
RESEARCH PAPER

A multiscale method for optimising surface topography
in elastohydrodynamic lubrication (EHL) using metamodels

G. N. de Boer1 & L. Gao1 & R. W. Hewson1
& H. M. Thompson2

&

N. Raske3 & V. V. Toropov3

Received: 1 October 2015 /Revised: 11 December 2015 /Accepted: 22 December 2015 /Published online: 2 April 2016
# The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract The frictional performance of a bearing is of
significant interest in any mechanical system where
there are lubricated surfaces under load and in relative
motion. Surface topography plays a major role in deter-
mining the coefficient of friction for the bearing because
the size of the fluid film and topography are of a com-
parable order. The problem of optimising topography for
such a system is complicated by the separation in scales
between the size of the lubricated domain and that of
the topography, which is of at least one order of mag-
nitude or more smaller. This paper introduces a
multiscale method for optimising the small scale topog-
raphy for improved frictional performance of the large
scale bearing. The approach ful ly couples the
elastohydrodynamic lubrication at both scales between
pressure generated in the lubricant and deformation of
the bounding surfaces. Homogenised small scale data is
used to inform the large scale model and is represented
using Moving Least Squares metamodels calibrated by
cross validation. An optimal topography for a minimum
coefficient of friction for the bearing is identified and
comparisons made of local minima in the response,

where very different topographies with similar frictional
performance are observed. Comparisons of the optimal
topography with the smooth surface model demonstrated
the complexity of capturing the non-linear effect of to-
pography and the necessity of the multiscale method in
capturing this. Deviations from the smooth surface mod-
el were quantified by the metamodel coefficients and
showed how topographies with a similar frictional per-
formance have very different characteristics.
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Abbreviations
BVP Boundary Value Problem
CFD Computational Fluid Dynamics
CV Cross Validation
DOE Design of Experiments
EHL Elastohydrodynamic Lubrication
FSI Fluid structure Interaction
GA Genetic Algorithm
HMM Heterogeneous Multiscale Methods
IVP Initial Value Problem
k-CV k-fold Cross Validation
LOO-CV Leave-One-Out Cross Validation
MLS Moving Least Squares
OLHC Optimum Latin Hypercube
PTFE Polytetrafluoroethlyene
RMSE Root Mean Squared Error
Nomenclature
A MLS matrix
b Right-hand-side variable in the MLS

operation
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C1–8 MLS coefficients
E Young’s modulus
E’ Equivalent Young’s modulus
h Undeformed film thickness
g Film gap
G Normalised film gap
I Identity matrix
k Fold size
k1 Local stiffness
K Stiffness matrix
L Cell length
Lp Pad length
N Size of DOE
p Pressure
p* Load per unit area
ps Small scale pressure
P Normalised pressure
dp
dx Pressure gradient
Δp Pressure jump
q Mass flow rate per unit depth
Q Normalised mass flow rate per unit depth
r Normalised Euclidean distance
s Small scale film thickness
Δs Deformation of the small scale film thickness
t Pad thickness
t’ Equivalent thickness
usvs, ws, Small scale velocity components
U Moving wall velocity
w Moving least squares weight
W Load capacity
Wrep Required load capacity
x Large scale coordinate direction
xs, ys, zs, Small scale coordinate directions
α Topography amplitude
γ Left-hand-side variable in the MLS

operation
Γ Vector of MLS multipliers
δ Deformation
δt Topography
η0 Ambient viscosity
ηs Small scale viscosity
θ Closeness of fit parameter
μ Coefficient of friction
ν Poisson’s ratio
ρ0 Ambient density
ρs Small scale density
τ Shear stress
φ Tilt angle
ψ Small scale topography parameter

a Inlet

b Outlet
~ Assessment location

1 Introduction

Elastohydrodynamic Lubrication (EHL) describes the forma-
tion of a lubricated film between two machine elements which
are under load and in relative motion to each other. The
pressurisation of the lubricant in the EHL regime is large
enough to cause deformation of the mating surfaces, which
in turn leads to a change in the lubricating film thickness.
Fluid film lubrication is conventionally modelled using the
Reynolds equation (Cameron 1971) based on the lubrication
between two nearly parallel smooth surfaces. EHL exists in
mechanical systems such as gear teeth, bearings, rubber seals
and car tyres on a wet road (Dowson 1999). One of the design
challenges for such systems is to control the coefficient of
friction between the mating surfaces, typically to reduce it
for machine components and increase it where traction is re-
quired. Tzeng and Saibel (1967), Patir and Cheng (1978),
Etsion (2005), de Kraker et al. (2007), Sahlin et al. (2010),
de Boer et al. (2014) have found that texturing bearing sur-
faces can have a significant effect on the coefficient of friction
of lubricated contacts compared to the smooth bearing case.
Despite the significant work showing potential performance
improvements in terms of friction there is still a need for an
efficient computational approach to analyse bearing topogra-
phy and more importantly to use such analysis for design
optimisation.

Minimising friction in a textured EHL contact is compli-
cated by the fact that it is a multi-scale problem where the
scale of the overall lubricated domain is typically an order of
magnitude or more greater than that of the topographical fea-
tures (Gohar 2001). This disparity of scales means that it is
infeasible to computationally resolve the small scale features
as well as the large scale bearing domain. This is especially
true when (i) the assumptions on which the Reynolds equation
is based (Cameron 1971) break down due to the local topog-
raphy and the bearing surfaces no longer being nearly parallel,
(ii) the deformation of the bearing geometry under the influ-
ence of pressurised lubricant is also considered as is the case in
EHL.

To resolve this challenging problem, multiscale modelling
techniques have been developed to address the computational
requirements in obtaining numerical solutions to the problem.
A range of multiscale approaches have been proposed to solve
this problem, including the Flow Factors approach (Patir and
Cheng 1978) and that based on the Heterogenous Multiscale
Method (Gao and Hewson 2012). These approaches share
significant similarities, whereby the small scale flow around
a single (or single set of) periodic topographical feature(s) is
resolved for a range of potential large scale conditions, the
homogenised solution of which is then used to obtain the large
scale solution. The solution of the small scale problem has
been based on lubrication (Sahlin et al. 2010), Stokes (de
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Kraker et al. 2007) and Navier–Stokes flow models (de Boer
et al. 2014; Gao et al. 2015). A similar mulitscale approach
has also been used to model coating flows where topograph-
ical features are present (Hewson et al. 2011).

Data communication between the length-scales of a
multi-scale method can be achieved in several ways.
Serial coupling methods pass parameters between the
scales and determine the effective macroscopic parame-
ters from the micro-scale model in a pre-processing step
and use the macroscopic model in the computations, see
de Kraker et al. (2007) in the context of EHL model-
ling. In concurrent coupling methods, however, the
micro-scale and macro-scale models are linked dynami-
cally during the overall computation (Abraham et al.
1999) and it is therefore important to build a fast
input/output relationship between models at the different
scales (Roux et al. 1998). The use of metamodels to
represent the small-scale data is becoming increasingly
popular. Benke et al. (2009), for example, used
metamodels for the atomic structure of DNA molecules
to determine the parameters of the mechanical structures
within a multiscale model of polymer migration in
DNA-laden flows, and Writz et al. (2015) recently pro-
posed the use of kernel methods to provide fast
metamodels for multiscale modelling of the human
spine. The general metamodelling approach is divided
into two stages: a computationally expensive offline
stage where the metamodelling parameters are calibrated
against a set of training data; and an online computing
stage comprising fast execution of the resulting
metamodel within the multi-scale modelling framework.

de Boer et al. (2014) used multi-dimensional
metamodels for representing efficiently the small scale
model within a macroscopic EHL model. Their
metamodel approximations were based on the Moving
Least Squares (MLS) method and were calibrated using
Cross Validation (CV) techniques combined with effi-
cient space-filling Design of Experiments (DOE)
(Loweth et al. 2011). The present study will exploit
the synergies between multiscale EHL analysis and re-
sponse surface enabled optimisation in order to demon-
strate a means of achieving multiscale design optimisa-
tion across the scales. This will be demonstrated by the
optimisation of small scale bearing topography for a
minimal coefficient of friction of the bearing system.

The paper is organised as follows. The multiscale
EHL method and metamodelling strategies are intro-
duced in Section 2. Numerical methods are described
in Section 3. In Section 4 the validation and perfor-
mance of the metamodel is demonstrated and the opti-
mal substrate topography leading, to minimal frictional
drag, identified. Conclusions are drawn in Section 5.

2 Theory

2.1 Problem formulation

The optimisation problem described here represents one fre-
quently encountered in the field of tribology, that of how to
reduce the coefficient of friction in an EHL contact for a con-
stant applied load. The method described is based on the
Heterogeneous Multiscale Methods (E et al. 2007)
whereby homogenised information obtained from periodic
small scale models (topography) is used to derive a relation-
ship for the large scale model (bearing). An overview of the
two-scale method for EHL is given here, a full description can
be found in de Boer et al. (2014).

A simple large scale geometry will be considered, that of a
2D linear slider bearing as shown below in Fig. 1. The domain
between inlet and outlet is fully flooded with lubricant, the
lower wall of the bearing moves in the x coordinate direction
with velocity U and does not deform, the upper surface is
stationary and deformable.

Here the large scale geometry, specifically the pad length
Lp and tilt angle φ are kept constant, however they could be
varied in order to maximise bearing performance, as would be
undertaken for single scale optimisation. To demonstrate the
means by which optimisation is undertaken across scales a
small scale geometry parameter ψ is defined. The multiscale
optimisation problem is subsequently given by (1)-(3):

min
ψ

μð Þ ð1Þ

0≤ψ≤1 ð2Þ
W hbð Þ−Wreq ¼ 0 ð3Þ

where the objective μ is the bearing coefficient of fric-
tion and the constraint W is the bearing load capacity,
as calculated by (4) and (5) respectively. Wreq is the
required bearing load which is achieved by varying the
minimum undeformed film thickness for the bearing hb
to give the undeformed film thickness h:

μ ¼ 1

W

Z
0

Lp

τ
dp

dx
; p; g;ψ

� �
dx ð4Þ

W ¼
Z

0

Lp

p*
dp

dx
; p; g;ψ

� �
dx ð5Þ

τ dp
dx ; p; g;ψ

� �
and p* dp

dx ; p; g;ψ
� �

are the large scale shear
stress and load per unit area which are obtained from the small
scale simulations. The variables dp

dx ; p and g are the
homogenised pressure gradient, pressure, and lubricated film
gap respectively. These three variables along with the small
scale geometry parameterψ define the small scale simulations
as described in Section 2.2.
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To solve the large scale problem and evaluate (i) the load
per unit area (which differs slightly from the large scale pres-
sure due to the homogenisation approach) and (ii) shear stress,
the large scale governing equations for the pressure (6) and
lubricant flow rate (7) are solved:

dp

dx
¼ dp

dx
p; g; q;ψð Þ ð6Þ

dq

dx
¼ 0 ð7Þ

The equation for the pressure gradient is also obtained from
the small scale simulations, where q is the mass flow rate per
unit depth. The large scale solution to (6) and (7) is obtained
with Dirichlet boundary conditions for zero (ambient) pres-
sure (8) at both inlet and outlet:

pa ¼ pb ¼ 0 ð8Þ

The bearing deformation is accounted for at both the
large and small scale in order to account for non-local
deformation (deformation at a surface location due to a
pressure at a different location on the pad surface) and
the micro-elastohydrodynamic surface deformation (de-
formation of the small scale domain due to small scale
variations in the pressure profile). It is based on the
elastic deformation δ which would be encountered in
the smooth case and is found via a matrix operation,
where the influence of pressure on displacement de-
creases with the distance from the point at which it is
applied. The total deformation influence matrix K, or
deformation coefficient matrix, is calculated using
elast ici ty theory based on the thickness of the
Polytetrafluoroethylene (PTFE) pad t (Rodkiewicz and
Yang 1995). The relationship describing how load per
unit area p* relates to deformation is given by δ=Kp*.

This can be rewritten such that total deformation is the
sum of two separate terms as given by (9):

δ ¼ K−k1Ið Þp* þ k1Ip
* ð9Þ

In (9), k1 is the local stiffness which is subsequently
modelled at the small scale, see Section 2.2. The term k1Ip
accounts for local deformation (deformation due to pressure at
that location) and (K−k1I)p* the remaining deformations (de-
formation due to pressure at all other locations). The film gap
(g) becomes the sum of the undeformed film thickness h and
non-local deformation allowing local deformation to be con-
sidered at the small scale (including micro-EHL where defor-
mation of individual topographical features may occur). (6),
(7) and (10) are coupled and solved iteratively until conver-
gence in the pressure distribution is reached:

g ¼ hþ K−k1Ið Þp* ð10Þ

In defining the optimisation problem the variable defining
the small scale geometryψ is included in the functional terms

defining the pressure gradient dp
dx p; g; q;ψð Þ, shear stress τ

dp
dx ; p; g;ψ
� �

and load per unit area p* dp
dx ; p; g;ψ
� �

. This is
an important distinction when compared with the analysis
case as it means that a representation is required of how the
small scale behaves with changes in both the local operating

conditions dp
dx ; p; g; q as well as the optimisation problem’s

design variables ψ (in this case). This representation of the
small scale problem is achieved using a metamodel of the
small scale behaviour and for this case is therefore 4-
dimensional.

2.2 Small scale simulations

A series of small scale simulations were undertaken on which
the metamodel was constructed. These small scale simulations
were a set of Fluid–Structure Interaction (FSI) problems with
the lubricant flow modelled using the Navier–Stokes equa-
tions and the local deformation and micro-EHL simulated by
an equivalent column of elastic bearing material.

The small scale simulations use an equivalent thickness t′
of the solid domain to ensure that the resulting deformation
due to fluid pressure is equal to the column deformation
achieved from the local stiffness required k1 at the large scale
under the same pressure (11). The equivalent elastic modulus
E ' is derived to represent the mechanical properties of the
large scale stiffness to a fully constrained column of bearing
material in three-dimensions at the small scale (12):

t0 ¼ k1E
0 ð11Þ

E0 ¼ 1−νð ÞE
1þ νð Þ 1−2νð Þ ð12Þ

Fig. 1 Large scale bearing geometry
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where E and ν are the Young’s modulus and Poisson’s ratio of
the bearing material (PTFE) respectively. By applying an
equivalent thickness to the problem the small scale FSI is
accurately described whilst maintaining the required stiffness
properties at the large scale and of the bearing surface.
Structural mechanics at the small scale are considered by im-
plementation of a 3D model for a linearly elastic solid, the
material is assumed homogenous and isotropic. The upper
boundary of the spring column is fully constrained. The sides
of the spring column are constrained normal to the surface.
The fluid/solid interface is loaded by pressure generated from
the fluid flow simulations.

The small scale fluid geometry is defined by a cell length L
in both xs and ys coordinate directions, this length scale must
be an order of magnitude or more smaller than the pad length
Lp. The zs coordinate is aligned with the film gap g.
Topography δt is defined by the small scale geometry param-
eter ψ and the topography amplitude α (13), this is summed
with g to form the small scale film thickness s. The parameter
ψ controls the ratio of longitudinal to transverse waviness in
the topography response, at ψ=0 topography is longitudinal
and at ψ=1 topography is transverse to the direction of mo-
tion of the bearing surface:

δt ¼ α
2

ψ sin 2π
xs
L

� �
þ 1

� �h

þ 1−ψð Þ sin 2π
ys
L

� �
þ 1

� �i ð13Þ

A diagram showing the small scale geometry with both
solid and fluid domains is shown in Fig. 2.

The small scale flow is modelled using Computational Fluid
Dynamics (CFD) where the flow is considered steady, laminar,
compressible and isothermal as described by the Navier–Stokes

equations. The lubricant density ρs varies barotropically as de-
scribed by the Dowson-Higginson equation (Dowson and
Higginson 1966). Piezoviscosity is modelled using the
Roelands equation (Roelands 1966) and non-Newtonian
(shear-thinning) behaviour is considered using the Ree-Eyring
model to give the lubricant viscosity ηs (Johnson and
Tevaarwerk 1977). The interface between the fluid and solid is
a no-slip wall, the lower surface is a moving wall with velocity
U, the remaining boundaries are subject to the near-periodic
boundary condition. The pressure ps on each set of near-
periodic boundaries experiences a jump Δp over the domain.
Velocity components us, vs,ws are scaled at the boundaries to
account for the difference in density (due to pressure at the
boundaries) and area (due to deformation of the boundaries).

The generation of the data points from which to generate the
response surfaces to be used in the optimisation of the tribology
problem requires the homogenisation of the small scale geome-
try, it is this homogenisation which leads to the requirement that
the small scale domain is at least an order of magnitude smaller
than that of the large scale problem, L≪Lp. This is analogous to
the separation of scales between the bearing length and lubricat-
ed gap in derivation of the Reynolds equation (the accurate
description of smooth surface lubrication) which states that the
film thickness varies gradually along the length of the bearing.

Given a pressure constraint, initial gap, and small scale
geometry parameter, the solution fields for pressure and ve-
locity can be obtained by solving for the small scale model.
Coupling of structural mechanics and CFD is achieved
through an Arbitrary Lagrangian–Eulerian approach in a
Finite Element (FE) simulation. The homogenised pressure

gradient dp
dx over a unit cell is calculated using (14), and the

mass flow rate per unit depth q is determined from (15) on the
periodic boundary normal to the sliding direction:

dp

dx
¼ Δp

L
ð14Þ

q ¼ 1

L

Z
0

sþΔsZ L

0

ρsus dysdzs ð15Þ

Pressure is not uniformly distributed in the small scale do-
main and so an average cell pressure p* is derived which
describes the load per unit area and from which deformation
δ and load capacityWare determined at the large scale (16). A
similar expression exists for the shear stress τ from which the
coefficient of friction μ is found (17). Both (16) and (17) are
calculated on the sliding wall boundary:

p* ¼ 1

L2

Z L

0

Z L

0
ps dxsdys ð16Þ

τ ¼ 1

L2

Z L

0

Z L

0
ηs
dus
dzs

dxsdys ð17Þ

whereΔs is the deformation of the small scale film thickness.
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Fig. 2 Small scale fluid (dashed) and solid (full)
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2.3 Metamodel construction

The construction of an accurate metamodel representing the

terms dp
dx p; g; q;ψð Þ; τ dp

dx ; p; g;ψ
� �

and p* dp
dx ; p; g;ψ
� �

is crit-
ical to both the accurate analysis of the bearing performance
and to permit the optimisation of the system. The first stage in
constructing the metamodel is the generation of the simulation
conditions (both design and operating variables). Creating a
model of this nature requires a DOE which ensures the most
efficient spread of simulations in the design space, as to reduce
the number of simulations while allowing the response to be
accurately described. AnOptimal Latin Hypercube (OLHC) is
used here to explore as much of the design space with as few
designs as possible. This is generated using a permutation
Genetic Algorithm (GA) to optimise the distance between all
DOE points (Bates et al. 2004). This satisfies the Audze-
Eglais condition (Audze and Eglais 1977) which requires that
the sum of the reciprocal of the squared distances between
each DOE point and all others is a minimum.

MLS is derived from conventional weighted least squares
model building where the weights do not remain constant but
are functions of the normalised Euclidian distances from sam-
ple points to the point where the metamodel is evaluated (Choi
et al. 2001). Coefficients in the basis function of the MLS
approximation become functions of the design space and
therefore describe how the metamodel varies from the least
squares approximation (Breitkopf et al. 2005).

Reynolds equation (Cameron 1971) is used as the MLS
basis function (18), when the coefficients C1 − 3 are unity the
metamodel produces the result obtained directly from smooth
surface lubrication (i.e. the pressure gradient Eq. (6) without
topography and fluid flow phenomena). Expressions for the
load per unit area (19) and shear stress (20) under smooth
conditions are also obtained when C4 − 8 are unity. The MLS
coefficients C1 − 8 therefore quantify the deviation from the
smooth surface model when surface topography is included
and are functions of the design space considered. In (18)-(20),
ρ0 and η0 are the ambient density and viscosity of the lubricant
respectively:

dp

dx
¼ 12η0

ρ0 gþ k1pð Þ3
C1ρ0U

2
gþ k1pð Þ−C2q

� �
þC3−1 ð18Þ

p* ¼ C4pþ C5−1 ð19Þ

τ ¼ 1

gþ k1p
C6Uη0 þ

C7

2
gþ k1pð Þ2 dp

dx

� �

þC8−1
ð20Þ

A Gaussian decay function is defined for the MLS weights
such that the influence of a known sample location will di-
minish exponentially with increasing distance to an assess-
ment location, as is common in metamodel analyses (de

Boer et al. 2014; Loweth et al. 2011). Polynomial type decay
functions can also be used to formulate the weights (Toropov
et al. 2005). (26) describes how the weights corresponding to
each know location wi are functions of the closeness of fit
parameter θ and the normalised Euclidian distance to the as-
sessment location ri:

wi ¼ exp −θr2i
� �

i ¼ 1;…;N ð21Þ

where N is the total number of points in the sample set (DOE
size) and ri is obtained from (22), in which capitals represented
the normalised version of the corresponding lower case vari-
ables and tilde the assessment location of the metamodel:

r2i ¼ ~P−Pi
� �2 þ ~G−Gi

� �2 þ ~Q−Qi

� �2
þ ~ψ−ψi

� �2 ð22Þ

By minimising the sum of squared error in the MLS ap-
proximation and known location values the coefficients in
(18) can be determined at the assessment location by the ma-
trix Eq. (23). Equation (23) is formulated by the series of
Eqs. (24)-(27):

Aγ−bk k ¼ 0 ð23Þ

bi ¼ wi
dp

dx

� �
i

þ 1

� �
ð24Þ

Ai j ¼ wiΓi j ð25Þ

Γi ¼
6Uη0

gi þ k1pið Þ2
−12η0qi

ρ0 gi þ k1pið Þ3 1
� 	

ð26Þ

γ j ¼ Cj j ¼ 1;…; 3 ð27Þ

Once the coefficients are calculated from (23) the MLS
approximation can be determined by (18), substituting the
coefficients and determining the polynomial expression for
the assessment location. The same approach can be taken to
assess the coefficients in (19) and (20).

The MLS approximation can be tuned to provide a more
local or global response, this allowsMLS to smooth numerical
noise and provide an accurate approximation over the entire
design space (Levin 1998). This is achieved by adjusting the
closeness of fit parameter θ. At θ=0 the weights are all unity
resulting in conventional least squares regression, the upper to
limit to θ is infinity or until overfitting occurs (where no in-
terpolation occurs between data points). The aim of tuning θ is
to reduce the error in the known observations and that predict-
ed by the metamodel, there exists an optimal θ which pro-
duces the lowest value of this error and to find this we must
search through a range of θ until we observe a global mini-
mum (Loweth et al. 2011).

To do this both the Leave-One-Out (LOO-) and k-fold (k-)
CV methods are used (Loweth et al. 2011). For LOO-CV a
range of θ is selected between 0 and an arbitrary upper bound

488 de Boer et al.



which is large enough so ensure a global minimum is
achieved. For every value of θ each observation is removed
from the data set in turn and the approximation built from the
remaining N − 1 points. The Root Mean Squared Error
(RMSE) in the removed observations and those predicted at
the removed locations are recorded over the total number of
values. For k-CV instead of each point in turn being removed
from the data set a random sample of size k is removed over
many repeated steps, on each fold as the repeats are known the
metamodel is built from the remaining N−k points and the
RMSE assessed in the metamodel predictions and known
values at the removed locations. The average RMSE is then
determined over the total number of folds, which is chosen to
be large enough as to ensure no bias in the cross validation
response toward certain regions of the design space. The
values of θ which correspond to the minimum of the LOO-
CV and k-CV errors are selected as the best fit. There is a
compromise between the θ predicted by the two methods,
both are at least capable of identifying the region near the
optimal θ and so the choice made by the user on which value
to use will not significantly affect the accuracy of the
metamodel prediction.

The cross validation procedure needs only to be performed
once across the data set and represents a small fraction of the
total computational time, the k-CV is a more costly operation
as the number and size of the calculations is much larger than
LOO-CV. The single set cross validation method (Taflanidis
et al. 2013) can be used if many quick validations of the
metamodel are needed throughout the solution procedure.
This method selects one static set to remove from the data
set and determine the RMSE between the model response
and known removed values over a range of θ. This is equiv-
alent to k-CV with one fold and will result in bias in the
accuracy of the metamodel response toward those regions of
the design space where the error has been assessed, which in
turn implies that the θ predicted is not the true optimum.
Loweth et al. (2011) suggested that the k-CV was the best
method for obtaining the optimal θ, however it will be shown
in Section 4 that LOO-CV is a more effective method here due
to the size of the DOE used.

3 Numerical methods

3.1 Design of experiments and metamodel building

The first stage of the solution procedure was to calculate suit-
able ranges for the 4-dimensional DOE, the small scale topog-
raphy parameter ψ has limits between 0 and 1 but the bounds

of the small scale input parameters dp
dx ; p; g needed to be iden-

tified. To do this solutions to the smooth surface EHL problem
were calculated using the same solver as described in

Section 3.2 where the MLS metamodels were replaced by
the basis functions with all coefficients equal to unity. The

maximum/minimum values of dp
dx ; p; g were recorded at con-

vergence and +/−10 % of the value added/subtracted to give
the design space limits of each variable (negative film gaps
and pressure are not permitted and were limited to 5 μm and
0 Pa), the values were rounded and are presented in Table 1.

The DOE was created using the bounds identified and the
OLHC permutation GA of Bates et al. (2004). A DOE size of
N=1000 was selected as to ensure that the metamodel be
accurate over the entire design space, high fidelity results were
required over a fast computation because of the sensitivity of
the large scale solver to the operating parameters. The justifi-
cation of this number of points from the resulting metamodel
accuracy is presented in Section 4.2.

It is of note that the DOEwas built in terms of dpdx ; p; g;ψ so
that q,τ, p* were given as functions of these parameters but

for the metamodel building and large scale solution dp
dx and q

were interchanged so that dp
dx is a function of q, p, g,ψ. The

relations for τ and p* were not subject to this. In each of the
three relations four of the five dimensions were structured
such that they meet the space-filling criteria of the OLHC
DOE. This ensures that when the MLS metamodels were cal-
culated, the resulting approximation accuracy was not biased
toward certain regions of the design space.

Each of the 1000 small scale simulations specified by the
DOEwere calculated and the outputs recorded. The values for
all constants and operating conditions are given in Table 2.
COMSOL Multiphysics (COMSOL 2015) was used to solve
the range of small scale fluid structure interaction problems as
defined in Section 2.2. The MLS metamodels were then cal-
ibrated by performing LOO-CVand k-CVon each of the three
relations, the results produced were analysed and the optimal
closeness of fit selected to within an acceptable significance.
This was achieved using codes developed with MATLAB
(MathWorks 2015) as is also the case for remainder of the
solution procedure described.

3.2 Large scale solution procedure

The large scale solution procedure began with an initial guess
of zero pressure p, the undeformed film thickness h (specified
by a minimum hb, pad length Lp and tilt angle φ) and an
arbitrary guess for the mass flow rate per unit depth q

Table 1 Bounds for the
small scale input
parameters

Parameter Bounds Unit

dp
dx

[−40,10] MPa/mm

p [0,10] MPa

g [5,50] μm
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(constant along the length of the bearing (7)). The small scale
topography parameter ψ was set to be constant along the
length of the bearing. This was not a limitation to the method
as it is conceivable that topography could vary along the pad
length and indeed this variation could be parameterised and
optimised in the same approach as described in Section 3.3.

Two different methods were used to satisfy the boundary
conditions for pressure (8) by treating the solution of the pres-
sure gradient Eq. (6) either as an Initial Value Problem (IVP)
or a Boundary Value Problem (BVP). The IVP method inte-
grated (6) using the MATLAB function ode45 from the
known inlet boundary condition of pa = 0, the error in the
outlet pressure boundary condition pb≠0 dictated whether q
had been over or under predicted. An iterative procedure was
formed where q is increased if pb>0 and decreased if pb<0.
The BVP method used the MATLAB function bvp4c to spec-
ify pa =pb=0 and solves (6) and (7) together to give p and q.
This required a good initial guess for both variables, initially
this was determined by solving the smooth surface pressure
gradient equation with the IVP method as described above.

Once pb=0 was satisfied to within a tolerance of 10−3 the
large scale film gap g was updated according the deformation
matrix operation (10). The load per unit area p*was assessed and
relaxed (given an initial value of zero) with a factor of 0.5 to the
previous iteration as to ensure convergence of g. After the new g
was determined p and q were updated using the IVP or BVP
methods, with the current values forming the new initial guesses.
This continued until convergence in the pressure distribution was
achieved, a tolerance of 10−3 was required. Using the converged
solution the shear stress τ was calculated. The load capacity W
(5) and coefficient of friction μ (4) were then recorded.

In order to ensure that the load capacity constraint (3) was
satisfied a bisector approachwas used, which is an appropriate
method given that W reduces monotonically with increasing
hb. Two values of hb were selected and the corresponding W
calculated using the method as described above. A straight

line approximation was made from this W - hb relationship
which is then used to predict the hb where Wreq was achieved.
The limits of hb in the straight line approximation were adjust-
ed to include the new value and then the new W was calcu-
lated. This process was repeated until convergence within a
tolerance of 10−3 in W was achieved.

3.3 Optimisation of small scale topography

In order to determine the value of ψ which produced the mini-
mum μ for the bearing a 1D bracketing optimisation approach
was used (Forrester et al. 2008). A parametric assessment of μ
was made over the full range of ψ. Any minima of μ were
identified from the response by the locations of where the de-
rivative of μwithψwas zero and the second order gradient was
positive. These gradients were obtained by finite differences.
The assessment rangeswere refined around theψ corresponding
to any minimum μ. The parametric assessment was repeated
within these new limits and the process was repeated until the
minimum value of μ converged to within a tolerance of 10−3.
After each iteration the ranges were refined by a factor of 0.5
around the new location of the minimum, unless this exceeded
either of the initial bounds when that value was used instead.

4 Results and discussion

4.1 Design of experiments and metamodel building

All results presented were calculated using a 6-core machine
with 32 GB of RAM, running at 3.5 GHz. Figure 3 shows the
frequency histogram of minimum normalised distance of each
point to another point in the DOE. The range of minimum
distances shown in Fig. 3 illustrates that the DOE is relatively
well conditioned because the frequency distribution is close to
normal and the variance is small, indicating that the OLHC has
reduced the spread of the minimum distance to other points
across all points in the domain. An outlier does exist and there
is a slight skew in the distribution toward larger distances be-
tween points. The size of the DOE (N=1000) and the space-
filling criteria of the OLHC ensures that there is enough infor-
mation for the metamodel approximations to be accurate over
the entire design space, as shown in Section 4.2.

The process of running all 1000 small scale simulations
took ~11 days of calculation. Cross validation for the MLS
metamodel building was performed, the result of this for the
pressure gradient metamodel is given in Fig. 4.

Figure 4 indicates that the optimal closeness of fit for the
pressure gradient metamodel obtained from k-CV (with
k=120) and LOO-CV are very close together, k-CV gives
θ=39.09 and LOO-CV gives θ=40.13. This shows that both
cross validation methods can be used to perform accurate
analysis of the closeness of fit response and that the best

Table 2 Constants and
operating conditions Parameter Value/range Unit

E 0.5 GPa

k1 0.4667 μm/MPa

L 10 μm

Lp 25 mm

U 1 m/s

W 100 kN

α 7.5 μm

η0 1 Pa.s

ν 0.4 -

ρ0 870 kg/m3

τ0 5 N/mm2

φ 0.05 deg
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closeness of fit for this DOE data is, to within an acceptable
significance, 40. Similar conclusions can be drawn for the
load per unit area and shear stress metamodels, in these cases
the optimal closeness of fits were found to be 24 and 38
respectively.

Each LOO-CV procedure took less than 5 min to complete
whereas the k-CV procedures took more than 2 h to run, this is
because the k-CVmethod requires many more calls to the MLS
assessment function than LOO-CV. It is therefore recommended
that LOO-CV should be used for cross validation procedures of
this type in the future since there is no benefit in accuracy from
employing k-CV. This is different to the conclusions drawn by
Loweth et al. (2011) who suggest that k-CV is a more accurate
predictor in the context of their metamodels, their problem was
however much smaller (N=50) and therefore no noticeable dif-
ference in computational time was observed. It is also shown in

Fig. 4 that the LOO-CV error is less than that given by k-CV.
This is because the number of DOE points used in LOO-CV to
build the validation metamodels is larger than that used in k-CV
and therefore more in known about the response and a more
accurate prediction is made.

4.2 Two-scale solutions and metamodel accuracy

Pressure and film gap distributions for three different values of
the small scale topography parameter (ψ=0.25, 0.5, and 0.75)
are given in Figs. 5 and 6 respectively. These distributions are
generated by solving the large scale problem as described in
Section 3.2 (using both IVP and BVPmethods) with the MLS
metamodels created in Section 4.1.

In order to validate the trends presented in Figs. 5 and 6
results generated at the large scale through the metamodel are
compared against the exact corresponding small scale simula-
tions. The mass flow rate as predicted by the large scale solver
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is compared to the exact corresponding mass flow rate deter-
mined at the small scale for three arbitrary locations (0, 10,
20 mm) along the distributions of pressure gradient, pressure
and film gap. This check is performed for each of ψ=0.25,
0.5, and 0.75 with the results tabulated in Tables 3, 4 and 5
respectively.

The absolute percentage error in mass flow rate predicted
between the metamodel and exact small scale simulations is
<4 % for all cases considered. This indicates that the MLS
metamodel is accurately capturing the effects of the
parameterised topography on the bearing performance. This
also validates the choice in size and spread of the DOE used
and implies that the subsequent optimisation procedure will
lead to an accurate prediction of the best design. The largest %
error is seen at ψ=0.25, here the result predicted is farther
from the smooth surface model than for the remaining two
cases (see the shape of the distributions given Figs. 10 and
13). This means that the underlying basis function of the
metamodel has a poorer fit to the DOE data and the approxi-
mation is therefore more likely to be less accurate in the region
of the design space as it must deviate further.

Table 6 shows the time to compute for each of the three ψ
specified using the IVP and BVP methods for solving the
large scale governing equations of flow. The BVP method is
shown to be approximately 45 % more efficient than the IVP
method across all of the cases investigated, this method was
therefore selected as the solution method to be used in the
optimisation study. The time saving between the two methods
represents a significant improvement from the method derived
by de Boer et al. (2014). Table 6 also indicates that atψ=0.25
the solution time for each method was much more than in the

other cases, this relates to the accuracy of the metamodel in
this region of the design space and the influence of topography
causing much larger deviations from the underlying functions
of the MLS metamodel.

4.3 Optimisation of topography

Using the MLS metamodels validated in Section 4.2, optimi-
sation of topography was performed by the bracketing proce-
dure outlined in Section 3.3. The response and optimisation of
μwithψ is presented in Fig. 7, the minimum film gap gb and q
corresponding to this are given in Figs. 8 and 9 (not all
assessed points are displayed for the purpose of visualisation).

The response shown in Fig. 7 indicates that a transverse
topography produces a lower μ at constant W than purely
longitudinal topography for the conditions investigated. This
observation is consistent with that observed by Patir and
Cheng (1978) when they conducted computer experiments
using their flow factors approach to include the effects of
topography in an EHL simulation. The response of μ with ψ
is non-linear, asψ increases from 0 to 0.65 there is a decrease
in μ from 0.023 to 0.08, between ψ=0.65 and ψ=0.85 μ
remains between a value of 0.08 and 0.09, and as ψ increases
from 0.85 to 1, μ increases from 0.08 to 0.095. The optimisa-
tion procedure took a total of ~15 h to converge, this
accounted for 60 separate assessments of μ over the specified
values of ψ.

Two local minima were identified by the optimisation pro-
cedu re a t ψ = 0 .6579 and ψ = 0 .8421 fo r wh ich
μ=8.104×10−3 and μ=8.028×10−3 respectively. The mini-
mum at ψ=0.8421 is therefore identified as the global mini-
mum of μ for the conditions imposed and is therefore the
optimal ψ for the bearing design. Figures 8 and 9 show that

Table 3 Percentage error in mass flow rate for ψ = 0.25

Parameter Large scale coordinate

0 mm 10 mm 20 mm

Pressure gradient, dpdx
0.4302 MPa/mm 0.2700 MPa/mm −0.0714 MPa/mm

Pressure, p 0 MPa 4.306 MPa 6.156 MPa

Gap, g 34.27 μm 32.33 μm 27.11 μm

% error in mass
flow rate

−0.873 % 3.786 % 2.213 %

Table 4 Percentage error in mass flow rate for ψ = 0.5

Parameter Large scale coordinate

0 mm 10 mm 20 mm

Pressure gradient, dpdx
0.3658 MPa/mm 0.3633 MPa/mm 0.0221 MPa/mm

Pressure, p 0 MPa 3.704 MPa 6.491 MPa

Gap, g 35.71 μm 32.77 μm 29.06 μm

% error in
mass flow rate

1.198 % 1.997 % −0.225 %

Table 5 Percentage error in mass flow rate for ψ = 0.75

Parameter Large scale coordinate

0 mm 10 mm 20 mm

Pressure gradient, dpdx
0.4867 MPa/mm 0.4081 MPa/mm 0.0777 MPa/mm

Pressure, p 0 MPa 3.798 MPa 6.282 MPa

Gap, g 37.83 μm 35.00 μm 30.76 μm

% error in
mass flow rate

0.453 % 1.244 % −0.866 %

Table 6 Time to compute using the IVP and BVP methods

Small scale topography
parameter

Time to compute
IVP (s)

Time to compute
BVP (s)

ψ= 0.25 2219 1330

ψ= 0.5 1032 573

ψ= 0.75 1112 697
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a decrease in μ leads to an increase gb and q and an increase in
μ leads to an decrease gb and q, such that the minima identi-
fied for μ correspond to maxima of gb and q. Figures 10 and
11 illustrate the topography at the two minima identified.

Given that the coefficients of friction calculated at
ψ=0.6579 and ψ=0.8421 are similar it is interesting to note
that they have very different features. In Fig. 11 the topogra-
phy is dominated by transverse waviness, whereas in Fig. 10
the topography is much more of a blend between transverse
and longitudinal components. This highlights that the influ-
ence of topography on friction is complex and that to describe
and optimise the response of μ with ψ the two-scale method
and subsequent metamodels are needed.

The coefficient of friction produced by the smooth surface
model with the same parameters was found to be
μ=7.175×10−3. Simulations inclusive of topography predict-
ed higher μ than the smooth surface equivalent. gb and q

determined using the smooth surface model were found to
be gb=20.15 μm and q=0.01556 kg/s which are both higher
than any value determined with topography. These results
show the potential of the multiscale approach for analysing
the differences in bearing performance when topography is
and is not considered. This subsequently demonstrates that
when real surfaces are present the orientation of topography
as manufactured can be guided by the optimisation process
described. This method also provides a comprehensive frame-
work for analysing and optimising surface topography inmore
complex cases which have been shown to have a role in re-
ducing friction when compared to the smooth surface model,
such as cavitating (Gao et al. 2015) and transient (Etsion
2005) lubrication.

The p, dpdx, p*, g, and τ distributions for the textured bearing
under load are shown in Figs. 12, 13, 14, 15 and 16 at the two
minima identified in Fig. 7 and directly from the smooth
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surface model (without topography or fluid flow phenomena)
respectively.

Figure 12 shows that the pressure distributions obtained
from the smooth surface model are similar in both shape and
magnitude to that obtained with topography. Because the load
capacity of each distribution is equal the differences in perfor-
mance identified with topography cause only a small devia-
tion from the smooth surface model in terms of pressure. This
also implies that deviations in the pressure gradient will also
be small and this is confirmed in Fig. 13, these changes are
small but the influence they have on the remaining part of the
calculation is significant and the solution for each distribution
is not trivial. The load per unit area shown in Fig. 14 indicates
that this is almost identical to the pressure, where the differ-
ence between these two distributions is orders of magnitude
smaller than the pressure. The pressure distributions show that
for the two μ identifiedψ=0.8421 produces a higher pressure

which occurs further toward the outlet of the bearing than for
ψ= 0.6579 and the pressure at ψ = 0.8421 is lower than
ψ=0.6579 over most of the length of the bearing. This is an
interesting observation because it indicates the difference in
pressure distributions which result in similar coefficients of
friction.

The film gap distributions presented in Fig. 15 show
that a lower g is predicted for bearings with topography
over the length of the bearing when compared to the
smooth surface case. It is also observed that for the two
topographies shown the shapes of the film gap distribu-
tions are more comparable to each other than they are
with the smooth surface model. Implying that with topog-
raphy similar values of μ are given when the shape of the
film gaps are also similar.

The film gap distributions presented in Fig. 15 show that
with topography a lower g is predicted over the length of the
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bearing when compared to the smooth surface case. It is also
observed that for the two topographies shown the shapes of
the film gap distributions are more comparable to each other
than they are with the smooth surface model. Implying that
with topography similar values of μ are given when the shape
of the film gaps are also similar. The film gap distribution
given at ψ=0.8421 is lower than ψ=0.6579 which indicates
that under these conditions the minimum μ for a bearing with
topography is synonymous with a minimum for the film gap
over the length of the bearing.

The shear stress distributions in Fig. 16 show that for bear-
ings with topography included a larger value is predicted over
the length of the bearing than in the smooth surface case,
leading to large values of μ. Both distributions with topogra-
phy exhibit a similar shape and magnitude which explains
why the μ predicted at these ψ are also similar.

The MLS coefficients generated from the pressure gradient
metamodel C1 − 3 are plotted over the length of the bearing for
the two minima identified in Figs. 17, 18 and 19.

Each coefficient distribution represents how far from the
smooth surface approximation (with C1 − 3=1) the metamodel
deviates due to the influence of topography as determined by
the small scale simulations. Figures 17, 18 and 19 show that
topography introduces a non-linear response for each coeffi-
cient since there are no obviously identifiable trends in the
responses over the length of the bearing. The coefficients pro-
duced at ψ=0.6579 and ψ=0.8421 indicate that very differ-
ent characteristics are introduced by the topographies and that
in order to accurately model these effects the metamodel ap-
proach is required. Also because the coefficient of friction
produced by at ψ=0.6579 and ψ=0.8421 are close together
and the MLS coefficients have no clear trends between them,
this further implies that in order to conduct an optimisation
study over a range of topographies that the two-scale method
and subsequent metamodelling techniques are required.
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5 Conclusion

Surface topography influences the friction in lubricated sur-
faces under load. Developing theoretical methods to optimise
topography to, for example, minimise friction is complicated
by the separation in scales between the size of the lubricated
domain and the topography, the latter being at least an order of
magnitude smaller. The separation in scales means that it is
infeasible to computationally resolve the small scale features
as well as the large scale bearing domain within a single
computation.

The present study has shown how metamodels can be used
within an efficient two-scale method to reduce friction in EHL
bearings by optimising the small scale topography. Accurate
metamodels are needed to represent the small scale data and it
has been shown that combining OHLC DOE techniques with
MLSmetamodels that this can provide the accuracy needed. It
is also found that there is very little difference between cali-
bration of the MLS closeness of fit parameter using either the
LOO-CVor k-CV methods and, given the significantly better
computational efficiency of the former, LOO-CV is recom-
mended for the calibration of the EHL metamodels. Note that
this preference for LOO-CV over k-CV contrasts with the
recent finding of Loweth et al. (2011) for much smaller sized
data than is being used here. Another key finding is that the
BVP method for determining pressure is over 40 % more
efficient than the IVP method and offers a significant im-
provement over the two-scale approach developed recently
by de Boer et al. (2014). It is found that the MLS coefficients
are strongly and non-linearly dependent on the topography
and the EHL results show that very different topographies
can lead to similar friction coefficients. Results also show
further that, under a fixed load, transverse topography pro-
duces a lower friction coefficient than longitudinal

topography, as is consistent with Patir and Cheng (1978),
and this demonstrates that in order to optimise surface topog-
raphy the two-scale method is required.
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