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Abstract In order to select the best possible design from
various candidates based on structure configurations of trav-
eling components, it is essential to evaluate the effects of
traveling joints on dynamic behavior of large machine tools.
Firstly, regression analysis and energy method were used to
determine the nonlinear parameters of the metal–plastic
joints. Then, a nonlinear receptance coupling approach
was used to establish a simplified model of a large machine
tool including nonlinear joints. The evaluations of the large
machine tool were analyzed with different milling forces.
The results show that the nonlinearity of traveling joints
significantly influences the resonant frequency and the re-
sponse amplitudes. Experimental verifications were per-
formed on a prototype of a large machine tool for milling
large gears.
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1 Introduction

Increasing demands for large parts, especially in aero-
space industry, electric power industry, and shipping

industry, is boosting interest in large machine tools [1].
These large parts which were previously fabricated are
now machined from monolithic blocks. Improvement of
large parts quality requires better precision of the large
machine tool, while a large machine tool was not associated
with the concepts of high precision in previous years [2].
This requires good dynamic characteristics of large ma-
chine tools. Commonly, the machine's dynamic behavior
is represented in terms of frequency response function
(FRF) [3, 4]. During the design stage of large machine
tools, various candidate designs based on structure config-
urations of traveling components are needed to consider to
select the best possible design. So, it is essential to evaluate
the dynamic behavior before construction of the machine.
By the way, most of the deformations in machine tools are
taken up at the machine joints; therefore, the dynamic
behavior of large machine tools highly depends to a large
extent on the traveling joints [5].

For large machine tools, a common discussion in design
is the comparison of slide guides vs. linear guides. Slide
guides are valued for their ability to absorb large cutting
force and vibrations, while linear guides offer the advantage
of faster movement and low friction. When machining large
parts, slide guides were typically used because the parts may
need heavy cutting and may be on the machine for many
hours. Recently, there has been progressive replacement of
metal–metal slide guides by metal–plastic ones, especially
for large machines. In metal–plastic guides, some special
polyethylene, which was characterized by considerable
amounts of compliance and damping, was used as covering
materials to reduce the friction and the wear of the joints [6].
Traditionally, the vibrations and the corresponding natural
frequencies of the machine were analyzed by finite
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element method (FEM) and the traveling joints were
treated as linear components [7, 8]. In reality, it is
found that most practical structures do not comply with
the assumption of linearity [5, 9–13]. The metal–plastic
traveling joints may introduce nonlinearity in the large
machine structure. This nonlinearity of traveling joints
may result in significant variation in magnitude and
natural frequency of machine's FRF [14], which is not
taken into account in FEM.

In design phases, the evaluation regarding dynamic
behavior of a large machine tool becomes difficult be-
cause of such nonlinear traveling joints. Several papers
have reported on modeling the stiffness and damping
characteristics of machine joints [15–18]. Substructure
synthesis methods [19] and impedance coupling meth-
ods [20] have been developed and used extensively in
the dynamic analysis of assembled structures. However,
the nonlinear effect of traveling joints was also not
considered in these methods. The purpose of this paper

is to describe a systematic way to evaluate the nonlinear
effect of metal–plastic joints on dynamic behavior of
large machine tools using an improved version of imped-
ance coupling methods which incorporates nonlinear
joints. The manuscript was organized as follows: The
experimental determination of the nonlinear parameters
for the metal–plastic joints was performed in Section 2.
A simplified model to evaluate the dynamic behavior of
a large machine tool including nonlinear joints was
established in Section 3. Based on the model, the effect
of traveling joints on dynamic behavior of a large ma-
chine tool was evaluated in Section 4. Additionally, its
validation through comparisons with experimental results
was also reported. And finally, conclusions were offered
in Section 5. It was illustrated throughout the paper by
the application to a large machine tool for milling large
gears named SKXC-4000, as shown in Fig. 1.

Fig. 1 A large machine tool for milling big gears
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Fig. 3 Experimental setup for parameters of joints

Fig. 4 Relationship between external load and relative displacement
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2 Experimental determination of nonlinear parameters
for metal–plastic joints

2.1 Descriptions of joints in the large machine tool

The structure of the large machine tool for milling big
gears was a very common type of machine tool design
with a moving column. The column was equipped with a
spindle box with a maximum speed of 170 rpm and max-
imum power of 60 kW. Many fixed joints and traveling
joints were included in this machine, whose sketch was
shown in Fig. 2. The workpiece was mounted on the
worktable by bolt clamps, which constituted the fixed joint
1. The worktable was connected to the machine bed by the
round metal–plastic guide, which constituted the traveling
joint 2. Although the spindle box was connected to the
column by a slide guide, the normal contact pressure on the
guide applied by the spindle box was not high, so the
dominate vibration was transferred to the motor cabinet
through the feed screw nut. The motor cabinet was
mounted on the column by bolts, which constituted the
fixed joint 3. The metal–plastic guide which was connected
the column and the machine bed constituted the traveling
joint 4. The machine bed was assumed as a connecting
base which was perfectly rigid.

An ultra high molecular weight polyethylene was used as
covering materials in the metal–plastic guides of the large

machine tool for milling big gears. The model accounting
for the traveling joints is based on the assumption that the
metal component is rigid and all compliance may be attrib-
uted to the plastic component. The objective of the model is
to describe the relationship between the restoring force with
respect to the relative displacement Δx and the relative
velocity Δ x

:
. The restoring force function was expressed as

P Δx;Δ x
:ð Þ ¼ p Δxð Þ þ cΔ x

: ð1Þ
where p(Δx) is the restoring force due to the stiffness term
alone, and c Δ x

:
represents the contribution due to the

viscous damping. Subsequently, experiments were done to
determine the stiffness, and the energy method was used to
determine the damping coefficient.

2.2 Determination of stiffness term

There are several factors which influence the stiffness of the
metal–plastic joints interactively, such as the external load, the
lubricated condition, and the surface roughness. Essentially,
the stiffness of the metal–plastic joints was nonlinear. In this
experiment, dimension of the specimen for the metal–plastic
joints was 900 mm2, and the surface roughness was 3.01 μm.
The specimen was clamped in the experimental setup shown
in Fig. 3. With well-lubricated conditions, the external load on
the specimen was varied from 1 to 50 N. Two TESA sensors
were aligned symmetrically to measure the relative displace-
ment on either side of the specimen to ensure that only normal
translation was observed when external load was applied. A
total of 50 experiments were done and the results obtained
from experiments were shown in Fig. 4. Regression analysis
was used to find the mathematical model of p(Δx). The data
were fitted with a cubic power curve using the least square
estimation, and it was derived as

p Δxð Þ ¼ k Δxð Þ3 ð2Þ
where k=4.99×1012N/m3.

Fig. 5 Hysteresis loop under loading and unloading
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Fig. 7 Assembled structure

Fig. 8 Model of assembled structure for workpiece–worktable–ma-
chine bed
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2.3 Determination of damping coefficient

The damping coefficient was calculated based on the hyster-
esis loop (shown in Fig. 5) recorded during experiments with
conditions of loading and unloading on the specimen. It was
found that the net energy loss due to damping per cycle was
about 20 % of the maximum potential energy, thus damping
played a significant role in the system dynamics. Therefore,
the viscous damping was assumed to describe the joint damp-
ing characteristics. Using the energy method [21], it was
possible to get the damping coefficient, which was defined as

c ¼ ΔU

Umax
¼ 0:2384Ns =m ð3Þ

where c is the damping coefficient, ΔU is the energy loss, and
Umax is maximum potential energy.

3 Modeling of the large machine tool structure including
nonlinear joints

3.1 Approach to analyze the effect of nonlinear joints

Owing to their relatively rigidity, the workpiece, worktable,
machine bed, clamps fixed joint, and bolts fixed joint were all
represented as linear models. Nonlinear dynamics were intro-
duced into the machine tool structure through the metal–plastic
joints only. The nonlinear receptance coupling approach
(NLRCA) was used in this paper to analyze the effect of travel-
ing joints. This method was developed by Ewins et al. [22].

NLRCA was able to represent the response of a coupled
structure with local nonlinear elements to various input excita-
tions based on the determined frequency response of individual
modules of pre-coupled structure to various input excitations.
The coupled structure included all the modules of the pre-
coupled structure along with the joints. The analysis process
was divided into two stages: (a) before coupling and (b) after
coupling. The coupling was related to structures and

coordinates. All the structures in the before coupling stage were
called “individual substructure,” and the coupled structure in
the after coupling stage was called “assembled structure.” The
coordinates were also divided into “connection coordinates”
and “internal coordinates.” The individual substructures to be
connected were shown in Fig. 6, and the assembled structure
with a nonlinear joint was shown in Fig. 7.

The coordinates in the individual substructures were rep-
resented by small letters, and the coordinates in the assem-
bled structure were represented by capital letters. The
connection was represented by a pair of connected coordi-
nates (v,w), and i is the internal coordinate. The response of
the structure in the before coupling stage was expressed as

xi
xv
xw

8<
:

9=
; ¼

hii hiv hiw
hvi hvv hvw
hwi hwv hww

2
4

3
5 fi

fv
fw

8<
:

9=
; ð4Þ

where xi is the displacement in the i coordinate, hvw is the
receptance matrix of the dynamic compliance between the
coordinates v and w, and fi is the force applied in the i
coordinate.

In the after coupling stage, the response of the structure
was expressed as

XI

XV

XW

8<
:

9=
; ¼

HII HIV HIW

HVI HVV HVW

HWI HWV HWW

2
4

3
5 FI

FV

FW

8<
:

9=
;: ð5Þ

The equilibrium conditions of forces were given as

FV ¼ FW ¼ fv þ fw
fi ¼ FI

�
: ð6Þ

The compatibility conditions of displacements were given as

xi ¼ XI

xv ¼ XV

xw ¼ XW

xv � xw ¼ �fv=Gvw

8>><
>>:

ð7Þ

xi ¼ XI

xv ¼ XV

xw ¼ XW

xw � xv ¼ �fw=Gvw

8>><
>>:

ð8Þ

where Gvw is the describing function of the joint dynamic
compliance which is a function of relative displacement

Fig. 9 Model of assembled structure for spindle box–column–ma-
chine bed

Table 1 Model parameters of
workpiece–worktable–machine
bed

m1/kg m2/kg k1/MN m−1 c1/Nsm−1 k02/TN m−3 c02/Nsm−1

1,000 15,000 3 300 4.99 0.2384
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between the coordinates v and w. Obviously, this describing
function will be different values at different response
amplitudes.

Consequently, the response of the structure in the after
coupling stage was derived by the receptance matrices in the
before coupling stage as

XI

XV

XW

8<
:

9=
; ¼

hii hiv hiw
hvi hvv hvw
hwi hwv hww

2
4

3
5�

hiv � hiw
hvv � hvw
hwv � hww

2
4

3
5ðBÞ�1

hiv � hiw
hvv � hvw
hwv � hww

2
4

3
5
T8<

:
9=
;

FI

FV

FW

8<
:

9=
; ð9Þ

where

B ¼ hvv þ hww þ 1=Gvw � hvw � hwv: ð10Þ

3.2 A simplified model of the large machine tool structure

Figure 8 shows the assembled structure of workpiece–
worktable–machine bed, which is represented by 2
degrees of freedom forced vibration system. The work-
piece and the worktable were assumed as rigid bodies
with equivalent mass m1 and m2. The fixed joint 1 was
represented by a linear spring with stiffness k1 and a
viscous damper with damping coefficient c1 followed
ref. [23]. The traveling joint 2 was represented by a
nonlinear element with the describing function of the
joint dynamic compliance G02. F was the magnitude of
milling force applied on the workpiece. Similarly, the
model of assembled structure for spindle box–column–
machine bed was shown in Fig. 9.

4 Evaluation of the traveling joints effect on dynamic
behavior of the large machine tool

In Fig. 8, the internal and connection coordinates were
defined as i={1}, v={2}, and w={0}, where 0 represented
machine bed as connection base, and 1 and 2 represented
coordinates on m1 and m2 respectively. Consequently, the
receptance metrics of the dynamic compliance in Eq. (9)
were determined as

h01 ¼ h10 ¼ h20 ¼ h00 ¼ h02 ¼ 0: ð11Þ

The receptance metrics of the dynamic compliance be-
tween the workpiece and the worktable were derived from
the equation of motion which was described as

m1 0
0 m2

� �
x
::
1

x
::
2

� �
þ c1 �c1

�c1 c1

� �
x
:
1

x
:
2

� �
þ k1 �k1

�k1 k1

� �
x1
x2

� �
¼ F

0

� �
:

ð12Þ

Table 2 Model parameters of
spindle box–column–machine
bed

m3/kg m4/kg k2/MN m−1 c2/Nsm−1 k04/TN m−3 c04/Nsm−1

4,000 9,000 3 300 4.99 0.2384

Fig. 10 Dynamic compliance of assembled structure for work-
piece–worktable–machine bed

Fig. 11 Dynamic compliance of assembled structure for spindle box–
column–machine bed
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So, the receptance matrix for the workpiece and the
worktable was expressed as

h11 h12
h21 h22

� �
¼ �m1w2 þ jc1w þ k1 �jc1w � k1

�jc1w � k1 �m2w2 þ k1 þ jc1w

� ��1

:

ð13Þ

Consequently, Eq. (10) was derived as

B ¼ h22 þ 1=G02 ð14Þ

where G02 can be calculated according to the Eq. (1). Based
on the describing function method [24], the input was a
harmonic signal which was defined as

Δx ¼ A sinwt ð15Þ
where A was the amplitude of the input signal. Thus, the
fundamental component of the response for the restoring
force was derived as

P wð Þ ¼ 3

4
k02A

3 sinwt þ jc02wA sinwt ð16Þ

so G02 was obtained as

G02 ¼ 3

4
k02A

2 þ jc02w ð17Þ

where A was x2 and ω was the frequency. Equation (9) can

Fig. 12 Prototype of the large machine tool for milling big gears

F=5000N F=10000N

F=20000N

a b

c

Fig. 13 a–c Computed and measured dynamic compliance of assembled structure for workpiece–worktable–machine bed
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be expressed in this case as

X1

X2

X0

8<
:

9=
; ¼

0 h12 0
h21 h22 0
0 0 0
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0
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h12
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0
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3
5
T8<

:
9=
;

F
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0

8<
:

9=
;:

ð18Þ

The values of the model parameters were given in
Tables 1 and 2. Figures 10 and 11 illustrate the results of
Eq. (18) under different milling forces. Therefore, the
amplitude of the milling force is important to estimate the
dynamic behavior of the large machine tool accurately.
Measurements of the milling force were carried out on
the prototype of the large machine tool for milling big
gears shown in Fig. 12. The milling force varied from
5,000 to 20,000 N when the feed rate changed from
150 to 270 mm/min at the spindle speed of 100 rpm
and the tool diameter of 400 mm for machining the
gear of 42CrMo. For the assembled structure of work-
piece–worktable–machine bed, when the milling force
ranged from 5,000 to 20,000 N, the maximum dynamic
compliance changed from 0.692 to 0.275 μm/N. Be-
cause of the effect of the nonlinear joints, the amplitude
of the dynamic compliance decreased with increasing of

the milling force. In other words, the dynamic compli-
ance became weak inversely when the cutting force
increased. The resonant frequency also changed with
the variation of the milling force. Otherwise, the num-
ber of the resonant frequency was more than the num-
ber of freedom degrees of the assembled structure, and
the jump phenomenon was observed in Figs. 10 and 11.
By comparing Figs. 10 and 11, we can observe that the
nonlinear traveling joints have little influence on assem-
bled structure of spindle–column–machine bed since the
spindle box has a larger mass than the workpiece.

In order to verify the validity and efficiency of the
above analysis, experimental tests have been performed
on the prototype shown in Fig. 12. Hammer tests were
carried out on the assembled structure of workpiece–work-
table–machine bed and the assembled structure of spindle
box–column–machine bed, respectively. The LMS vibra-
tion testing and analysis systems were used in the test, and
the impact hammer in use was 086C42 produced by U.S.
PCB. The testing accelerometer was 356A15 piezoelectric
accelerometer. The comparisons between experimental
results and theoretical calculations were shown in Figs. 13
and 14. Some deviations between the experimental records
and the theoretical calculations were unavoidable because

F=5000N F=10000N

F=20000N

a b

c

Fig. 14 a–c Computed and measured dynamic compliance of assembled structure for spindle box–column–machine bed
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of the complexity of the experimental machine tool. Noise
of the environment was also responsible for these devia-
tions, while the evolution of the experimental records con-
sisted with the theoretical calculations. The nonlinear
dynamic characteristics were also observed in the experi-
mental results.

5 Conclusions

The nonlinear effect of metal–plastic joints on dynamic be-
havior of large machine tools must be taken into account
during the design stage so as to select the best candidate
design. The study presented in this paper made it possible to
evaluate the influence of the nonlinear joints. This proposed
approach made use of the NLRCA which incorporated the
effects of local nonlinear joints. Experimental results obtained
from the prototype of the large machine tool for milling big
gears were used to validate the approach. It was shown that the
dynamic compliance became weak inversely when the cutting
force increased, and the resonant frequency also changed with
the variation of the exciting forces. The nonlinearity of trav-
eling joints caused the uncertainty of the dynamic behavior of
the machine tool. In order to further improve the dynamic
performance of large machine tools, future work will focus on
investigation of controlling the nonlinear vibration by modi-
fying the mechanical structure or tuning the controller param-
eters in more detail. For this purpose, the coupled model with
mechanical structure and control system as well as the
corresponding verification tests has been planned.

Acknowledgments This research was supported by the National
Natural Science Foundation of China, grant no. 51175242, Innovation
Foundation of Nanjing Institute of Technology, grant no. CKJ2010014,
and Key University Science Research Project of Jiangsu Province,
grant no. 12KJA460002. The authors also wish to acknowledge con-
tributions to this work of Nanjing Gongda CNC Technology Co., Ltd.
for its assistance in experiments.

Open Access This article is distributed under the terms of the Creative
Commons Attribution License which permits any use, distribution, and
reproduction in any medium, provided the original author(s) and the
source are credited.

References

1. Acedo EG, Olarra A, Lopez LN (2012) A method for thermal charac-
terization and modeling of large gantry-type machine tools. Int J Adv
Manuf Technol 62:875–886. doi:10.1007/s00170-011-3879-0

2. Kennedy B (2008) Larger machine tool issues. Cutting Tool Eng
59:41–48

3. Dhupia J, Powalka B, Katz R, Ulsoy AG (2006) Dynamics of the
arch-type reconfigurable machine tool. Int J Mach Tools Manuf
47:326–334

4. Huo D, Cheng K, Wardle F (2010) Design of a 5-axis ultra-
precision micro-milling machine—UltraMill. Part 2: integrated
dynamic modeling, design optimization and analysis. Int J Adv
Manuf Technol 47:879–890. doi:10.1007/s00170-009-2929-1

5. Ravve I, Gottlieb O, Yarnitzky Y (1997) Nonlinear dynamics and
stability of a machine tool traveling joint. Nonlinear Dyn 13:373–394

6. Mhala VP, Grad IE (2008) Contact deformation of machine tool
joints using UHMWPE under varying process parameters and
environmental conditions. IE(I)J-PR 89:19–24

7. Kolar P, Sulitka M, Janota M (2011) Simulation of dynamic proper-
ties of a spindle and tool system coupled with a machine tool frame.
Int J AdvManuf Technol 54:11–20. doi:10.1007/s00170-010-2917-7

8. Duncan GS, Tummond MF, Schmitz TL (2005) An investigation
of the dynamic absorber effect in high-speed machining. Int J
Mach Tools Manuf 45:497–507

9. Carrella A, Ewins DJ (2011) Identifying and quantifying structural
nonlinearities in engineering applications from measured frequen-
cy response functions. Mech Syst Signal process 25:1011–1027.
doi:10.1016/j.ymssp.2010.09.011

10. Stry GI, Mook DJ (1992) An experimental study of nonlinear
dynamic system identification. Nonlinear Dyn 3:1–11

11. Andersson PBU, Kropp W (2008) Time domain contact model for
tyre/road interaction including nonlinear contact stiffness due to
small-scale roughness. J Sound Vib 318:296–312

12. Brutti C, Coglitore G, Valentini PP (2011) Modeling 3D revolute
joint with clearance and contact stiffness. Nonlinear Dyn 66:531–
548. doi:10.1007/s11071-010-9931-z

13. Fawzi MA (2011) Time-varying total stiffness matrix of a rigid
machine spindle-angular contact ball bearings assembly: theory
and analytical/experimental verifications. Shock Vib 18:641–670.
doi:10.3323/SAV-2010-0577

14. Yigit AS, Ulsoy AG (2002) Dynamic stiffness evaluation for
reconfigurable machine tools including weakly non-linear joint
characteristics. Proc ImechE Part B: J Mech Manuf 216:87–
101

15. Andrew C, Cockburn JA, Waring AE (1967) Metal surfaces in
contact under normal forces: some dynamic stiffness and damping
characteristics. Proc Instn Mech Engrs 68:92–100

16. Dekoninck C (1972) Deformation properties of metallic contact
surfaces of joints under the influence of dynamic tangential loads.
Int J Mach Des Res 12(3):193–199

17. Rogers PF, Boothroyd G (1975) Damping at metallic interfaces
subjected to oscillating tangential loads. Trans ASME, J Eng for
Industry 97(3):1087–1093

18. Shi X, Polycarpou AA (2008) Investigation of contact stiffness and
contact damping for magnetic storage head-disk interfaces. Trans
ASME, J Tribol 130:021901–021909

19. Liu W, Ewins DJ (2002) Substructure synthesis via elastic media. J
\ Sound Vib 257:361–379. doi:10.1006/jsvi.5044

20. Schmitz TL, Duncan GS (2005) Three-component receptance cou-
pling substructure analysis for tool point dynamics prediction. J
Manuf Sci Eng 127:781–790

21. Marchelek K, Szwengier G, Bodnar A (1999) Experimental inves-
tigation of relative coefficients of vibration energy dissipation in
slideway joint contacts of machine tools. Comput Methods Exp
Meas IX:77–86

22. Ferreira JV, Ewins DJ (1996) Nonlinear receptance coupling ap-
proach based on describing function. Proceeding 14th International
Modal Analysis Conference, Hawaii 1:1034–1040.

23. Liu H, Zhao WH (2010) Dynamic characteristic analysis for ma-
chine tools based on concept of generalized manufacturing space. J
Mech Eng 46:54–60

24. Wen BC, Li YN, Han QK (2001) Nonlinear vibration theory and
its application. Northeast University Press, Shenyang

2032 Int J Adv Manuf Technol (2013) 68:2025–2032

http://dx.doi.org/10.1007/s00170-011-3879-0
http://dx.doi.org/10.1007/s00170-009-2929-1
http://dx.doi.org/10.1007/s00170-010-2917-7
http://dx.doi.org/10.1016/j.ymssp.2010.09.011
http://dx.doi.org/10.1007/s11071-010-9931-z
http://dx.doi.org/10.3323/SAV-2010-0577
http://dx.doi.org/10.1006/jsvi.5044

	An approach to evaluate the effects of nonlinear traveling joints on dynamic behavior of large machine tools
	Abstract
	Introduction
	Experimental determination of nonlinear parameters for metal–plastic joints
	Descriptions of joints in the large machine tool
	Determination of stiffness term
	Determination of damping coefficient

	Modeling of the large machine tool structure including nonlinear joints
	Approach to analyze the effect of nonlinear joints
	A simplified model of the large machine tool structure

	Evaluation of the traveling joints effect on dynamic behavior of the large machine tool
	Conclusions
	References


