takes the value of zero. Among the created and learned
20,000 three-layer neural networks, the lowest value of the
modelling error Enn was obtained for the network with the
structure 11-8-9-3 containing 17 neurons distributed in two
hidden layers. The sum of the mean square error of the
mapping of the experimental data determined based on
the test set mse(ETest) and the penalty function Km assumes
the lowest value for this network.

Table 4 Value of modelling
errors for 10 two-layer structures
with the lowest modelling error
value Enn

Structure Mean square error for Km Enn

Learning data EU Verifying data EV Test data ETest

11-4-3 0.0409 0.0404 0.0858 0.0176 0.1034

11-4-3 0.0443 0.0427 0.0658 0.0704 0.1362

11-6-3 0.0394 0.0351 0.0672 0.0768 0.1440

11-5-3 0.0415 0.0416 0.0722 0.1664 0.2386

11-5-3 0.0439 0.0430 0.0644 0.1944 0.2588

11-8-3 0.0333 0.0351 0.0728 0.1912 0.2640

11-11-3 0.0369 0.0374 0.0813 0.1880 0.2693

11-5-3 0.0410 0.0389 0.0955 0.1888 0.2843

11-14-3 0.0285 0.0368 0.0705 0.2168 0.2873

11-5-3 0.1137 0.0732 0.1502 0.1752 0.3254

Table 5 Value of modelling errors for 10 three-layer structures with the
lowest modelling error value Enn

Structure Mean square error for Km Enn

Learning
data EU

Verifying
data EV

Test data
ETest

11-8-9-3 0.0395 0.0464 0.0792 0 0.0792

11-3-4-3 0.0456 0.0525 0.0795 0 0.0795

11-3-10-3 0.0574 0.0560 0.1177 0 0.1177

11-2-4-3 0.0572 0.0603 0.1199 0 0.1199

11-2-3-3 0.0882 0.0682 0.1251 0 0.1251

11-2-3-3 0.1212 0.0836 0.1316 0 0.1316

11-2-2-3 0.1070 0.0779 0.1624 0 0.1624

11-2-2-3 0.1606 0.0861 0.2225 0 0.2225

11-1-2-3 0.2271 0.0963 0.2593 0 0.2593

11-1-1-3 0.2489 0.0982 0.2708 0 0.2708
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The l owe s t mean va l u e o f mode l l i n g e r r o r
mse(ETest) = 0.0309 among all created networks was obtained
for the structure 11-2-19-3. However, in its case the value of
the penalty function Km assumed the value of 0.72, which
indicated low ability of the model for a correct interpolation
of the relationships included in the experimental data (Fig. 3).

Themodel correctness cannot be holistically evaluated using
only the error value determined from experimental data ETest.
The error valueETest indicates solely the correctness ofmapping
of the relationships in the experimental points. It does not pro-
vide information on the character of the relationships between
individual points of the experiment. Introduction of the penalty
function Km enables the evaluation of the correctness of inter-
polations of the developed neural models.

7.2 Verification of neural model correctness

The accuracy of mapping the experimental data by the neural
model with structure 11-8-9-3 was determined. The analysis
of the linear regression results between the response value Yof
the model and the target value T was conducted. In the as-
sumption of the above analysis for the full mapping of data,
the relationship Y = T should be fulfilled, and value of the
linear regression coefficient R should be 1.

Figure 4 presents the high ability to represent the test
data by the developed neural model. The lowest value of
fitting of the neural model response was observed for the
value of processed surface roughness parameter Sa
(R = 0.95). The lower ability of mapping processed sur-
face roughness parameter Sa by the neural model is in-
fluenced by the fact that its values, apart from the values
included as the inputs in the developed model, are influ-
enced by the values related to the changes on the grind-
ing wheel active surface. The main reason for the chang-
es on the grinding wheel active surface is the wear pro-
cesses (abrasive and fracture wear) and the loading up of
the grinding wheel active surface. Influence of these fac-
tors on the value of surface roughness parameters is not
included in the developed neural model, and the character
of these interactions can only be indirectly determined in
the model through the relationship between the assumed
processing parameters and conditions and changes on the
grinding wheel active surface.

Fig. 3 An example of an erroneously developed neural model
determining the relationship between processing parameters with the
values of the specific normal grinding force; workpiece: Inconel 718,
tool: grinding wheel A, vfa = 1 mm/stroke

Fig. 4 Analysis of the mapping
level of the test data set by the
neural model for a all modelled
output values (Sa, Fn’, Ft’), b
surface roughness parameter Sa, c
specific normal component Fn’,
and d specific tangential
component Ft’ of grinding force
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Consistence in terms of the values of response of the neural
model Y with the target values determined as a result of the
experiment generally explains the correctness of the neural
model. A detailed analysis requires the evaluation of the par-
tial models explaining the influence of processing parameters
on the surface roughness parameter Sa and values of the spe-
cific component grinding forces Fn’ and Ft’ on the individual
pairs of workpiece–grinding wheel. To this end, for individual
partial models included in Table 6, the values of the determi-
nation factor R2 were calculated. Factor R2 indicates which
part of the variation of the output values was explained by
the developed neural model.

The mean value of the determination factor R2 for the par-
tial models included in the Table 6 is 0.94. This indicates the
fact that a significant part of variations of the output values of
the neural model (surface roughness parameter Sa, specific
normal component grinding force Fn’ and specific component
tangential grinding force Ft’) stem from its dependency on the
processing parameters assumed in the model.

The lowest values of the determination factor R2 were ob-
tained for the partial models explaining the influence of the pro-
cess parameters on the value of surface roughness parameter Sa.
The value of this factor for the pair: Inconel 718–grinding wheel
A is 0.82, and for the pair: bearing steel 100Cr6–grinding wheel
C is 0.76. A graphic demonstration of example results of model-
ling the influence of the process parameters on the value of
surface roughness Sa parameter is presented in Fig. 5.

Precision of modelling the influence of process parameters
and conditions on the value of surface roughness parameter Sa
is variable. For different pairs of workpiece–grinding wheel,

Table 6 List of values of the
determination factor R2 for the
partial models explaining the
influence of processing
parameters on the output values of
the model for individual pairs of
workpiece–grinding wheel

Lp Processed material Grinding wheel vfa, mm/stroke Partial model R2

1 Inconel 718 A 4 Sa = f(ae, vw) 0.9254

2 Inconel 718 A 4 Fn’ = f(ae, vw) 0.9885

3 Inconel 718 A 4 Ft’ = f(ae, vw) 0.9832

4 Inconel 718 A 2 Sa = f(ae, vw) 0.8686

5 Inconel 718 A 2 Fn’ = f(ae, vw) 0.9132

6 Inconel 718 A 2 Ft’ = f(ae, vw) 0.9346

7 Inconel 718 A 1 Sa = f(ae, vw) 0.8150

8 Inconel 718 A 1 Fn’ = f(ae, vw) 0.9380

9 Inconel 718 A 1 Ft’ = f(ae, vw) 0.9502

10 Ti6Al4V A 13 Sa = f(ae, 25) 0.8155

11 Ti6Al4V A 13 Fn’ = f(ae, 25) 0.9988

12 Ti6Al4V A 13 Ft’ = f(ae, 25) 0.9999

13 Ti6Al4V B 13 Sa = f(ae, 25) 0.9938

14 Ti6Al4V B 13 Fn’ = f(ae, 25) 0.9949

15 Ti6Al4V B 13 Ft’ = f(ae, 25) 0.9956

16 100Cr6 A 3 Sa = f(ae, vw) 0.9486

17 100Cr6 A 3 Fn’ = f(ae, vw) 0.9913

18 100Cr6 A 3 Ft’ = f(ae, vw) 0.9719

19 100Cr6 C 3 Sa = f(ae, vw) 0.7557

20 100Cr6 C 3 Fn’ = f(ae, vw) 0.9675

21 100Cr6 C 3 Ft’ = f(ae, vw) 0.9653

Fig. 5 Neural model determining the relationship between the
processing parameters with values of the surface roughness parameter
Sa for the pair a Inconel 718–grinding wheel A and b bearing steel
100Cr6–grinding wheel C
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the quality of the partial model determined with the value of
factor R2 assumes values from 0.7557 to 0.9956. The forma-
tion of the grinding wheel active surface has a significant
influence on the result of the grinding process determined as
the roughness of the processed surface. As a result of this
process, geometric properties of the grinding wheel active
surface are shaped, which depend on both its formation pro-
cess and on the properties of the grinding wheel. Moreover, as
a result of the interaction of the grinding wheel active surface
with the workpiece, changes in their condition take place. The
degree and rate of these changes depend on the properties of
the workpiece and the grinding wheel, and, indirectly, on the
process parameters and conditions. The degree of influence of
these factors and the mechanism of accumulation of the results
of their interactions may differ for different pairs of work-
piece–grinding wheel. As a consequence, a high variability
of the level of fitting of individual partial models occurs.

The modelling precision is further influenced by the need
to map the discontinuities in the modelled relationships. Such
discontinuity occurs between the values of the output value of
the model for individual pairs of workpiece–grinding wheel.
Modelling precision could be enhanced via increasing the
number of neurons in the hidden layers of the neural network.
However, as it has been demonstrated by the previous analy-
sis, this results in a decrease of the ability to data generalisa-
tion by the neural model.

The highest modelling precision was obtained for the par-
tial models determining the influence of process parameters
and conditions on the value of the specific component of
grinding forces. Example results of modelling are presented
in Figs. 6 and 7.

Value of the determination factor R2 of the partial models
explaining the influence of the parameters and conditions of
processing on the specific component grinding force remains
in the range from 0.91 to 0.99. The set of input values included
in the model to a large degree describes (mean in approx.
97%) the variation of values of both component of grinding
forces.

The use of three-layer network for modelling the influence
of process parameters and conditions on the value of surface

roughness parameter Sa and component of grinding forces of
three-layer networks enables obtaining of a model with high
fitting degree to the experimental data. The mean value of the
determination factor R2 determined for the partial models
listed in Table 6 is 0.94.

Value of the penalty function Km for the three-layer net-
work model assumes zero value. The use of the penalty func-
tion Km for the evaluation of the modelling correctness results
in the developed partial models with getting the form of a
continuous function with values increasing with the increase
of the processing parameter values. This corresponds to the
character of the relationships included in the experimental
data.

8 Conclusion

The article presents a methodology for the creation of neural
models for surface grinding process. As a result of the con-
ducted experimental study, data sets were developed enabling
the conduct of the neural network learning allowingmodelling
the influence of processing parameters and conditions on the
values of the specific component grinding forces Fn

’ and Ft
’

and the parameter Sa of surface roughness. As a result of the
conducted tests and analyses on modelling of the abrasive
processing using multilayer networks, it can be stated that:

& Evaluation of the correctness of neural network modelling
solely on the basis of value of the error determined for the
test data set does not allow for the full evaluation of the
correctness of mapping of the relationships occurring in
the experimental data set.

& The proposed penalty function Km determining the cor-
rectness of data interpolations enables the selection of a
model from the set of neural models with a high ability to
data generalisation.

& The neural models created using three-layer networks are
characterised by a high degree of mapping of the

Fig. 6 Neural model determining the relationship between the processing
parameters and the values of the specific normal component of grinding
force, workpiece: bearing steel 100Cr6, tool: grinding wheel A

Fig. 7 Neural model determining the relationship between the
processing parameters and the values of the specific tangential
component of grinding force, workpiece: Inconel alloy 718, tool:
grinding wheel A
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relationships occurring in the experimental data (penalty
function Km = 0, mean regression coefficient R2 = 0.985).

& A detailed analysis of the developed neural model indi-
cates its higher ability for predicting the specific grinding
forces Fn’, Ft’ then surface roughness parameter Sa. This
is linked with the large number of factors influencing the
roughness parameters and the complexity of the accumu-
lation mechanism of their results.

The developed neural models enable the prediction of proc-
essed surface roughness parameter Sa and values of the com-
ponent grinding forces Fn’ and Ft’. This enables both optimi-
sation of the processing parameters in order to obtain
established surface roughness values and the use of the neural
model for monitoring of grinding processes.

Acknowledgements The authors would like to thank Joanna
Wieczyńska, MSc from the International Cooperation Office of
Koszalin University of Technology for manuscript proofreading.

Funding This study was funded by National Science Centre, Poland
(grant # NN 503 557940).

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of
interest.

Open Access This article is distributed under the terms of the Creative
Commons At t r ibut ion 4 .0 In te rna t ional License (h t tp : / /
creativecommons.org/licenses/by/4.0/), which permits unrestricted use,
distribution, and reproduction in any medium, provided you give appro-
priate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

References

1. Shaw M (1996) Principles of abrasive processing. Oxford
University Press, New York

2. Majidi AP, Streicher MA (1984) The effect of methods of cutting
and grinding on sensitisation in surface layers on AISI 304 stainless
steel. Corrosion 40:445–458. doi:https://doi.org/10.5006/1.
3577915

3. Rhouma AB, Sidhom H, Braham C (2001) Effects of surface prep-
aration on pitting resistance, residual stress and stress corrosion
cracking in austenitic stainless steels. J Mater Eng Perform 10:
507–514. doi:https://doi.org/10.1361/105994901770344638

4. Malkin S (1989) Grinding technology. Theory and applications of
machining with abrasives. Ellis Horwood, New York

5. Ding WF, Xu JH, Chen ZZ, Yang CY, Song CJ, Fu YC (2013)
Fabrication and performance of porous metal-bonded CBN grind-
ing wheels using alumina bubble particles as pore-forming agents.
Int J Adv Manuf Technol 67:1309–1315. doi:https://doi.org/10.
1007/s00170-012-4567-4

6. Li ZC, Lin B, XuYS, Hu J (2002) Experimental studies on grinding
forces and force ratio of unsteady-state grinding technique. J Mater
Process Technol 129:76–80. doi:https://doi.org/10.1016/S0924-
0136(02)00579-4

7. Xi X, DingW, Li Z, Xu J (2017) High speed grinding of particulate
reinforced titanium matrix composites using a monolayer brazed
cubic boron nitride wheel. Int J Adv Manuf Technol 90:1529–
1538. https://doi.org/10.1007/s00170-016-9493-4

8. Li Z, Ding W, Liu C, Su H (2017) Prediction of grinding tempera-
ture of PTMCs based on the varied coefficients of friction in
conventional-speed and high-speed surface grinding. Int J Adv
Manuf Technol 90:2335–2344. doi:https://doi.org/10.1007/
s00170-016-9578-0

9. Liu C, Ding W, Li Z, Yang C (2017) Prediction of high-speed
grinding temperature of titanium matrix composites using BP neu-
ral network based on PSO algorithm. Int J Adv Manuf Technol 89:
2277–2285. doi:https://doi.org/10.1007/s00170-016-9267-z

10. Choi TJ, Subrahmanya N, Li H, Shin YC (2008) Generalized prac-
tical models of cylindrical plunge grinding processes. Int J Mach
Tools Manuf 48:61–72. doi:https://doi.org/10.1016/j.ijmachtools.
2007.07.010

11. Stępień P (2008) A probabilistic model of the grinding process.
Appl Math Model 33:3863–3884. doi:https://doi.org/10.1016/j.
apm.2009.01.005

12. Malkin S, Cook NH (1971) The wear of grinding wheels: part 1—
attritious wear. J Eng Ind 93:1120–1128. doi:https://doi.org/10.
1115/1.3428051

13. Younis M, Sadek MM, El-Wardani T (1987) A new approach to
development of a grinding force model. J Eng Ind 109:306–313.
doi:https://doi.org/10.1115/1.3187133

14. Pontes FJ, Ferreira JR, Silva MB, Paiva AP, Balestrassi PP (2010)
Artificial neural networks for machining processes surface rough-
ness modeling. Int J Adv Manuf Technol 49:879–902. doi:https://
doi.org/10.1007/s00170-009-2456-2

15. Nabil BF, Amamou R (2006) Ground surface roughness prediction
based upon experimental design and neural network models. Int J
AdvManuf Technol 31:24–36. doi:https://doi.org/10.1007/s00170-
005-0169-8

16. Amamou R, Nabil BF, Farhat F (2008) Improved method for grind-
ing force prediction based on neural network. Int J Adv Manuf
Technol 39:656–668. doi:https://doi.org/10.1007/s00170-007-
1264-9

17. Aquiar PR, Cruz CED, Paula WCF, Bianchi EC, Thomazella R,
Dotto FRL (2007) Neural network approach for surface roughness
prediction in surface grinding. Proceedings of the 25th IASTED
International Multi-Conference: Artificial Intelligence and
Applications, pp 96–101

18. Chang CH, Tsai JC, Chiu NH, Chein RY (2010) Modeling surface
roughness and hardness of grinding SKD11 steel using adaptive
network based fuzzy inference. Adv Mater Res 126-128:171–176.
doi:https://doi.org/10.4028/www.scientific.net/AMR.126-128.171

19. Nakai ME, Junior HG, Aguiar PR, Bianchi EC, Spatti DH (2015)
Neural tool condition estimation in the grinding of advanced ce-
ramics. IEEE Lat Am Trans 13:62–68. doi:https://doi.org/10.1109/
TLA.2015.7040629

20. Moia DFG, Thomazella IH, Aguiar PR, Bianchi EC, Martins CHR,
Marchi M (2015) Tool condition monitoring of aluminum oxide
grinding wheel in dressing operation using acoustic emission and
neural networks. J Braz Soc Mech Sci Eng 37:627–640. doi:https://
doi.org/10.1007/s40430-014-0191-6

21. Lezański P (2001) An intelligent system for grinding wheel condi-
tion monitoring. J Mater Process Technol 109:258–263. doi:https://
doi.org/10.1016/S0924-0136(00)00808-6

22. Lipiński D, Kacalak W (2007) Assessment of the accuracy of the
process of ceramics grinding with the use of fuzzy interference.
Adaptive and Natural Computing Algorithms ICANNGA.
Lecture Notes in Computer Science, vol 4431. pp 596–603. doi:
https://doi.org/10.1007/978-3-540-71618-1_66

23. Oczoś KE, Porzycki J (1986) Grinding—the basis and technique.
WNT, Warsaw

1346 Int J Adv Manuf Technol (2018) 94:1335–1347

https://doi.org/10.5006/1.3577915
https://doi.org/10.5006/1.3577915
https://doi.org/10.1361/105994901770344638
https://doi.org/10.1007/s00170-012-4567-4
https://doi.org/10.1007/s00170-012-4567-4
https://doi.org/10.1016/S0924-0136(02)00579-4
https://doi.org/10.1016/S0924-0136(02)00579-4
https://doi.org/10.1007/s00170-016-9493-4
https://doi.org/10.1007/s00170-016-9578-0
https://doi.org/10.1007/s00170-016-9578-0
https://doi.org/10.1007/s00170-016-9267-z
https://doi.org/10.1016/j.ijmachtools.2007.07.010
https://doi.org/10.1016/j.ijmachtools.2007.07.010
https://doi.org/10.1016/j.apm.2009.01.005
https://doi.org/10.1016/j.apm.2009.01.005
https://doi.org/10.1115/1.3428051
https://doi.org/10.1115/1.3428051
https://doi.org/10.1115/1.3187133
https://doi.org/10.1007/s00170-009-2456-2
https://doi.org/10.1007/s00170-009-2456-2
https://doi.org/10.1007/s00170-005-0169-8
https://doi.org/10.1007/s00170-005-0169-8
https://doi.org/10.1007/s00170-007-1264-9
https://doi.org/10.1007/s00170-007-1264-9
https://doi.org/10.4028/www.scientific.net/AMR.126-128.171
https://doi.org/10.1109/TLA.2015.7040629
https://doi.org/10.1109/TLA.2015.7040629
https://doi.org/10.1007/s40430-014-0191-6
https://doi.org/10.1007/s40430-014-0191-6
https://doi.org/10.1016/S0924-0136(00)00808-6
https://doi.org/10.1016/S0924-0136(00)00808-6
https://doi.org/10.1007/978-3-540-71618-1_66


24. Grzesik W (2015) Effect of the machine parts surface topography
features on the machine service. Mechanik 8–9:587–593. doi:
https://doi.org/10.17814/mechanik.2015.8-9.493

25. ISO 25178–2:2012 Geometric product specifications (GPS)—sur-
face texture: areal—part 2: terms, definitions and surface texture
parameters, International Organization for Standardization

26. Chandrasekaran M, Muralidhar M, Murali Krishna C, Dixit US
(2010) Application of soft computing techniques in machining per-
formance prediction and optimization: a literature review. Int J Adv
Manuf Technol 46:445–464. doi:https://doi.org/10.1007/s00170-
009-2104-x

27. Lipiński D, Ratajski J (2007) Modeling of microhardness profile in
nitriding processes using artificial neural network. International
Conference on Intelligent Computing ICIC 2007: Advanced
Intelligent Computing Theories and Applications. Lecture Notes
in Computer Science, vol 4682. pp 245–252. doi:https://doi.org/
10.1007/978-3-540-74205-0_27

28. Hornik K, StinchcombeM,White H (1989)Multilayer feedforward
networks are universal approximators. Neural Netw 2:359–266.
doi:https://doi.org/10.1016/0893-6080(89)90020-8

29. Hornik K (1991) Approximation capabilities of multilayer
feedforward networks. Neural Netw 4:251–257. doi:https://doi.
org/10.1016/0893-6080(91)90009-T

Int J Adv Manuf Technol (2018) 94:1335–1347 1347

https://doi.org/10.17814/mechanik.2015.8-9.493
https://doi.org/10.1007/s00170-009-2104-x
https://doi.org/10.1007/s00170-009-2104-x
https://doi.org/10.1007/978-3-540-74205-0_27
https://doi.org/10.1007/978-3-540-74205-0_27
https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/10.1016/0893-6080(91)90009-T
https://doi.org/10.1016/0893-6080(91)90009-T

	Modelling...
	Abstract
	Introduction
	Grinding process assumptions
	Artificial neural networks
	Methodology of neural model validation
	Experimental study
	Modelling assumptions
	Structure of learning, verifying and test data
	Selection of the neural model structure
	Neural network learning method

	Analysis of the results
	Analysis of the results of neural network structure selection
	Verification of neural model correctness

	Conclusion
	References


