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                    Abstract
Design of multiscale structures is a challenging task due to a vast design space of both materials and structures. Consideration of load uncertainty adds another level of complexity. In this paper, a robust concurrent TO (topology optimization) approach is developed for designing multiscale structures composed of multiple porous materials under random field loading uncertainty. To determine the optimal distribution of the porous materials at the macro/structural scale, our key idea is to employ the discrete material optimization method to interpolate the material properties for multiple porous materials. In addition, for the first time we interpret the interpolation schemes in the existing concurrent TO model of porous material with a clear physical meaning by putting forward a SIMP-like single interpolation scheme. This scheme integrates the SIMP (Solid Isotropic Material with Penalization) at the microscale and PAMP (Porous Anisotropic Material with Penalization) at the macroscale into a single equation. Efficient uncertainty characterization and propagation methods based on K-L expansion and linear superposition are introduced, and several important improvements in objective function evaluation and sensitivity analysis are presented. Improved sensitivity analysis equations are derived for volume preserving filtering, which is employed to deal with numerical instabilities at the macro and micro scales in the robust concurrent TO model. Measures to ensure manufacturability and to improve analysis accuracy and efficiency are devised. 2D and 3D examples demonstrate the effectiveness of the proposed approach in simultaneously obtaining robust optimal macro structural topology and material microstructural topologies.
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Appendices
Appendix A - Improved Sensitivity Analysis for Volume Preserving Filter
In this section, we will derive improved sensitivity for topology optimization using volume preserving filtering (Xu et al. 2010). Assuming the design domain is meshed into N finite elements and given pseudo density (design variables) ρ
                           
                    i
                   of the ith element (i ∈ {1, 2,  ... , N}), after linear density filtering, we obtain density \( {\overline{\rho}}_e \) for the eth element as,
$$ {\overline{\rho}}_e={\sum}_{i\in {\Psi}_e}{w}_i{\rho}_i{v}_i/{\sum}_{i\in {\Psi}_e}{w}_i{v}_i, $$

                    (52)
                

where v
                           
                    i
                   represents the volume of the ith element. w
                           
                    i
                   is the weighting coefficient given by
$$ {w}_{\mathrm{i}}=\mathrm{r}-\left\Vert {x}_{\mathrm{i}}-{x}_{\mathrm{e}}\right\Vert, $$

                    (53)
                

where x
                           i is the center location vector of element i and r is the filter radius. Ψ
                    e
                   in (52) denotes the neighborhood of element e, which is specified by the elements whose centers are located within r of element e, i.e.
$$ {\Psi}_{\mathrm{e}}\kern0.5em =\left\{\mathrm{i}|\left\Vert {x}_{\mathrm{i}}-{x}_{\mathrm{e}}\right\Vert \le \mathrm{r}\right\}. $$

                    (54)
                


                        Then, \( {\overline{\rho}}_e \) is filtered by the volume preserving nonlinear density filter and the filtered/physical density is
$$ {\tilde{\rho}}_e=\left\{\begin{array}{c}\hfill \eta \left[{e}^{-\beta \left(1-{\overline{\rho}}_e/\eta \right)}-\left(1-{\overline{\rho}}_e/\eta \right){e}^{-\beta}\right]\kern9.75em 0\le {\overline{\rho}}_e\le \eta \hfill \\ {}\hfill \left(1-\eta \right)\left[1-{e}^{-\beta \left({\overline{\rho}}_e-\eta \right)/\left(1-\eta \right)}+\left({\overline{\rho}}_e-\eta \right){e}^{-\beta}/\left(1-\eta \right)\right]+\eta \kern1.5em \eta <{\overline{\rho}}_e\le 1\hfill \end{array}\right., $$

                    (55)
                

where β is the smooth parameter in the Heaviside function. η is the volume preserving parameter to ensure the volume is the same before and after nonlinear filtering in (55). η is determined by method of bisection meeting the following volume preserving condition,
$$ g\left({\tilde{\rho}}_e,{\overline{\rho}}_e\right)={\sum}_{e=1}^N{\tilde{\rho}}_e{v}_e-{\sum}_{e=1}^N{\overline{\rho}}_e{v}_e=0. $$

                    (56)
                


                        By virtue of the chain rule, the sensitivities of a general performance function f with respect to the design variable ρ
                           
                    i
                   is obtained as follows in the literature (Xu et al. 2010),
$$ \frac{\partial f}{\partial {\rho}_i}=\sum_{e\in {\Phi}_i}\frac{\partial f}{\partial {\tilde{\rho}}_e}\frac{\partial {\tilde{\rho}}_e}{\partial {\overline{\rho}}_e}\frac{\partial {\overline{\rho}}_e}{\partial {\rho}_i}, $$

                    (57)
                

where \( \partial {\tilde{\rho}}_e/\partial {\overline{\rho}}_e \) and \( \partial {\overline{\rho}}_e/\partial {\rho}_i \) should be deduced from (55) and (52).
We discovered that the numerical sensitivities obtained using (57) usually have some discrepancy with the sensitivities obtained using the finite difference method. To remove this discrepancy, the improved analytical sensitivity analysis should be stated as,
$$ \begin{array}{cc}\hfill \frac{\partial f}{\partial {\rho}_i}=\sum_{e\in {\Phi}_i}\frac{\partial f}{\partial {\tilde{\rho}}_e}\frac{\partial {\tilde{\rho}}_e}{\partial {\overline{\rho}}_e}\frac{\partial {\overline{\rho}}_e}{\partial {\rho}_i}+\sum_{e=1}^N\frac{\partial f}{\partial {\tilde{\rho}}_e}\frac{\partial {\tilde{\rho}}_e}{\partial \eta}\frac{\partial \eta}{\partial {\rho}_i},\hfill & \hfill \left( i\in \left\{1,2,\dots, N\right\}\right),\hfill \end{array} $$

                    (58)
                

where ∂η/∂ρ
                           
                    i
                   can be obtained by taking the derivative of the volume preserving condition dg/dρ
                           
                    i
                   = 0 as
$$ \frac{\partial \eta}{\partial {\rho}_i}=\left(\sum_{e\in {\Phi}_i}\left(1-\frac{\partial {\tilde{\rho}}_e}{\partial {\overline{\rho}}_e}\right)\frac{\partial {\overline{\rho}}_e}{\partial {\rho}_i}{v}_e\right)/\left(\sum_{e=1}^N\frac{\partial {\tilde{\rho}}_e}{\partial \eta}{v}_e\right). $$

                    (59)
                


                        Finally for a general performance function f, its sensitivity can be sated as,
$$ \frac{\partial f}{\partial {\rho}_i}=\sum_{e\in {\Phi}_i}\frac{\partial f}{\partial {\tilde{\rho}}_e}\frac{\partial {\tilde{\rho}}_e}{\partial {\overline{\rho}}_e}\frac{\partial {\overline{\rho}}_e}{\partial {\rho}_i}+\sum_{e=1}^N\frac{\partial f}{\partial {\tilde{\rho}}_e}\frac{\partial {\tilde{\rho}}_e}{\partial \eta}\left(\sum_{e\in {\Phi}_i}\left(1-\frac{\partial {\tilde{\rho}}_e}{\partial {\overline{\rho}}_e}\right)\frac{\partial {\overline{\rho}}_e}{\partial {\rho}_i}{v}_e\right)/\left(\sum_{e=1}^N\frac{\partial {\tilde{\rho}}_e}{\partial \eta}{v}_e\right), $$

                    (60)
                

which is different from (57).
Appendix B - PCG with Rounding-off Error Correction
For a linear system Ax = kwith A symmetric and positive definite, the following formulas are used in conjugate gradient method:
$$ \begin{array}{cc}\hfill \begin{array}{l}{\mathbf{p}}_0={\mathbf{r}}_0=\mathbf{k}-{\mathbf{Ax}}_0\\ {}{\alpha}_i={\left|{\mathbf{r}}_i\right|}^2/{\mathbf{p}}_i^T{\mathbf{Ap}}_i\\ {}{\mathbf{x}}_{i+1}={\mathbf{x}}_i+{\alpha}_i{\mathbf{p}}_i\\ {}{\mathbf{r}}_{i+1}={\mathbf{r}}_i-{\alpha}_i{\mathbf{Ap}}_i\\ {}{b}_i={\left|{\mathbf{r}}_{i+1}\right|}^2/{\left|{\mathbf{r}}_i\right|}^2\\ {}{\mathbf{p}}_{i+1}={\mathbf{r}}_{i+1}+{b}_i{\mathbf{p}}_i\end{array}\hfill & \hfill, \hfill \end{array} $$

where x
                           0 is an arbitrary starting point.
With the correction to remove rounding-off error, the above routine is refined by the following formulas:
$$ \begin{array}{l}{\mathbf{p}}_0={\mathbf{r}}_0=\mathbf{k}-{\mathbf{Ax}}_0,\kern1em {d}_0=1\\ {}{\alpha}_i=\frac{{\left|{\mathbf{r}}_i\right|}^2}{{\mathbf{p}}_i^T{\mathbf{Ap}}_i}\frac{1}{d_i}\\ {}{\mathbf{x}}_{i+1}={\mathbf{x}}_i+{\alpha}_i{\mathbf{p}}_i\\ {}{\mathbf{r}}_{i+1}={\mathbf{r}}_i-{\alpha}_i{\mathbf{Ap}}_i\\ {}{b}_i=\frac{{\left|{\mathbf{r}}_{i+1}\right|}^2}{{\left|{\mathbf{r}}_i\right|}^2}{d}_i\\ {}{\mathbf{p}}_{i+1}={\mathbf{r}}_{i+1}+{b}_i{\mathbf{p}}_i\\ {}{d}_{i+1}=1-{b}_i\frac{{\mathbf{p}}_{i+1}^T{\mathbf{Ap}}_i}{{\mathbf{p}}_{i+1}^T{\mathbf{Ap}}_{i+1}}\end{array} $$


                        The above is for conjugate gradient method. For preconditioned conjugate gradient method in OOFEM, similar corrections can be incorporated as well.


Rights and permissions
Reprints and permissions


About this article
       



Cite this article
Deng, J., Chen, W. Concurrent topology optimization of multiscale structures with multiple porous materials under random field loading uncertainty.
                    Struct Multidisc Optim 56, 1–19 (2017). https://doi.org/10.1007/s00158-017-1689-1
Download citation
	Received: 14 August 2016

	Revised: 10 March 2017

	Accepted: 30 March 2017

	Published: 24 April 2017

	Issue Date: July 2017

	DOI: https://doi.org/10.1007/s00158-017-1689-1


Share this article
Anyone you share the following link with will be able to read this content:
Get shareable linkSorry, a shareable link is not currently available for this article.


Copy to clipboard

                            Provided by the Springer Nature SharedIt content-sharing initiative
                        


Keywords
	Concurrent topology optimization
	Multiscale structure
	Porous materials
	Random field uncertainty








                    
                

            

            
                
                    

                    
                        
                            
    

                        

                    

                    
                        
                    


                    
                        
                            
                                
                            

                            
                                
                                    
                                        Access this article


                                        
                                            
                                                
                                                    
                                                        Log in via an institution
                                                        
                                                            
                                                        
                                                    
                                                

                                            
                                        

                                        
                                            
 
 
  
   
    
     
     
      Buy article PDF USD 39.95
     

    

    Price excludes VAT (USA)

     Tax calculation will be finalised during checkout.

    Instant access to the full article PDF.

   

  

  
 

 
  
   
    Rent this article via DeepDyve
     
      
     

   

  

  
 


                                        

                                        
                                            Institutional subscriptions
                                                
                                                    
                                                
                                            

                                        

                                    

                                
                            

                            
                                
    
        Advertisement

        
        

    






                            

                            

                            

                        

                    

                
            

        

    
    
    


    
        
            Search

            
                
                    
                        Search by keyword or author
                        
                            
                            
                                
                                    
                                
                                Search
                            
                        

                    

                
            

        

    



    
        Navigation

        	
                    
                        Find a journal
                    
                
	
                    
                        Publish with us
                    
                
	
                    
                        Track your research
                    
                


    


    
	
		
			
			
	
		
			
			
				Discover content

					Journals A-Z
	Books A-Z


			

			
			
				Publish with us

					Publish your research
	Open access publishing


			

			
			
				Products and services

					Our products
	Librarians
	Societies
	Partners and advertisers


			

			
			
				Our imprints

					Springer
	Nature Portfolio
	BMC
	Palgrave Macmillan
	Apress


			

			
		

	



		
		
		
	
		
				
						
						
							Your privacy choices/Manage cookies
						
					
	
						
							Your US state privacy rights
						
						
					
	
						
							Accessibility statement
						
						
					
	
						
							Terms and conditions
						
						
					
	
						
							Privacy policy
						
						
					
	
						
							Help and support
						
						
					


		
	
	
		
			
				
					
					54.226.222.121
				

				Not affiliated

			

		
	
	
		
			
		
	
	© 2024 Springer Nature




	






    