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Abstract. Secure Multi-Party Computation (MPC) providing information-theoretic
security allows a set of n parties to securely compute an agreed function over a finite
field, even if t parties are under the control of a computationally unbounded active ad-
versary. Asynchronous MPC (AMPC) is an important variant of MPC, which works
over an asynchronous network. It is well known that perfect AMPC is possible if and
only if t < n/4, while statistical AMPC is possible if and only if t < n/3. In this pa-
per, we study the communication complexity of AMPC protocols (both statistical and
perfect) designed with exactly n = 4t + 1 parties. Our major contributions in this paper
are as follows:

1. Asynchronous Verifiable Secret Sharing (AVSS) is one of the main building
blocks for AMPC protocols. In this paper, we design two AVSS schemes with
4t + 1 parties: the first one is statistically-secure and has non-optimal resilience,
while the second one is perfectly-secure and has optimal resilience. Both these
schemes achieve a common interesting property, which was not achieved by the
previous schemes. Specifically, our AVSS schemes allow to share a secret with
the degree of sharing at most d, where t ≤ d ≤ 2t . In contrast, the existing AVSS
schemes allow the degree of sharing to be at most t . The new property of our
AVSS schemes simplifies the degree-reduction step for the evaluation of multi-
plication gates in an AMPC protocol.

2. Using our statistical AVSS scheme, we design a statistical AMPC protocol with
n = 4t + 1 which requires an amortized communication of O(n2) field ele-
ments per multiplication gate. Though this protocol has non-optimal resilience,
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it significantly improves the communication complexity of the existing statistical
AMPC protocols.

3. We then present a perfect AMPC protocol with n = 4t + 1 (using our per-
fect AVSS scheme), which also incurs an amortized communication of O(n2)

field elements per multiplication gate. This protocol improves on our statistical
AMPC protocol as it has optimal resilience. This is the most communication
efficient, optimally-resilient, perfect AMPC protocol.

Key words. Unconditional security, Fault tolerance, Communication complexity

1. Introduction

Threshold Multi-Party Computation (MPC) [8,16,28,41,44] allows a set of n mutually
distrusting parties to securely compute an agreed function F over a finite field F, even
if t out of the n parties are under the control of an active adversary At , who can behave
in any arbitrary manner during the execution of a protocol. MPC is one of the most im-
portant and fundamental problems in secure distributed computing. Over the past three
decades, the problem has been studied extensively in different settings [2,5–9,16,22,
28,40,44]. In any general MPC protocol, the function F is expressed as an arithmetic
circuit over F, consisting of input, linear (i.e. addition), non-linear (i.e. multiplication),
random and output gates over F; the protocol then allows the parties to “evaluate” each
gate of the circuit in a distributed fashion. The evaluation of multiplication gates re-
quire the maximum communication among the parties and so the focus is on measuring
the communication complexity (namely the total number of bits communicated by the
honest parties), required to evaluate the multiplication gates in the circuit.

The MPC problem has been studied extensively over the synchronous network model,
where it is assumed that there exists a global clock and the delay of any message in the
network is bounded. However, though theoretically impressive, such networks do not
model adequately the real-world networks like the Internet. Thus a new line of research
was initiated and dedicated for MPC in the asynchronous network model [5,7,9,37,43],
where the messages are allowed to be delayed arbitrarily.

Unlike synchronous MPC protocols, designing asynchronous MPC (AMPC) proto-
cols has received less attention due to its inherent difficulty. Roughly speaking, the main
difficulty in designing asynchronous protocols is that we cannot distinguish between a
slow but honest party, whose messages are delayed in the network and a corrupted
party,1 who did not send messages at all. Due to this, at any stage of an asynchronous
protocol, no party can afford to wait to receive the communication from all the n par-
ties (to avoid endless waiting) and so the communication from t (potentially slow but
honest) parties may have to be ignored. In this paper, our focus is on the AMPC proto-
cols providing information-theoretic security (that is security against a computationally
unbounded At ). Such protocols can be categorized into two types:

1. Perfectly-Secure AMPC or Perfect AMPC: The protocols of this type do not in-
volve any error in the computation. In [7], it was shown that perfectly-secure
AMPC is possible if and only if t < n/4. Thus any perfectly-secure AMPC pro-
tocol designed with exactly n = 4t + 1 parties is called an optimally-resilient

1 A party is called corrupted if it is under the control of the adversary, otherwise it is called honest.
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perfectly-Secure AMPC protocol. Such AMPC protocols are reported in [5,7,43].
Among these, the AMPC protocol of Ref. [5] is the most communication efficient,
with an amortized2 communication complexity of O(n3 log |F|) bits per multipli-
cation gate, where the computation is done over a finite field F, such that |F| > n.

2. Statistically-Secure AMPC or Statistical AMPC: These protocols may involve a
negligible error (specified by an error parameter ε) in the computation. From [9]
it is known that statistically-secure AMPC is possible if and only if t < n/3. Thus
any statistical AMPC protocol designed with exactly n = 3t +1 parties is called an
optimally-resilient statistically-secure AMPC protocol. Such AMPC protocols are
reported in [9,37]. Among these, the AMPC protocol of Patra et al. [37] is the most
efficient, with an amortized communication complexity of O(n5 log |F|) bits per
multiplication gate, where the computation is performed over a field F = GF(q),
with q > max (n,2κ), such that κ = log 1

ε
.

From the above discussion, we find that optimally-resilient statistical AMPC protocols
require higher communication in comparison to their perfect counterpart. This is quite
intriguing because it is easier to design protocols that involve a negligible error, in com-
parison to the error-free protocols. There are two reasons behind this anomaly: First,
the corruption threshold is different for optimally-resilient statistical and perfect proto-
cols. Namely, the perfect protocols can only tolerate up to t < n/4 corruptions, while
in comparison, the statistical protocols have to tolerate more corruptions, namely up to
t < n/3. It is well known that asynchronous verifiable secret sharing (AVSS) is a major
building block used in the design of information-theoretically secure AMPC protocols.
The second reason for the anomaly stems from the difficulty in designing a statistical
AVSS scheme with n = 3t + 1 parties, whose communication complexity matches the
communication complexity of a perfect AVSS scheme with n = 4t + 1. An excellent
informal description of this difficulty is outlined in [15].

An interesting approach used to obtain a communication efficient statistical AMPC
protocol is to trade the resilience for efficiency. That is, to design communication effi-
cient statistical AMPC protocols tolerating a smaller number of corruptions. This ap-
proach is not new as it has been used earlier in the synchronous setting to achieve ef-
ficiency (see, for example, [21,22]). In the asynchronous setting, this approach was re-
ported in [39], where the authors presented a statistical AMPC protocol with n = 4t +1.
Following this trend in [30], the authors presented a statistical AMPC protocol with
n = 4t + 1 (we will show later that this protocol is flawed). The (amortized) commu-
nication complexity (per multiplication gate) of the known information-theoretically
secure AMPC protocols is summarized in Table 1.

In [5,18], communication efficient MPC protocols over hybrid networks that exhibit
“partial synchrony” were presented, where one round of communication is assumed
to be synchronous.3 In another work, Damgård et al. [20] have reported an efficient
MPC protocol over a network that assumes the concept of a “synchronization point”;

2 The amortized communication complexity is derived under the assumption that the circuit is large enough
so that the terms that are independent of the circuit size can be ignored.

3 An advantage of these protocols is that they facilitate input provision; namely the inputs of all the hon-
est parties are considered for the evaluation of the circuit, which, otherwise, is impossible to achieve in a
completely asynchronous protocol.
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Table 1. Communication complexity (CC) in bits per multiplication gate of the known information-
theoretically secure AMPC protocols. For the perfect protocols |F| > n, while for the statistical protocols

F = GF(q), where q > max (n,2κ ), such that κ = log 1
ε .

Reference Type Resilience CC in bits

[7,14] Perfect t < n/4 (optimal) O(n6 log |F|)
[43] Perfect t < n/4 (optimal) Ω(n5 log |F|)
[5] Perfect t < n/4 (optimal) O(n3 log |F|)
[9] Statistical t < n/3 (optimal) Ω(n11(log |F|)4)

[37] Statistical t < n/3 (optimal) O(n5 log |F|)
[39] Statistical t < n/4 (non-optimal) O(n4 log |F|)
[30] Statistical t < n/4 (non-optimal) O(n2 log |F|)
This article Statistical t < n/4 (non-optimal) O(n2 log |F|)
This article Perfect t < n/4 (optimal) O(n2 log |F|)

i.e. the network is asynchronous before and after the synchronization point. We will not
consider the protocols of Refs. [5,18,20] for further discussion as they are not designed
in a completely asynchronous setting which we consider in this article.

1.1. Our Contributions for AMPC

In this paper our focus is on AMPC protocols with 4t +1 parties. Our main contributions
are as follows:

1. From Table 1, we find that the most communication efficient statistical AMPC pro-
tocol is due to Huang et al. [30]. However, we show that this protocol is flawed. We
further design a new statistically-secure AMPC protocol with n = 4t + 1, having
an amortized communication complexity of O(n2 log |F|) bits per multiplication
gate.4 Our protocol achieves its goal without using the player-elimination frame-
work of Ref. [29], which was used in [30]. We note that our statistical AMPC
protocol has non-optimal resilience.

2. We present a perfectly-secure AMPC protocol with n = 4t + 1, with an amor-
tized communication complexity of O(n2 log |F|) bits per multiplication gate. Our
perfect AMPC protocol has optimal resilience. From Table 1, the best known
perfect AMPC protocol with optimal resilience [5] incurs a communication of
O(n3 log |F|) bits per multiplication gate. Hence our AMPC protocol provides the
best communication complexity among all the known optimally-resilient, perfect
AMPC protocols.

To design our AMPC protocols, we present two AVSS schemes with n = 4t + 1: the
first one is statistically-secure (has non-optimal resilience and is used in our statistical
AMPC protocol), while the second one is perfectly-secure (has optimal resilience and
is used in our perfect AMPC protocol). Both these AVSS schemes achieve some com-
mon interesting properties, which were not achieved by the previous schemes. Even

4 We note that after the submission of this article, a more efficient statistical AMPC protocol with n =
4t +1 and an amortized communication complexity of O(n log |F|) bits per multiplication gate was presented
by Choudhury et al. in [18]; the techniques used in their protocol are different from ours and discussing their
protocol is out of scope of this article.
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though our statistical and perfect AVSS schemes have the same communication com-
plexity (more on this later), we present both of them, as they employ completely differ-
ent techniques. In the next section we informally discuss about AVSS and the properties
achieved by our AVSS schemes.

1.2. Verifiable Secret Sharing (VSS)

Verifiable Secret Sharing (VSS) is one of the fundamental building blocks for many
secure distributed computing tasks, such as MPC, Byzantine Agreement (BA) [1,15,
24,32,36], etc. Any VSS scheme consists of two phases: the sharing phase and the re-
construction phase and is implemented by a pair of protocols (Sh,Rec). Here Sh is the
protocol for the sharing phase, while Rec is the protocol for the reconstruction phase.
Protocol Sh allows a special party called the dealer (denoted as D), to share a secret s

among the n parties in a way that later allows for a unique reconstruction of s by every
party using the protocol Rec. Moreover, if D is honest, then the secrecy of s is preserved
till the end of Sh.

Over the last three decades, active research has been carried out in this area and many
interesting and significant results have been obtained dealing with high efficiency, secu-
rity against general adversaries, security against mixed type of corruptions, long-term
security, provable security, etc. (see [4,6,8,9,15–17,19,23,25,27,31,34,40,41] and their
references). However, almost all these solutions are for the synchronous model, where
it is assumed that every message in the network is delayed by a given constant. This
assumption is very strong because a single delayed message can completely break the
overall security of the protocol. Therefore, VSS schemes for the synchronous model are
not well-suited for use in the real-world networks. Hence a new line of research on VSS
over the asynchronous network model was initiated. VSS schemes for the asynchronous
networks are called Asynchronous VSS (AVSS) schemes.

We are interested in AVSS schemes for the threshold access structure. Informally,
such an AVSS scheme shares the secret in a way that any set of t or less number of par-
ties does not get any information about the shared secret (in the information-theoretic
sense) from their shares, while any set of t + 1 or more (correct) shares are enough
to reconstruct the secret. Moreover, we want the scheme to be linear, meaning that the
shares are computed as a linear function of the secret and the associated randomness.
Typically, such an AVSS scheme is used in the information-theoretically secure AMPC
protocols, as it allows the parties to locally perform any linear computation of shared
values. Information-theoretically secure AVSS schemes (for the threshold access struc-
ture) can be categorized into two classes:

1. Perfectly-Secure AVSS or Perfect AVSS: A scheme of this type satisfies the re-
quirements of AVSS5 without any error. Perfectly-secure AVSS tolerating At is
possible if and only if t < n/4 [7,14]. Hence, we call a perfectly-secure AVSS
scheme designed with exactly n = 4t + 1 parties an optimally-resilient, perfectly-
secure AVSS scheme. Such AVSS schemes are proposed in [5,7,14].

2. Statistically-Secure AVSS or Statistical AVSS: A scheme of this type satisfies the
requirements of AVSS except with a negligible error (specified by an error pa-
rameter ε). Statistical AVSS is possible if and only if t < n/3 [9,15]. To the best

5 See Definition 1 for the properties of AVSS.
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of our knowledge, the AVSS schemes of Refs. [9,15,36,37] are the only known
optimally-resilient statistical AVSS schemes (i.e. with n = 3t + 1).

The AVSS schemes based on polynomial interpolation are the most popular ones and
they have been used in almost all the existing information-theoretically secure AMPC
protocols. Such schemes are linear and allow to share a secret using polynomials. In the
rest of the paper, we consider AVSS schemes with polynomial based implementation.
Before we discuss about our AVSS schemes, the new properties that they achieve and
how the newly attained properties bring efficiency in evaluating the multiplication gates
in an AMPC protocol, it is important to see how AVSS schemes are used in the AMPC
protocols; the rest of this section is dedicated for the same.

The polynomial based AVSS schemes are an important building block for designing
AMPC protocols tolerating At . The sharing phase of such an AVSS scheme enforces
the dealer to t-share a value (even if the dealer is corrupted). Informally, a value v is said
to be d-shared among n parties P1, . . . ,Pn, if there exists a polynomial f (x) of degree
at most d such that f (0) = v and every (honest) party Pi has a share Shi = f (i) of v.
We denote such a sharing by [v]d . The AVSS schemes are used in the AMPC protocols
for two purposes: first to make the parties commit and share their inputs and second to
generate several shared random values (satisfying some conditions), which are used to
evaluate the multiplication gates of the circuit. The general approach followed in the
AMPC protocols is that every party Pi first t-shares its input xi , where xi is Pi ’s input
for the computation. Then the parties agree on a common subset of n− t parties, say C,
such that [xi]t has been generated for every Pi ∈ C (in any AMPC protocol, the inputs
of all the n parties cannot be considered for the computation due to the asynchronous
nature of the network, as it may result in an infinite waiting). The input xi of each
honest party Pi ∈ C remains information-theoretically secure because for every such
xi , the adversary obtains at most t shares.

Once the set C is agreed upon, the computation of the function F is performed gate
by gate, in a shared fashion, following the classical approach of Ben-Or et al. [8]. More
specifically, the parties interact according to the protocol to generate t-sharing of the
output of each gate from t-sharing of the input(s) of the gate. Once t-sharing of the
final output is generated, the parties reveal their shares (of the final output) and an error-
correction mechanism is applied to identify the corrupted shares and the final output is
robustly reconstructed. The robust reconstruction is guaranteed due to the fact that an
AMPC protocol demands at least 3t + 1 parties and the reconstruction of a t-shared
value with at least 3t + 1 parties is robust. Intuitively, the secrecy of the entire compu-
tation is preserved, as each intermediate value in the computation remains t-shared.

In more detail, the shared evaluation of the circuit is done in the following fashion:
the linear gates, for example, the addition gates, can be evaluated locally by the parties,
without any interaction, due to the linearity property of t-sharing. More specifically,
given [c]t and [d]t , a t-sharing of e = c+d can be locally generated as [e]t = [c]t +[d]t .
However, the multiplication gates cannot be evaluated locally, as [c]t · [d]t = [e]2t , in-
stead of [e]t . If [e]2t is not converted to [e]t then further multiplication of (shared) e

with another t-shared value will raise the degree of the sharing, which makes it impos-
sible to robustly reconstruct the value. So the major bottleneck in the shared evaluation
of the circuit is to evaluate the multiplication gates. To generate [e]t from [c]t and [d]t
(where e = c · d), the parties have to interact with each other. The amount of interaction
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varies from protocol to protocol and actually depends upon the method used to reduce
the degree of the sharing of e from 2t to t . And this is why, the communication com-
plexity of any MPC protocol is usually expressed in terms of the communication done
to evaluate a single multiplication gate.

The most common method to generate [e]t from [c]t and [d]t is the Beaver’s circuit-
randomization method [3], where the multiplication gates are evaluated using pre-
computed, t-shared random multiplication triples (which can be generated in a pre-
processing stage, prior to the beginning of the computation), unknown to the adver-
sary.6 This approach is used in almost all the MPC protocols (both synchronous and
asynchronous) proposed in the recent years [4,6,10,22]. An alternative to the above ap-
proach, proposed in [5] and also used by us in this paper is to evaluate the multiplication
gates using pre-computed (t,2t)-sharing of random values, unknown to the adversary.
A (t,2t)-sharing [5] of a value r ∈ F consists of a t-sharing and a 2t-sharing of r via
independent polynomials of degree at most t and 2t , respectively; so both [r]t and [r]2t

will be available to the parties. Given a (t,2t)-sharing of a pre-computed random value
r unknown to the adversary, the parties can generate [e]t from [c]t and [d]t as follows:
the parties first locally generate [e]2t = [c]t · [d]t and then [δ]2t = [e]2t − [r]2t . The
latter computation follows from the linearity property of 2t-sharing. This is followed
by the robust reconstruction of δ, which is possible with n = 4t + 1. Notice that re-
constructing δ does not compromise the secrecy of e, c and d because r is random and
unknown to the adversary. Once δ is publicly known, the parties can locally generate
[e]t = [δ]t + [r]t (the parties consider a default t-sharing of δ using the constant poly-
nomial of degree 0).

So the problem of efficiently evaluating the multiplication gates boils down to the
problem of either efficiently generating (t,2t)-sharing of random values or t-sharing of
random multiplication triples. The evaluation cost of a multiplication gate in both the
approaches is nearly the same. For the multiplication triple based approach, it requires
the reconstruction of two t-shared values (see [3]), while for the (t,2t)-sharing based
approach, it requires the reconstruction of a single 2t-shared value. We note that the
triple based approach is robust when n ≥ 3t + 1 (as it requires robustly reconstructing
t-shared values). However, n ≥ 4t + 1 is required to make the (t,2t)-sharing based
approach to be robust (as it requires robustly reconstructing 2t-shared values). Since we
deal with n = 4t + 1, we attack the problem of efficiently evaluating the multiplication
gates by efficiently generating (t,2t)-sharing of random values. In what follows, we
show how the existing AVSS schemes have been used to generate (t,2t)-sharing of a
random value and how the AVSS schemes introduced in this article allow us to achieve
the same goal with more efficiency.

In [5], an approach to generate (t,2t)-sharing of a random value from t-sharing of
3t + 1 random values has been described. The t-sharing of a value can be generated
by using any existing AVSS scheme. Thus the existing approach of generating a (t,2t)-
sharing requires invoking an AVSS scheme 3t +1 times. We bring down the complexity
of generating a (t,2t)-sharing by a factor of n by noting that a (t,2t)-sharing can be
generated from a single t-sharing and a single (2t − 1)-sharing (more on this in the

6 Such shared triples are of the form ([x]t , [y]t , [z]t ), where x and y are random and unknown to the
adversary, with z = x · y.
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Table 2. Comparison of our AVSS schemes with the existing AVSS schemes designed with 4t + 1 parties.

Reference Type Number of
secrets shared

Degree of the
sharing

Communication
complexity in
bits

[7] Perfect 1 t O(n3 log |F|)
[5] Perfect �, where � ≥ 1 t O(�n2 log |F|)
This article Statistical �, where � ≥ 1 d, for any given d,

where t ≤ d ≤ 2t

O(�n2 log |F|)

This article Perfect �, where � ≥ 1 d, for any given d,
where t ≤ d ≤ 2t

O(�n2 log |F|)

sequel) and by introducing AVSS schemes that can produce a d-sharing for any given
d , where t ≤ d ≤ 2t . We emphasize that prior to our work, there was no AVSS scheme
to produce a d-sharing, for any given d , where d > t . Our AVSS schemes not only
achieve this new property, but they do so with the same communication complexity as
the best known existing AVSS scheme of Ref. [5], which generates only t-sharing.

Our Contributions for AVSS We present two AVSS schemes with 4t + 1 parties; one
is statistically-secure (with non-optimal resilience) and the other one is perfectly-secure
(with optimal resilience). These schemes share an interesting property: the sharing
phase of these schemes allow the dealer (possibly corrupted) to d-share a value v, for
a given d , where t ≤ d ≤ 2t . More specifically, given a value v ∈ F to be shared7 and a
given degree d for sharing v, where t ≤ d ≤ 2t , at the end of the sharing phase, there will
exist a polynomial over F, say f (x), of degree at most d , such that f (0) = v and every
honest party Pi will possess a share Shi = f (i) of v. Moreover, we also enhance our
basic AVSS schemes that generate d-sharing of a single value and make them generate
d-sharing of several values (specifically � values, where � ≥ 1) concurrently, such that
each individual value is d-shared. The advantage of the enhanced schemes that generate
concurrent sharing of � values, over � instances of the basic schemes for individually
generating each sharing is that the former allows us to combine the broadcast (public)
communication (needed in the protocol) for all the � values and therefore the broadcast
communication remains independent of � (namely the number of values shared). This
is an important feature since implementing the broadcast primitive by a protocol in the
asynchronous setting [13] is expensive and we must aim to keep the broadcast commu-
nication independent of �. Table 2 gives a comparison of our AVSS schemes with the
existing AVSS schemes (with 4t + 1 parties) in the literature.

We next highlight the following two different perspectives of our AVSS schemes:

(a) They generate d-sharing of � values, with communication complexity
O(�n2 log |F|) bits.

(b) They share �(d +1− t) values in the sense of “packed secret-sharing” [26] where
� ≥ 1 and t ≤ d ≤ 2t , with communication complexity O(�n2 log |F|) bits.

The two different perspectives have two different implications. The first perspective al-
lows us to design a method for generating (t,2t)-sharing of random values with a better

7 For the perfect scheme |F| > n, while for the statistical scheme F = GF(q), where q > max (n,2κ ),

such that κ = log 1
ε .
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communication complexity than the existing method of Ref. [5]. The second perspective
implies that the amortized cost of sharing a single value tolerating an active adversary
is O(n) field elements, which matches the complexity of sharing a single value toler-
ating a passive adversary (e.g. Shamir’s secret-sharing [42]). For designing our AMPC
protocols, we use the first perspective of our AVSS schemes. We elaborate more in the
following:

1. Efficient generation of (t,2t)-sharing of random values: We start with the method
of Ref. [5] to generate (t,2t)-sharing of a single random value from t-sharing of
3t + 1 random values. Let r(0), r(1), . . . , r(3t) be the 3t + 1 random values which
are t-shared. Then consider the polynomials P(x) = r(0) + r(1) · x + · · · + r(t) ·
xt and Q(x) = r(0) + r(t+1) · x + · · · + r(3t) · x2t of degree at most t and 2t ,
respectively. It is easy to see that [r(0)]t using P(x) and [r(0)]2t using Q(x) gives
a (t,2t)-sharing of r(0) because P(0) = Q(0) = r(0). Both [r(0)]2t and [r(0)]t
can be computed given [r(0)]t , [r(1)]t , . . . , [r(3t)]t . To obtain t-sharing of 3t + 1
random values, that is, [r(0)]t , [r(1)]t , . . . , [r(3t)]t , each party in [5] is asked to
act as a dealer and t-share 3t + 1 random values. This step is followed by an
additional “randomness extraction” step. Using the AVSS scheme of Ref. [5], this
costs O(n3 log |F|) bits for one party (by substituting � = 3t + 1 and t = Θ(n) in
the second row of Table 2) and O(n4 log |F|) bits8 for n parties.

We generate (t,2t)-sharing of a random value from t-sharing of a single random
value and (2t − 1)-sharing of another random value. Specifically, assume that
we are given [r]t for a random value r and [s]2t−1 for another random value s.
Moreover, let f (x) and g(x) be the polynomials of degree at most t and 2t − 1,
respectively, that define [r]t and [s]2t−1, respectively. It is easy to note that [r]2t

can be obtained using the polynomial h(x) = f (x)+x ·g(x) of degree at most 2t .
Every party Pi can locally compute its share corresponding to [r]2t by computing
h(i) = f (i) + i · g(i), where f (i) and g(i) are the shares for Pi corresponding to
[r]t and [s]2t−1. This gives us a (t,2t)-sharing of r . To obtain [r]t and [s]2t−1 for
a random r and s, we ask every party to act as a dealer and invoke two instances of
our AVSS scheme to t-share a random value and (2t − 1)-share another random
value. This step is followed by an additional randomness-extraction step. This
costs O(n2 log |F|) bits for one party (by substituting � = 1, d = t and � = 1, d =
2t − 1 in the last two rows of Table 2) and O(n3 log |F|) bits9 for n parties. Thus,
we note a reduction of Θ(n) over Ref. [5]. This saving of Θ(n) further allows our
AMPC protocols to gain Θ(n) in the communication complexity over the AMPC
protocol of [5]. We stress that the gain of Θ(n) is not just because of our different
way of generating a (t,2t)-sharing. The approach used by us is not applicable to
[5] because neither the AVSS scheme of [5], nor any prior AVSS scheme, can be
used to (2t − 1)-share a value.

2. Packed secret-sharing in the asynchronous setting: Our AVSS schemes allow the
dealer to share a value using a polynomial of degree d , where d can be at most 2t .
If the dealer is honest then at most t points on the polynomial will be known to

8 In [5], this cost is actually reduced by a factor of n by using additional tricks.
9 This cost is further reduced by a factor of n by using the additional tricks as in [5]. The details will be

presented later.
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the adversary. Intuitively, this implies that from the view-point of the adversary,
there exists d + 1 − t “degree of freedom”. This further implies that using a sin-
gle polynomial of degree at most d , an honest dealer can share d + 1 − t secrets.
This is the reminiscent of packed secret-sharing, introduced in [26] for the syn-
chronous setting. Our constructions provide packed secret-sharing scheme in the
asynchronous setting for the first time in the literature. We show that using our
packed secret-sharing, the amortized cost of sharing a single element from F is
O(n) field elements, even in the presence of an active adversary. This matches the
cost of sharing a single element from F in the presence of a passive adversary (for
example, Shamir secret-sharing scheme [42]).

Our schemes are useful in applications where a party needs to share multiple
values. For example, common coin [14] is an important primitive for uncondition-
ally secure asynchronous Byzantine Agreement (ABA) protocols. In a common
coin protocol, every party needs to share/commit n values. In the existing com-
mon coin protocols, a party does so by invoking n instances of an AVSS scheme.
Using our packed secret-sharing, a party can share n values using � = n/(d+1− t)

polynomials, each of degree at most d (through a single polynomial, the party can
share d + 1 − t values). Substituting the maximum value of d = 2t and using the
fact that t = Θ(n), we find that � = n/(d + 1 − t) = O(1). This implies that each
party can now share n values by invoking our AVSS schemes a constant num-
ber of times, by setting � = n/(d + 1 − t) and d = 2t . This overall reduces the
communication complexity of the ABA protocol.10

We conclude this section with a brief comparison of our proposed AVSS schemes and
from now onwards, we focus on the first perspective of our AVSS schemes.

Comparison of the Two AVSS Schemes Our AVSS schemes have the following com-
mon properties:

1. Designed with n = 4t + 1.
2. Generate d-sharing of a value for any given d , where t ≤ d ≤ 2t .
3. Have the same communication complexity of O(�n2 log |F|) bits for sharing �

values.

However, our first AVSS scheme is statistical (thus has non-optimal resilience) while
the second one is perfect (thus has optimal resilience). Technique wise, the schemes are
completely independent. We further believe that some of the techniques may lead to an
improved AVSS scheme, which may further lead to a more efficient AMPC and ABA
protocol. Once we have a statistical/perfect AVSS scheme that generates d-sharing for
any t ≤ d ≤ 2t , we can obtain a statistical/perfect AMPC protocol by using the approach
outlined earlier. It is the underlying AVSS, which makes the resulting AMPC protocol
either statistical or perfect. We next discuss the ideas used in our AVSS schemes.

1.3. Overview of Our AVSS Schemes

For simplicity, we explain the underlying ideas of our AVSS schemes assuming that
they share a single secret. We use the idea of sharing a secret by a bivariate polynomial,

10 Giving the exact details of the common coin and ABA is out of scope of the current article and so we
avoid discussing them.
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Fig. 1. Matrix representation of the values distributed by (an honest) D in our AVSS schemes.

as used in several existing schemes [19,25,27,31,35]. In the existing schemes, the dealer
D selects a random bivariate polynomial F(x, y) of degree at most t in x and y, subject
to the condition that F(0,0) = s, where s is the secret to be shared. We observe that
given n = 4t + 1, the dealer can use a bivariate polynomial of degree at most d in x

and t in y for all d with t ≤ d ≤ 2t . This of course does not come for free and calls for
new ideas on top of the existing schemes. By being able to hide the secret in a bivariate
polynomial of degree-(d, t) (we use this notation to denote bivariate polynomials with
degree at most d in x and t in y), we achieve a d-sharing of the secret. Our discussion
below clarifies that it is not necessary to use polynomials of degree-(d, d) in order to
generate a d-sharing. In fact, we take advantage of the fact that the degree of one of the
variables remains t .

So our scheme starts with the dealer D selecting a random bivariate polynomial
F(x, y) of degree-(d, t) with F(0,0) = s and giving the univariate polynomials fi(x) =
F(x, i) of degree at most d and gi(y) = F(i, y) of degree at most t to every party Pi .
Let us first assume that D is honest. In this case, we can view the above distribution of
information as if s is shared using a matrix M consisting of n × n values, as shown in
Fig. 1, where every party Pi receives the ith row and the ith column of M via polyno-
mial fi(x) and gi(y), respectively. This distribution allows the secret s to be d-shared
through the univariate polynomial f0(x) = F(x,0) of degree at most d where every
(honest) party Pi has its share Shi = f0(i) = F(i,0) = gi(0) of the secret s. Moreover,
each share Shi is t-shared among the n parties through the polynomial gi(y), where
every party Pj has the share-share Shij = gi(j) of the share Shi . Thus the bivariate
polynomial F(x, y) facilitates two-level sharing of s (see Fig. 1): at the top level, s is
d-shared through the polynomial f0(x) and then at the second level, every share Shi is
t-shared through the polynomial gi(y). Reconstruction of the secret s can be ensured
by asking every party to reveal its share of s and then by applying the error-correction
on the revealed shares. Since n = 4t + 1 and d ≤ 2t , the error-correction will be robust,
ensuring the correct reconstruction of f0(x) and hence s.
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Although the second level sharing of the shares of the secret does not seem to serve
any purpose for an honest dealer D, it is required for two different reasons to deal with
a corrupted D. First, it ensures that D indeed d-shares (i.e. the underlying sharing poly-
nomial has degree at most d) the secret. Second, it is required to “complete” d-sharing
of s, since a corrupted D may not give the share Shi of s to every honest Pi . We use the
second level t-sharing of Shi to reconstruct gi(y) for the party Pi and this enables Pi

to compute Shi = gi(0). Now it is important to note that the second level sharings are
t-sharings. So we can guarantee their robust reconstruction if we “ensure” that t-sharing
(of Shi ’s) have been done among a subset of 3t + 1 parties. Ensuring the above can be
done with some additional ideas on top of the existing schemes. Had we used a bivariate
polynomial of degree-(d, d), we could not claim the same if d > t . This is because in
this case, the second level sharings will have degree more than t and the impossibility
of robust reconstruction of such sharings with 3t + 1 parties follows from the theory of
error-correcting codes.

We now explain how the above idea is implemented in our schemes. After the dealer
distributes the univariate polynomials, the parties try to identify and agree on a com-
mon subset of 3t + 1 parties, say CORE, such that the fi(x) polynomials of the honest
parties in CORE lie on a unique bivariate polynomial,11 say F(x, y), of degree-(d, t).
Ideally, if D is honest then such a CORE always exists, as there are at least 3t + 1 hon-
est parties and in this case, F(x, y) = F(x, y). However, if such a CORE is identified
even in the case of a corrupted D, then it implies that D has distributed “consistent”
polynomials to at least 2t + 1 honest parties, namely the honest parties in CORE. These
consistent polynomials will uniquely define the bivariate polynomial F(x, y) of degree-
(d, t), which will be considered as D’s committed bivariate polynomial and the value
s = F(0,0) will be considered as D’s committed secret. To ensure that s is d-shared,
it is enough that every (honest) Pi possesses Shi = f 0(i), where f 0(x) = F(x,0) (a
polynomial of degree at most d) and s = f 0(0). Here we use the idea of “completing”
the top level d-sharing of s with the help of the second level t-sharing of each of its
shares Shi . We note that each share Shi of s will be shared among the parties in CORE
through the polynomial gi(y), where gi(y) = F(i, y) and has degree at most t . Since
|CORE| ≥ 3t +1, the parties in CORE can send their share-share of Shi to Pi and enable
Pi to robustly reconstruct gi(y) by applying the error-correction.

An interesting aspect of the described approach is that even though D distributes
information on a bivariate polynomial of degree-(d, t) where d may be greater than t ,
we create a situation where the parties are required to reconstruct polynomials of degree
at most t in order to obtain their shares of the secret. Now the main crux of our AVSS
schemes is to identify and agree on a CORE. Once a CORE is agreed upon, d-sharing
can be completed by reconstructing the second level t-sharings of the shares of the
committed secret, which is committed to the parties in CORE. We provide two methods
to identify such a CORE: the first method applies random checks on the univariate
polynomials distributed by D and has a negligible chance of incorrectly identifying a
CORE. This results in a statistical AVSS scheme. The second method identifies a CORE
without any error and results in a perfect AVSS scheme.

11 A univariate polynomial fi(x) is said to lie on a bivariate polynomial F(x, y) if fi(x) = F(x, i).
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1.4. Organization of the Paper

The rest of the paper is organized as follows: in the next section, we describe the asyn-
chronous network model and the definition of AVSS and AMPC. We also briefly discuss
the existing tools which are used as building blocks in our AVSS and AMPC protocols.
We present our AVSS schemes (both statistical and perfect) for sharing a single secret
in Sect. 3. This is followed by the discussion on the modifications required to extend
these schemes to share multiple values concurrently in Sect. 4. The protocols for gen-
erating (t,2t)-sharing using our AVSS schemes are presented in Sect. 5. In Sect. 6, we
present our AMPC protocols, followed by a brief discussion on the application of our
AVSS schemes in packed secret-sharing in Sect. 7. In Sect. 8, we discuss the proposed
statistical AMPC protocol of [30] and show that it is flawed.

2. Definitions and Preliminaries

2.1. Model

We consider a completely asynchronous network, where we have a set of n = 4t + 1
parties, say P = {P1, . . . ,Pn}, connected by pairwise secure and authentic channels;
each party is modeled as a probabilistic polynomial time Turing machine. We assume
that there exists a computationally unbounded adversary At , who can actively corrupt
at most t out of the n parties and make them behave in any arbitrary manner during the
execution of a protocol.

The underlying network is asynchronous, where the communication channels be-
tween the parties have arbitrary, yet finite delay (i.e. the messages are guaranteed to
reach their destinations eventually). Moreover, the order in which the messages reach
their destinations may be different from the order in which they were sent. To model the
worst case scenario, At is given the power to schedule the delivery of every message in
the network. However, At can only schedule the messages communicated between the
honest parties, without having any access to the “content” of these messages.

As in [14], we consider a computation (namely a protocol execution) in the asyn-
chronous model as a sequence of atomic steps, where a single party is active in each
such step. A party gets activated by receiving a message after which it performs an
internal computation and then possibly sends messages on its outgoing channels. The
order of the atomic steps are controlled by a “scheduler”, which is controlled by At . At
the beginning of the computation, each party will be in a special start state. We say a
party has terminated/completed the computation if it reaches a halt state, after which it
does not perform any further computation. A protocol execution is said to be complete
if each (honest) party terminates the protocol. Notice that the executions that complete
do so after a finite number of steps.

For simplicity, we assume the adversary to be static, who decides the set of t parties
to be corrupted at the beginning of the execution of a protocol (obviously, the honest
parties will not know the identity of the corrupted parties). However, our protocols can
be proved secure even in the presence of an adaptive adversary, who can decide which
parties to corrupt after analyzing the information obtained so far during the execution of
a protocol, provided that more than t parties are not under the control of the adversary.
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2.2. Definitions

The computation in our protocols is performed over a finite field F; for the perfect AVSS
and AMPC protocol, we require that |F| > n. On the other hand, for the statistical AVSS
and AMPC, we require F = GF(q), where q > max (n,2κ), such that κ = log 1

ε
, for a

given error parameter ε. Moreover, without loss of generality, we assume n = poly(κ);
so every field element can be represented by log |F| bits.

We next recall the definition of AVSS from [7,14].

Definition 1 (Asynchronous Verifiable Secret Sharing (AVSS) [7,14]). Let (Sh,Rec)
be a pair of protocols for the n parties, where a dealer D ∈ P has a private input s ∈ F

for Sh. We say that (Sh,Rec) is an AVSS scheme if the following requirements hold
for every possible At :

1. Termination:
(a) If D is honest and all the honest parties participate in the protocol Sh, then

each honest party eventually terminates the protocol Sh.
(b) If some honest party terminates Sh, then irrespective of the behavior of D,

each honest party eventually terminates Sh.
(c) If all the honest parties invoke Rec, then each honest party eventually termi-

nates Rec.
2. Correctness: If some honest party terminates Sh, then there exists a fixed value

s ∈ F, such that the following requirements hold12:
(a) If D is honest then s = s and each honest party upon completing the protocol

Rec, outputs s.
(b) Even if D is corrupted, each honest party upon completing Rec outputs s, irre-

spective of the behavior of the corrupted parties. This property is also known
as strong commitment.

3. Secrecy: If D is honest then the adversary’s view during Sh reveals no information
about s in the information-theoretic sense; i.e. the adversary’s view is identically
distributed for all possible s.

The above definition can be extended in a straight-forward way for a secret S =
(s1, . . . , s�), containing � elements from F, where � > 1. We now present the definition
of statistical and perfect AVSS.

Definition 2 (Statistical and perfect AVSS). If an AVSS scheme satisfies the termina-
tion and the correctness condition with probability13 at least (1 − ε), for a given error
parameter ε, then such a scheme is called a statistical AVSS scheme. On the other hand,
if the termination as well as the correctness condition is satisfied with probability 1 then
such a scheme is called a perfect AVSS scheme.

Note that there is no compromise in the secrecy property for statistical AVSS. We
now formally define d-sharing and (t,2t)-sharing.

12 We often say that D has committed/shared s during Sh.
13 In the rest of the paper, all probabilities are taken over the random coins of the honest parties.
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Definition 3 (d-Sharing and (t,2t)-sharing [5]). A value s ∈ F is said to be d-shared
among P if there exists a polynomial over F, say f (x), of degree at most d , such that
f (0) = s and every (honest) party Pi holds a share Shi of s, where Shi = f (i). We
denote by [s]d the vector (Sh1, . . . ,Shn) of shares of s.

A value s ∈ F is said to be (t,2t)-shared among the n parties, denoted as [s]t,2t , if s

is both t-shared and 2t-shared, among the n parties.

Notice that d-sharing is linear in the sense that by applying any linear function to
d-sharings, we obtain a d-sharing as the output. This allows the parties to locally
compute any linear function of d-shared values. Specifically, let x(1), . . . , x(m) be m

values which are d-shared among the parties, where x
(1)
i , . . . , x

(m)
i denotes the ith

share of x(1), . . . , x(m), respectively. Let H : Fm → F
m′

be a linear function, such that
H(x(1), . . . , x(m)) = (y(1), . . . , y(m′)). Then the parties can locally apply the function
H on their shares of x(1), . . . , x(m) and compute their shares of (y(1), . . . , y(m′)). That

is, every (honest) party Pi can locally compute (y
(1)
i , . . . , y

(m′)
i ) = H(x

(1)
i , . . . , x

(m)
i ),

where y
(1)
i , . . . , y

(m′)
i denotes the ith share of y(1), . . . , y(m′), respectively. We say that

the parties (locally) compute/generate ([y(1)]d , . . . , [y(m′)]d) = H([x(1)]d , . . . , [x(m)]d)

to mean the above.
Throughout the paper, we say that a bivariate polynomial F(x, y) over F has degree-

(d, t) if the degree of x in F(x, y) is at most d and the degree of y in F(x, y) is at
most t .

We now proceed to present the definition of AMPC. The definition of secure AMPC
in the “real-world/ideal-world” paradigm was presented in [7]. Later [9] followed the
same definition; though they presented the definition in the style of a “property based”
definition. In the information-theoretic world, the definition of [9] and [7] are in essence
“equivalent.” Since then, all the papers on information-theoretic AMPC follow the def-
inition presented in [9] and we follow the same. Since the main aim of this article is to
provide an efficient AMPC protocol, to avoid making the paper complicated, we keep
the formalities to a bare minimum and instead prove the security of our protocols using
the definition of [9] presented below. However using standard techniques, our protocols
can be proved secure according to the real-world/ideal-world definition of [7], without
affecting their efficiency.

Definition 4 (Secure Asynchronous Multi-Party Computation (AMPC) [9]). Let F :
F

n → F
n be a publicly known function and let party Pi have a private input xi ∈ F.

Any asynchronous multiparty computation consists of three stages. In the first stage,
each party Pi commits its input. Even if Pi is faulty, if it completed this step, then it is
committed to some value (not necessarily xi ). Let x′

i be the value committed by Pi . If
Pi is honest then x′

i = xi . Then the parties agree on a common subset C of at least n− t

committed inputs. In the last stage the parties compute F(y1, . . . , yn), where yi = x′
i if

Pi ∈ C, otherwise yi = 0.
An asynchronous protocol � among the n parties for computing the function F is

called an AMPC protocol if it satisfies the following conditions for every possible At :

1. Termination: If all the honest parties participate in the protocol, then every honest
party eventually terminates �.
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2. Correctness: Every honest party outputs F(y1, . . . , yn) after completing �, irre-
spective of the behavior of the corrupted parties.

3. Secrecy: The adversary obtains no additional information (in the information-
theoretic sense) about the inputs of the honest parties during �, other than what is
inferred from the input and the output of the corrupted parties.

Based on whether the above properties are achieved with a negligible error or without
any error, we obtain statistical and perfect AMPC, respectively.

Definition 5 (Statistical and perfect AMPC). If an AMPC protocol satisfies the termi-
nation and the correctness condition with probability at least (1 − ε), for a given error
parameter ε, then such a protocol is called a statistical AMPC protocol. On the other
hand, if the termination as well as the correctness condition is satisfied with probability
1 then such a protocol is called a perfect AMPC protocol.

Note that there is no compromise in the secrecy property for statistical AMPC.

2.3. Primitives Used

Asynchronous Broadcast In our protocols, we use the asynchronous broadcast prim-
itive, which was introduced and elegantly implemented by Bracha [13]; the primitive
allows a special party S ∈ P , called sender, to send a message identically to all the
parties. More formally:

Definition 6 (Asynchronous broadcast [15]). Let � be an asynchronous protocol for
the n parties initiated by a special party S ∈ P , having input m (the message to be
broadcast). We say that � is an asynchronous broadcast protocol if the following hold,
for every possible At :

1. Termination:
(a) If S is honest and all the honest parties participate in the protocol, then each

honest party eventually terminates the protocol.
(b) Irrespective of the behavior of S, if any honest party terminates the protocol

then each honest party eventually terminates the protocol.
2. Correctness: If the honest parties terminate the protocol then they do so with a

common output m	. Furthermore, if the sender is honest then m	 = m.

Bracha presented a protocol called A-cast, for realizing the asynchronous broadcast
primitive; the protocol can actually tolerate up to t < n/3 corruptions. For the sake of
completeness, we recall the Bracha’s A-cast protocol from Canetti [14] and present it in
Fig. 2.

Theorem 1 ([14]). Protocol A-cast incurs a communication of O(�n2) bits to broad-
cast an � bit message.

In the rest of the paper, we use the following terminologies while invoking the
A-cast protocol:



Efficient Asynchronous Verifiable Secret Sharing and Multiparty Computation 65

Fig. 2. Bracha’s asynchronous broadcast protocol tolerating t < n/3 corruptions.

Terminology 1 (Terminologies for using the A-cast protocol). We say that:

1. Pi broadcasts m: this means that Pi acts as an S and invokes an instance of
A-cast to broadcast m.

2. Pj receives m from the broadcast of Pi : this means that Pj (as a receiver) com-
pletes the execution of Pi ’s A-cast (namely the instance of the A-cast protocol
where Pi is the sender), with m as the output.

Agreement on a Common Subset (ACS) The ACS protocol [7,9], is used in all the
existing AMPC protocols (including ours). It allows the (honest) parties to agree on
a common subset of n − t parties satisfying certain “property”, say Q. To make the
ACS protocol work, we must guarantee Q to be such that:

1. Every honest party will satisfy Q eventually. However, there is no restriction for
the corrupted parties; a corrupted party may or may not choose to satisfy Q.

2. If some honest party Pj ∈ P finds some party (possibly corrupted) Pα to satisfy
Q, then every other honest party in P will also eventually find Pα to satisfy Q.

Later in this article, we point out a flaw in the AMPC protocol of [30] that stems from
the fact that Huang et al. [30] overlooked the second precondition on Q for employing
an ACS instance.

For a better understanding, we consider the following scenario when ACS can be
employed: Assume that every party in P is asked to broadcast a value and the property
Q is whether a party has broadcasted or not. The termination property of broadcast
(namely the A-cast protocol) ensures that if some honest Pj finds some party, say Pα , to
satisfy Q (that is Pj received a value from the broadcast of Pα), then every other honest
party in P will also eventually find Pα to satisfy Q. Thus using the ACS protocol, the
(honest) parties can eventually agree on a common subset of n − t parties who have
broadcast some value.

The idea behind the ACS protocol is to execute n instances of an asynchronous Byzan-
tine Agreement (ABA) protocol [14], one on the behalf of each party to decide whether it
will be in the common subset. For the sake of completeness, we present the description
of the protocol ACS (taken from Ben-Or et al. [9]) in Fig. 3.
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Fig. 3. Protocol for the agreement on a common subset.

Theorem 2 ([9]). Using the protocol ACS, the (honest) parties in P can agree on a
common subset of at least n − t parties, who will eventually satisfy the property Q. The
communication complexity of the protocol is O(poly(n)).

The communication complexity of the ACS protocol depends on the cost of the un-
derlying ABA protocol. Since ACS is invoked a constant number of times in our AMPC
protocols, we choose not to be explicit on its communication complexity.

Online Error Correction (OEC) ([5,14]) The next protocol we discuss is OEC, which
can be viewed as the method of applying the Reed–Solomon (RS) error-correction [33]
in the asynchronous setting. Given a value which is d-shared among a set of parties P ⊆
P with d < (|P| − 2t), the goal is to make some designated party, say PR , reconstruct
the value robustly (actually OEC allows PR to reconstruct the entire polynomial through
which the value is d-shared). In the synchronous setting, this can be achieved by asking
every party in P to send its share to PR , who can apply the RS error-correction to
reconstruct the value. Given the condition d < (|P| − 2t), the reconstruction will be
robust. In the asynchronous setting, achieving the same goal requires a bit of trick.

The intuition behind OEC is that PR keeps waiting till it receives d + t + 1 val-
ues, all of which lie on a unique polynomial of degree d . This step requires apply-
ing the RS error-correction repeatedly. We denote an RS error-correcting procedure as
RS-Dec(d, r,W) that takes as input a vector W of shares (possibly incorrect) of a d-
shared value (that we would like to reconstruct) and tries to output a polynomial of
degree d , by correcting at most r errors in W . Coding theory [33] says that RS-Dec can
correct r errors in W and correctly interpolate the original polynomial provided that
|W | ≥ d + 2r + 1. There are several efficient implementations of RS-Dec (for example,
the Berlekamp–Welch algorithm [33]). Once PR receives d + t + 1 values that lie on
a unique polynomial of degree d (returned by RS-Dec), then that unique polynomial is
the actual polynomial, say Q(x), of degree d that defines d-sharing of Q(0). This is be-
cause at least d + 1 values out of the d + t + 1 values are from the honest parties, which
uniquely define the original polynomial Q(x). Note that the corrupted parties in P may
send wrong values to PR . But there are at least |P| − t ≥ d + t + 1 honest parties in the
set P whose values will be eventually received by PR and so PR will eventually termi-
nate the process. The above procedure is nothing but applying the RS error-correction
algorithm in an “online” fashion.
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Fig. 4. Protocol for online error-correction.

The steps for the OEC are now presented in Fig. 4. The current description is inspired
from Canetti [14] (skipping several other formal details).

Theorem 3 ([5,14]). Let a value be d-shared among a set of parties P ⊆ P where d <

(|P|− 2t) and let Q(x) be the underlying sharing polynomial. Moreover, let PR ∈P be
a designated party, who is supposed to reconstruct Q(x). Then protocol OEC achieves
the following properties for every possible At :

1. Termination:
(a) Every honest party in P eventually terminates the protocol.
(b) If PR is honest then it eventually terminates the protocol.

1. Correctness: Party PR upon terminating outputs Q(x).
2. Secrecy: If Pα is honest then At obtains no additional information about Q(0).
3. Communication complexity: The protocol incurs a total communication of

O(n log |F|) bits.

Proof. The termination property is argued as follows. The honest parties in P will
terminate the protocol trivially after sending their shares to PR . We now argue that (an
honest) PR will terminate the protocol, as well. Let r̂ parties in P be corrupted, where
r̂ ≤ t . Further assume that r̂1 corrupted parties send wrong values and r̂2 corrupted
parties send nothing ever, subject to r̂1 + r̂2 = r̂ . Consider the (t − r̂2)th iteration; since
r̂2 parties in P never send any value, PR will receive d + t +1+ t − r̂2 distinct values on
the polynomial Q(x), of which r̂1 are corrupted. Since |It−r̂2 | = d + t +1+ t − r̂2 ≥ d +
2r̂1 + 1, the algorithm RS-Dec will correct r̂1 errors and will return Qt−r̂2(x) = Q(x)

during the (t − r̂2)th iteration. Therefore the protocol will terminate at the latest after
the (t − r̂2)th iteration.

To argue correctness, assume that PR terminates during the r th iteration and outputs
Qr(x) such that the polynomial Qr(x) is consistent with d + t + 1 values from Ir . To
prove the correctness, we now show that Qr(x) = Q(x). However, the equality follows
from the fact that at least d + 1 values in Ir belong to the honest parties and thus they
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lie on Q(x), as well. In other words, these d + 1 values are the common points of the
two polynomials which are of degree at most d .

The secrecy is argued as follows. It is easy to see that if PR is honest, then At gets no
additional information about Q(0). Since the (honest) parties in P privately send their
shares to PR , no additional information about Q(0) or the values of Q(x) is revealed
to At during OEC. In the protocol, each party in P sends its share to PR , incurring a
communication of O(n) field elements. �

Randomness Extraction Here, we discuss about a well-known method for randomness-
extraction in the information-theoretic setting. We are given a set of values from F, say
a1, . . . , aN , such that at least K out of these N values are selected uniformly and ran-
domly from F and are information-theoretically secure. The goal is to compute K val-
ues, say b1, . . . , bK , from a1, . . . , aN , which are uniformly distributed over F and are
information-theoretically secure. This is achieved through the following well-known
method introduced in [11,12]: let f (x) be a polynomial of degree at most N − 1, such
that f (i) = ai+1, for i = 0, . . . ,N − 1. Then set b1 = f (N), . . . , bK = f (N + K − 1).
We call this algorithm Ext and invoke it as (b1, . . . , bK) = Ext(a1, . . . , aN). It is easy
to see that b1, . . . , bK computed as above will be information-theoretically secure; this
is because there exists a one-to-one mapping between the K information-theoretically
secure values in a1, . . . , aN and b1, . . . , bK . Notice that Ext is a linear function of its
inputs as it is based on polynomial interpolation.

Finding (n, t)-star The last primitive we discuss here is finding an (n, t)-star in an
undirected graph. Looking ahead, we exploit some interesting properties of (n, t)-star in
order to build our perfect AVSS scheme. An (n, t)-star is defined as follows:

Definition 7 ((n, t)-star [7,14]). Let G be an undirected graph with the n parties in P
as its vertex set. We say that a pair (C,D) of sets with C ⊆ D ⊆ P is an (n, t)-star in G,
if the following hold:

1. |C| ≥ n − 2t ;
2. |D| ≥ n − t ;
3. For every Pj ∈ C and every Pk ∈ D the edge (Pj ,Pk) exists in G.

In [7], the authors presented an elegant and efficient algorithm for finding an
(n, t)-star, provided the graph contains a clique of size n − t . The algorithm, called
Find-Star outputs either an (n, t)-star or the message star-Not-Found. Whenever
the input graph contains a clique of size n− t , Find-Star always outputs an (n, t)-star in
the graph.

Actually, the algorithm Find-Star takes the complementary graph G of G as input
and tries to find an (n, t)-star in G where an (n, t)-star is a pair (C,D) of sets with
C ⊆ D ⊆ P , satisfying the following conditions:

1. |C| ≥ n − 2t ;
2. |D| ≥ n − t ;
3. There are no edges between the nodes in C and the nodes in D in G.
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Fig. 5. Algorithm for finding an (n, t)-star.

Clearly, a pair (C,D) representing an (n, t)-star in G, is an (n, t)-star in G. Recasting
the task of Find-Star in terms of the complementary graph G, we say that Find-Star out-
puts either an (n, t)-star, or the message star-Not-Found. Whenever, the input
graph G contains an independent set of size n − t , algorithm Find-Star always out-
puts an (n, t)-star. For simple notation, we denote G by H . The algorithm Find-Star is
presented in Fig. 5.

Theorem 4 ([14]). If Find-Star outputs (C,D) on input graph H , then (C,D) is an
(n, t)-star in H .

3. AVSS for Sharing a Single Secret

In this section, we present AVSS schemes that allow a dealer D ∈ P (the dealer can be
any party from P) to d-share a secret s ∈ F among the n parties, for a given d , where
t ≤ d ≤ 2t . In the next section, we will show how to extend these schemes to share
multiple secrets concurrently. We call our statistical AVSS scheme as SAVSS, while
our perfect AVSS scheme is called PAVSS. In the rest of the paper, we distinguish the
names of the statistical and perfect protocols/sub-protocols by their first character (‘S’
for statistical and ‘P’ for perfect). Some of the protocols (for example the protocol for
the reconstruction phase) will be common for both the statistical and the perfect scheme.
The names of such common protocols are not prefixed by ‘S’ or ‘P’.

Structurally, the sharing protocol (S-Sh and P-Sh) of both the AVSS schemes is di-
vided into a sequence of three phases as presented below. The sub-protocols implement-
ing these phases are such that every honest party eventually terminates them when D is
honest. On the other hand, if D is corrupted and some honest party terminates these
phases, then every other honest party also eventually terminates them.
1. Distribution by D: The protocols for this phase are called S-Distr (resp. P-Distr).
Here D, on having a secret s and a publicly known degree of sharing d , distributes
information to the parties in P to d-share s. Specifically, as discussed in Sect. 1.3,
D selects a random bivariate polynomial F(x, y) of degree-(d, t), with s as the constant
term. In protocol S-Distr, D hands the ith polynomial fi(x) = F(x, i) to Pi . In addition
to these polynomials, D will also distribute some “additional” information, which will
be used in the later phases (of the statistical scheme) for some probabilistic checks.
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In protocol P-Distr, D hands the polynomial fi(x) and gi(y) = F(i, y) to Pi and no
“additional” information is distributed to the parties. From now onwards, we call the
fi(x) and gi(y) polynomial as the ith row and column polynomial, respectively (in
connection with Fig. 1).
2. Verification & Agreement on CORE: The protocols for this phase are S-Ver-Agree
and P-Ver-Agree, respectively. Though the goal is the same, these two protocols are
completely independent and are implemented with different techniques. In this phase,
on receiving the information from D, the parties check whether D has distributed con-
sistent information to “sufficient” number of parties. For this, the statistical protocol
S-Ver-Agree applies random checks on the row polynomials distributed by D and the
protocol involves a negligible chance of incorrectly identifying such a “consistent set”
of parties. On the other hand, in the perfect protocol P-Ver-Agree, each pair of parties
exchange “common information” on their row and column polynomials and then we
exploit some interesting properties of (n, t)-star to check the consistency of the infor-
mation distributed by D. Protocol P-Ver-Agree identifies such a consistent set of parties
without any error.

On a high level, the goal of the (honest) parties in this phase is to verify and agree
on a set of at least 3t + 1 parties, called CORE, such that the row polynomials f i(x)

of the honest parties in CORE define a unique bivariate polynomial, say F(x, y), of
degree-(d, t). That is, f i(x) = F(x, i) holds for every honest Pi ∈ CORE. Moreover,
we also require that if D is honest, then the secrecy of s is still preserved during this
verification process. If D is honest, then such a CORE always exists, as in this case
F(x, y) = F(x, y) and for every honest Pi , f i(x) = fi(x). Moreover, there are at least
3t + 1 honest parties in P .

A common but crucial fact from the linear algebra used in S-Ver-Agree, as well as in
P-Ver-Agree (to identify a CORE), is as follows: given a set of at least t + 1 univariate
polynomials of degree at most d and another set of at least d +1 univariate polynomials
of degree at most t , which are “pairwise consistent”, then all these polynomials lie on a
unique bivariate polynomial of degree-(d, t). More formally:

Lemma 1. Let f 1(x), . . . , f l(x) be l polynomials of degree at most d over F and let
g1(y), . . . , gm(y) be m polynomials of degree at most t over F, where l ≥ t +1 and m ≥
d + 1, such that for every 1 ≤ i ≤ l and for every 1 ≤ j ≤ m, we have f i(j) = gj (i).
Then there exists a unique bivariate polynomial over F of degree-(d, t), say F(x, y),
such that F(x, i) = f i(x) and F(j, y) = gj (y), for 1 ≤ i ≤ l and 1 ≤ j ≤ m.

Proof. The proof is very similar to the proof of Lemma 4.26 in [14]. For the sake of
completeness, the proof is given in Appendix A. �

3. Generation of d-Sharing: The goal of this phase is to enable every honest party Pi to
receive its share Shi of the secret. If the parties agree on a CORE of size at least 3t + 1
in the previous phase, then it implies that there exists some bivariate polynomial, say
F(x, y) of degree-(d, t), such that F(x, i) = f i(x) for every honest Pi in CORE, where
f i(x) is the row polynomial held by Pi . We consider s = F(0,0) as D’s committed
secret. If D is honest then F(x, y) = F(x, y) and s = s. Now we note that the univariate
polynomial f 0(x) = F(x,0) is of degree at most d and s = f 0(0). So d-sharing of s
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Fig. 6. Protocol for the generation of d-sharing phase. The protocol is common for the sharing phase of
both the statistical and the perfect AVSS scheme.

with Shi = f 0(i) being the ith share of s can be completed if every (honest) party Pi

holds f 0(i). This can be easily achieved since each Shi is t-shared among the parties
in CORE through the polynomial gi(y), where gi(y) = F(i, y) and Shi = gi(0) since
gi(0) = f 0(i). In order words, the second level t-sharing of the shares of s is already
done among the parties in CORE. Since |CORE| ≥ 3t +1, OEC allows Pi to reconstruct
gi(y). Party Pi now computes its share Shi = gi(0). The protocol for this phase is
common for both the AVSS schemes. We call this protocol as Gen and present it in
Fig. 6.

We state the following lemma for the protocol Gen.

Lemma 2. Let the honest parties have agreed upon a CORE, satisfying the properties
discussed above. Then protocol Gen satisfies the following properties for every possible
At :

1. It generates d-sharing of s = F(0,0). Moreover, if D is honest, then s = s where
s is D’s secret.

2. The protocol requires a communication of O(n2 log |F|) bits.

Proof. The property of CORE implies that the row polynomial f i(x) of every (honest)
Pi ∈ CORE lies on a bivariate polynomial F(x, y) of degree-(d, t). Moreover, if D is
honest then F(x, y) is the same bivariate polynomial F(x, y) selected by D in the first

phase. Let f 0(x)
def= F(x,0), s

def= F(0,0) and gi(y)
def= F(i, y). The polynomial gi(y)

is of degree at most t and |CORE| ≥ 3t + 1. Substituting P = CORE in the protocol
OEC (see Fig. 4), we find that each honest Pi will eventually compute Shi = gi(0)

from the f j (i) values (which are the same as gi(j) values) received from the parties in
CORE. Moreover, gi(0) = f 0(i). So s will be d-shared through the polynomial f 0(x).
If D is honest then f 0(x) = f0(x) = F(x,0).

In the protocol, every party in CORE does a communication of n elements from F.
So this requires a total communication of O(n2 log |F|) bits. �

The protocols for the sharing phase and the reconstruction phase of our AVSS
schemes are presented in Fig. 7. By substituting the appropriate protocols for a phase
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Fig. 7. The AVSS scheme for sharing a single secret. Here s is the secret, D is the dealer and d is the degree
of the sharing.

(presented in the sequel), we get either the statistical AVSS scheme SAVSS or the per-
fect AVSS scheme PAVSS.

In the sequel, we describe the protocols S-Distr and S-Ver-Agree, followed by the
description of their perfect counter parts P-Distr and P-Ver-Agree. Before that, we state
the property of the protocol Rec, which is the common protocol for the reconstruction
phase of both the AVSS schemes.

Lemma 3. Let s be a value which is d-shared among the n parties, where t ≤ d ≤ 2t .
Then by executing the protocol Rec, every honest party will eventually reconstruct s

and terminate. The protocol incurs a communication of O(n2 log |F|) bits.

Proof. The fact that every honest party will eventually reconstruct s follows from the
properties of OEC (see Theorem 3) by noting that |P| = |P| = 4t +1 and the maximum
degree of sharing of s is 2t , which is strictly less than |P| − 2t . In protocol Rec, every
party sends its share to every other party resulting in O(n2 log |F|) bits of communica-
tion. �

3.1. Sub-protocols for the Statistical AVSS Scheme

We now present the protocols S-Distr and S-Ver-Agree.

3.1.1. Protocol S-Distr

Here D on having a secret s for sharing, selects a random bivariate polynomial F(x, y)

of degree-(d, t) with the constant term s and sends to Pi the ith row polynomial. In
addition, D also distributes some “additional” information which will be used later to
preserve the secrecy of s, during the probabilistic checks performed during the protocol
S-Ver-Agree. Precisely, D distributes the shares of (t + 1)n random univariate polyno-
mials of degree at most t . Since these polynomials will be used for “masking” later, we
call them as the masking polynomials; the masking polynomials indexed as (Pi, 	) are
associated with party Pi and t + 1 masking polynomials are associated with each Pi .
The reason for selecting (t + 1)n masking polynomials will be clear when we present
the protocol S-Ver-Agree. Now the protocol S-Distr is presented in Fig. 8.
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Fig. 8. Protocol S-Distr. Here D is the dealer, s is the secret and d is the degree of the sharing.

We make the following claim about S-Distr, that trivially follows from the fact that
d ≤ 2t .

Claim 1. In protocol S-Distr, D communicates O((nd + n3) log |F|) = O(n3 log |F|)
bits.

3.1.2. Protocol S-Ver-Agree

Recall that the goal of the protocol S-Ver-Agree is to enable the (honest) parties in
P to check whether there exists a set CORE of at least 3t + 1 parties, such that the
row polynomials of the honest parties in CORE lie on a unique bivariate polyno-
mial of degree-(d, t) and if such a set exists then the parties agree on it. Let f i(x)

be the row polynomial of degree at most d , received by Pi from D; moreover let
m(Pj ,1)(i), . . . ,m(Pj ,t+1)(i) be the shares of the masking polynomials received by Pi ,

for j = 1, . . . , n. If D is honest then f i(x) = fi(x) and m(Pj ,k)(i) = m(Pj ,k)(i), for
k = 1, . . . , t + 1. The properties of bivariate polynomials of degree-(d, t) say that if
indeed a CORE exists then the points {f i(j) : Pi ∈ CORE} will define some polyno-
mial, say gj (y), of degree at most t , for every j = 1, . . . , n. So the goal of protocol
S-Ver-Agree is to enable the parties to check whether D has distributed the row polyno-
mials in such a way that the j th point on the row polynomials of at least 3t + 1 parties
define polynomials of degree at most t . Such a set of 3t + 1 parties can be considered
as a CORE.

To check the above, we use the following known fact about probabilistic checks on
polynomials: if a random linear combination of a set of univariate polynomials has
degree at most t , then with very high probability, each individual univariate polynomial
in the set has also degree at most t . Formally:

Lemma 4. Let h0(y), . . . , hl(y) be polynomials where l ≥ 1 and let r be a random,

non-zero element from F. Assuming � = poly(κ), if the polynomial hcom(y)
def= h0(y)+

rh1(y) + · · · + rlhl(y) is of degree at most t , then except with probability 2−Ω(κ) ≈ ε,
each polynomial h0(y), . . . , hl(y) has also degree at most t .

Proof. For the sake of completeness, the proof is given in Appendix A. �
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Based on the above lemma, the core idea behind probabilistically checking the con-
sistency of the row polynomials distributed by D is as follows: consider a set of at least
3t + 1 parties, say ReceivedSet, who claim to receive their respective row polynomials
and their shares of the masking polynomials from D. To verify whether ReceivedSet
has a subset of parties constituting a potential CORE, we proceed as follows. Let the
points {f i(j) : Pi ∈ ReceivedSet} define some polynomial g	

j (y), for j = 1, . . . , n.
Similarly, let the shares {m(Pj ,k)(i) : Pi ∈ ReceivedSet} define some masking poly-
nomial m	

(Pj ,k)(y), for k = 1, . . . , t + 1. Then we publicly verify if the polynomial

E(y) = m	(y)+ rg	
1(y)+· · ·+ rng	

n(y) is of degree at most t . Here m	(y) is one of the
masking polynomials (among the (t + 1)n masking polynomials m	

(Pj ,k)(y)); and r is a
random combiner, which is made public, after D’s delivery of the row polynomials and
shares of the masking polynomials to the (honest) parties in ReceivedSet (we will dis-
cuss in the sequel how such an r will be available and which masking polynomial among
the (t + 1)n masking polynomials should be considered as m	(y)). We ask D to publish
E(y) and every Pi ∈ ReceivedSet to publish the corresponding random linear combina-
tion ei = m	(i) + rf i(1) + · · · + rnf i(n). If E(y) has degree at most t (which should
be ideally the case) and if there are at least 3t + 1 parties in ReceivedSet, say AgreeSet,
who “agrees” with D in the sense that E(i) = ei holds for every Pi ∈ AgreeSet, then
with high probability, AgreeSet constitutes a candidate for CORE. More specifically,
let the points {f i(j) : Pi ∈ AgreeSet} define some polynomial gj (y), for j = 1, . . . , n;
then except with probability 2−Ω(κ) ≈ ε, the polynomials gj (y) are of degree at most
t , for every j = 1, . . . , n. This holds since (a possibly corrupted) D had no idea about
the random r , when it distributed the row polynomials and the shares of the masking
polynomials to the (honest) parties in AgreeSet. The secrecy of the row polynomials of
the honest parties in ReceivedSet (for an honest D) will be preserved during the above
check, thanks to the masking polynomial m	(y).

Having said the core idea, we now disclose some crucial issues that we face when
we try to implement the above idea in the asynchronous setting. The main issues are
when and how to generate the random combiner r , which masking polynomial to con-
sider, who decides a ReceivedSet and how many such candidate ReceivedSet need to
be examined to finally get a CORE. As explained above, we require an r that remains
secret from D during its distribution of the row polynomials and shares of the masking
polynomials to the parties in ReceivedSet. Otherwise, a corrupted D can go undetected
even after distributing inconsistent polynomials to the parties in ReceivedSet. We solve
this issue by asking a designated party V ∈ P to act as a verifier and select the random
challenge r . If V is honest and the parties in ReceivedSet receive their row polynomials
and points on masking polynomials before V makes r public, then clearly the above
described probabilistic check works. However, it is difficult to identify an honest ver-
ifier V and so we ask every party in P to play the role of a verifier in parallel. So we
first construct a sub-protocol, navigated by a single verifier V . The protocol outputs a
number of candidates for CORE, which are indeed “true” candidates for CORE, if V

is honest. Later, when running this single-verifier protocol in parallel for each of the
verifiers in P , we show how to choose the CORE from many candidates, making sure
that it is “approved” by at least one honest verifier. Our first goal is thus to construct the
sub-protocol for a single V .
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Protocol for the Navigation by a Single Verifier Since V generates the random chal-
lenge r , it must ensure that indeed the (honest) parties in ReceivedSet already received
their values from D. For this, we let the parties inform V when they receive their values
from D and let V to construct the set ReceivedSet, based on the received responses, be-
fore V generates the challenge for the set. Now an interesting question is the following:
Is it enough for V to generate a single ReceivedSet containing the 3t +1 parties who re-
spond to V and stopping immediately? Does this lead to a candidate CORE? The answer
is no. Specifically, ReceivedSet may contain t corrupted parties, who can reveal incor-
rect linear combination of the points on their row polynomials (namely the e(i) values).
Even when D is honest, we can only guarantee that the honest parties in ReceivedSet
(say exactly 2t + 1) respond correctly by “agreeing” with D’s published polynomial.
But recall that in order to be considered as a candidate for CORE, the set of parties who
agree with D’s published polynomial should admit a size of at least 3t + 1. This implies
that V may not find a candidate for CORE by examining a single ReceivedSet.

As a remedy for the above problem, we ask V to start with a ReceivedSet of size
3t + 1 and keep “expanding” the ReceivedSet dynamically, after receiving confirma-
tions from additional parties about their receipt of row polynomial and shares of the
masking polynomials. After every expansion of ReceivedSet, V generates a new ran-
dom challenge r and makes public the updated ReceivedSet and the newly generated
challenge r . When a ReceivedSet and a random challenge is made public by V , D as
well as the parties in that ReceivedSet respond to the challenge. Specifically, D broad-
casts the linearly combined polynomial and the parties in ReceivedSet broadcast the
corresponding linearly combined points. This can be perceived as a “game” between
D and the parties in ReceivedSet, navigated by the verifier V , who decides ReceivedSet,
generates the challenge and then asks D and ReceivedSet to play the game. In the
game, D wishes to convince everyone that the information that it handed to the par-
ties in ReceivedSet are consistent (without violating the secrecy of s). Clearly, if a
ReceivedSet has at least 3t + 1 parties such that the linearly combined points of those
parties match with the polynomial published by D, then such a set of 3t + 1 parties is
a contender for CORE; as mentioned earlier, we denote by AgreeSet the set of such
“agreeing” parties.

For an honest D and V , we are guaranteed to eventually see at least one candidate for
CORE, namely when all the honest parties will be in ReceivedSet, whose response will
match the polynomial published by D. We further note that with very high probability,
a corrupted D cannot cheat when V is honest, since V selects r only after getting the
confirmation of the receipt of the row polynomials and the shares of the masking poly-
nomials from the parties in ReceivedSet and more importantly, a random r is chosen
for every instance of ReceivedSet. Our final observation is that there can be at most
t + 1 different instances of ReceivedSet, since initially ReceivedSet may have 3t + 1
parties and finally it may have all the 4t + 1 parties. So V may need to generate a ran-
dom challenge t + 1 times and so the checking game will be performed at most t + 1
times. Each time the game is played between D and the parties in a distinct instance
of ReceivedSet, using the associated random challenge r , published along with the in-
stance of ReceivedSet. This clearly implies that in order to maintain the secrecy of the
row polynomials of the honest parties during the probabilistic checks, every time a dis-
tinct masking polynomial is to be used. Thus we may require t +1 masking polynomials
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Fig. 9. Verification of the row polynomials of the parties navigated by a verifier V ∈ P .

on the behalf of a single V (and total (t + 1)n masking polynomials for n verifiers); the
masking polynomials with index (V , 	) are associated with V , for the game played un-
der the control of V .14 We now present the protocol Single-Verifier in Fig. 9 that captures
the above discussion for a designated verifier V ∈ P . We stress that there is no explicit
terminating condition for Single-Verifier; and the parties do not terminate after finding
an AgreeSet. The terminating condition will be specified in the protocol S-Ver-Agree,
where several instances of Single-Verifier are executed and a CORE is selected based on
several AgreeSets generated in those instances (more on this later).

We next prove some important properties of the protocol Single-Verifier: the first prop-
erty is that if D and V are honest, then eventually some AgreeSet(V ,β) will be gener-
ated (Lemma 5). This property is essential to guarantee the termination of the protocol
S-Ver-Agree (where Single-Verifier is used as a black-box) when D is honest. We then
show that if V is honest and some AgreeSet(V ,β) is generated, then the j th point on
the row polynomials of the honest parties in AgreeSet(V ,β) indeed define polynomi-
als of degree at most t (Lemma 6). This will further imply that the row polynomials

14 For example, if V = Pj , then the masking polynomials m(Pj ,1)(y), . . . ,m(Pj ,t+1)(y) are deployed.
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of the honest parties in AgreeSet(V ,β) lie on a unique bivariate polynomial of degree-
(d, t) (Lemma 7), implying that AgreeSet(V ,β) is a candidate for CORE. We then show
that if D is honest, then the secret s remains information-theoretically secure during
Single-Verifier, even if V is corrupted. This will ensure information-theoretic security
for s in protocol S-Ver-Agree. Finally we show that protocol Single-Verifier involves a
total broadcast of O(n2 log |F|) bits.

Lemma 5. In protocol Single-Verifier, if V and D are honest, then eventually an
AgreeSet(V ,β) with |AgreeSet(V ,β)| ≥ 3t +1 will be generated, where β ∈ {1, . . . , t +1}.

Proof. If D is honest, then eventually the set of (at least) 3t + 1 honest parties will
correctly receive their row polynomials and these polynomials will satisfy any random
challenge r generated by an honest V . That is, the linear combination of the points
revealed by these parties will lie on the corresponding linear combination of the poly-
nomials revealed by D. Thus, for some β ∈ {1, . . . , t +1}, ReceivedSet(V ,β) will contain
3t + 1 honest parties who will also appear in AgreeSet(V ,β). �

Lemma 6. In protocol Single-Verifier, if V is honest and some AgreeSet(V ,β) (contain-
ing at least 3t +1 parties) has been generated, then the following holds with probability
at least (1 − ε):

1. For all j = 1, . . . , n, the j th point on the row polynomials of the honest parties in
AgreeSet(V ,β) define some polynomial, say gj (y), of degree at most t .

2. The shares of the masking polynomial m(V,β)(y) held by the honest parties in
AgreeSet(V ,β) define some polynomial of degree at most t .

Proof. If D is honest, then the lemma will be true, without any error. Hence we con-
sider the case when D is corrupted. So let us assume that an AgreeSet(V ,β), where
|AgreeSet(V ,β)| ≥ 3t + 1 is generated from ReceivedSet(V ,β) and let H(V,β) denote the
set of honest parties in AgreeSet(V ,β). Since V is honest, a corrupted D while distribut-
ing the row polynomials and the shares of the masking polynomials to the (honest)
parties in ReceivedSet(V ,β), is oblivious of the random challenge r(V,β). The challenge
r(V,β) is generated when V receives the (ECHO, 	) message from every (honest) party
in ReceivedSet(V ,β). Let the shares {m(V,β)(i) : Pi ∈ H(V,β)} define the polynomial
m(V,β)(y) and let for j = 1, . . . , n, the points {f i(j) : Pi ∈ H(V,β)} define the poly-
nomial gj (y). Then the value e(V,β,i), broadcasted by Pi ∈ H(V,β) in response to the
challenge r(V,β) is:

e(V,β,i) = m(V,β)(i) + r(V,β)g1(i) + · · · + rn
(V,β)gn(i).

We will now show that except with probability ε, the polynomials m(V,β)(y), g1(y), . . . ,

gn(y) are of degree at most t . On the contrary, if at least one of these n+ 1 polynomials
has degree more than t , then we can show that the minimum degree polynomial, say
Emin(y), defined by the points {e(V,β,i) : Pi ∈ H(V,β)} will have degree more than t

with probability at least (1− ε). This will clearly imply E(V,β)(y) 
= Emin(y) and hence
e(V,β,i) 
= E(V,β)(i) will hold for at least one Pi ∈ H(V,β). This will be a contradiction,
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as e(V,β,i) = E(V,β)(i) holds for every Pi ∈ AgreeSet(V ,β) and H(V,β) is a subset of
AgreeSet(V ,β).

So we proceed to prove that Emin(y) will be of degree more than t with probability
at least (1 − ε), when one of the polynomials m(V,β)(y), g1(y), . . . , gn(y) has degree
more than t . For this, we show the following:

1. We first claim that if one of the polynomials m(V,β)(y), g1(y), . . . , gn(y) has de-

gree more than t , then with probability at least (1 − ε), the polynomial Edef(y)
def=

m(V,β)(y)+ r(V,β)g1(y)+· · ·+ rn
(V,β)gn(y) will also have degree more than t , for

any random, non-zero challenge r(V,β). This follows from the property of polyno-
mials, as stated in Lemma 4.

2. We next claim that Emin(y) = Edef(y). For this, we first observe that in the proto-
col, every e(V,β,i) broadcasted by every Pi ∈ H(V,β) lies on the polynomial Edef(y)

(this condition has to be satisfied for Pi to be in AgreeSet(V ,β)). Now consider
the difference polynomial dp(y) = Edef(y) − Emin(y). Clearly, dp(y) = 0, for all
y = i, where Pi ∈ H(V,β). Thus dp(y) will have at least |H(V,β)| roots. On the
other hand, the maximum degree of dp(y) could be |H(V,β)| − 1. This is because
Edef(y) is defined by the points on the row polynomials held by the parties in
H(V,β) and so the maximum degree of Edef(y) can be |H(V,β)|−1. These two facts
together imply that dp(y) is the zero polynomial, implying that Edef(y) = Emin(y)

and so Emin(y) will have degree more than t .
�

Lemma 7. In protocol Single-Verifier, if V is honest and some AgreeSet(V ,β) (con-
taining at least 3t + 1 parties) is generated, then with probability at least (1 − ε), there
exists a unique bivariate polynomial, say F(x, y), of degree-(d, t), such that the row
polynomial f i(x) held by every honest Pi ∈ AgreeSet(V ,β) satisfies F(x, i) = f i(x).
Moreover, if D is honest then F(x, y) = F(x, y).

Proof. Without loss of generality, let AgreeSet(V ,β) contain the first 3t + 1 parties
P1, . . . ,P3t+1. The set AgreeSet(V ,β) will contain at least 2t +1 honest parties and again
without loss of generality, let these be the first 2t + 1 parties P1, . . . ,P2t+1. Then from
Lemma 6, the existence of AgreeSet(V ,β) implies that except with probability (1 − ε),
the points {f i(j) : i ∈ {1, . . . ,2t + 1}} define some polynomial, say gj (y) of degree
at most t , for j = 1, . . . , n. Thus, we have 2t + 1 polynomials f 1(x), . . . , f 2t+1(x),
each of degree at most d and n polynomials g1(y), . . . , gn(y), each of degree at most
t , such that f i(j) = gj (i) holds for all i = 1, . . . ,2t + 1 and all j = 1, . . . , n. So from
Lemma 1, there is a unique bivariate polynomial, say F(x, y), of degree-(d, t), such
that F(x, i) = f i(x) holds for i = 1, . . . ,2t + 1. It is easy to see that if D is honest then
F(x, y) = F(x, y). �

Lemma 8. If D is honest then s remains information-theoretically secure during the
protocol Single-Verifier.

Proof. To recover the secret s, the adversary At has to learn the polynomial F(x, y)

and this requires the knowledge of (t + 1)(d + 1) distinct points on F(x, y). Without
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loss of generality, let At control the first t parties P1, . . . ,Pt . So At learns the row
polynomials f1(x), . . . , ft (x). Knowing f1(x), . . . , ft (x) also implies that At learns t

distinct points on the column polynomials g1(y), . . . , gn(y) (only d + 1 of them are
independent polynomials), each of degree at most t . So the adversary learns t (d + 1)

distinct points on F(x, y). The adversary still lacks (t + 1)(d + 1) − t (d + 1) = d + 1
distinct points to uniquely reconstruct F(x, y). We next claim that the polynomials that
are made public during the probabilistic checks give no extra information about F(x, y).
The adversary At learns the polynomial E(V,β)(y), for β = 1, . . . , t + 1. However, each
E(V,β)(y) = m(V,β)(y)+ r(V,β)g1(y)+· · ·+ rn

(V,β)gn(y), where m(V,β)(y) is the mask-
ing polynomial and is independent of g1(y), . . . , gn(y). The adversary will know r(V,β)

and t points on m(V,β)(y), which is of degree at most t and so At cannot uniquely re-
construct m(V,β)(y). Thus learning E(V,β)(y) adds no new information about F(x, y)

to the adversary’s view. Moreover, each E(V,β)(y) uses an independent masking poly-
nomial m(V,β)(y) of degree at most t . Thus overall, At lacks d + 1 points to uniquely
reconstruct F(x, y), implying information-theoretic security for s = F(0,0). �

Lemma 9. Protocol Single-Verifier requires a total broadcast of O(n2 log |F|) bits.

Proof. In the protocol, the parties have to do the following communication at most
t + 1 times: broadcast of a random challenge by V ; broadcast of the linear combination
of its column polynomials and a masking polynomial by D; broadcast of the linear
combination of the points on its row polynomial and the share of a masking polynomial
by every party Pi . This accounts for a total broadcast of O(n2 log |F|) bits. �

Towards the Identification of a CORE So far, we concentrated on the action that is
to be carried out with respect to a single verifier V . We proved that if V is honest
then protocol Single-Verifier can provide us with a candidate solution for CORE (Lem-
mas 5–7). Since we do not know the identity of the honest parties, we cannot place
our confidence on any particular party and ask it to play the role of the verifier. Thus
we parallely execute the protocol Single-Verifier on behalf of every party in P , con-
sidering it as a verifier. But again since we do not know the exact identity of the
honest verifiers, we cannot pick any arbitrary AgreeSet(	,	) as a CORE. Thus CORE
construction requires additional tricks, which are based on some interesting proper-
ties of AgreeSet(	,	), which we prove in the sequel. We first show that if there are
two different AgreeSets that are generated with respect to an honest verifier V , then
the row polynomials of the honest parties in each AgreeSet define the same bivari-
ate polynomial of degree-(d, t) (Lemma 10). We further show that corresponding to
two different honest verifiers Vα and Vδ , the row polynomials of the honest parties in
AgreeSet(Vα,	) and AgreeSet(Vδ,	)

also define the same bivariate polynomial of degree-
(d, t) (Lemma 11).

Lemma 10. Let V be an honest verifier and let AgreeSet(V ,γ ) and AgreeSet(V ,δ) are
generated during Single-Verifier(V ), where γ, δ ∈ {1, . . . , t + 1} and AgreeSet(V ,γ ) 
=
AgreeSet(V ,δ). Then the row polynomials held by the honest parties in AgreeSet(V ,γ ),
as well as in AgreeSet(V ,δ), define the same bivariate polynomial of degree-(d, t).
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Fig. 10. Protocol for the Verification & Agreement on CORE phase for the statistical scheme.

Proof. By Lemma 7, if V is honest, then the row polynomials held by the honest par-
ties in AgreeSet(V ,γ ), as well as in AgreeSet(V ,δ), define unique bivariate polynomials of
degree-(d, t), say F(x, y) and ̂F(x, y), respectively. Now F(x, y) = ̂F(x, y), as there
are at least t + 1 common honest parties in AgreeSet(V ,γ ) and AgreeSet(V ,δ), whose
row polynomials (which are of degree at most d) define a unique bivariate polynomial
of degree-(d, t). �

Lemma 11. Let Vα and Vδ be two different honest verifiers. Then the row polynomi-
als of the honest parties in any AgreeSet(Vα,	) and AgreeSet(Vδ,	)

, generated during
Single-Verifier(Vα) and Single-Verifier(Vδ), respectively, define the same bivariate poly-
nomial of degree-(d, t).

Proof. The proof again follows from the fact that there will be at least t + 1 common
honest parties in AgreeSet(Vα,	) and AgreeSet(Vδ,	)

, whose row polynomials define a
single bivariate polynomial of degree-(d, t). �

Using Lemmas 10 and 11, we suggest to check the presence of a CORE as follows:
We check whether there is a set of 3t + 1 parties, who are present in AgreeSets, corre-
sponding to at least t + 1 verifiers. If so, then such a set of 3t + 1 parties is considered
as a CORE. The intuition is that at least one of the t + 1 verifiers, say Vhon, will be
honest and if the selected 3t + 1 parties belong to some AgreeSet(Vhon,	), then indeed
the row polynomials of the honest parties in the selected set of 3t + 1 parties lie on a
unique bivariate polynomial of degree-(d, t). This intuition is captured in the protocol
S-Ver-Agree, presented in Fig. 10.

We now prove the properties of the protocol S-Ver-Agree.
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Lemma 12. Protocol S-Ver-Agree achieves the following for every possible At :

1. The protocol incurs a total broadcast of O(n3 log |F|) bits.
2. If D is honest, then s remains information-theoretically secure.
3. If D is honest then eventually every honest party outputs a CORE, such that the

row polynomials of the honest parties in CORE lie on the bivariate polynomial
F(x, y).

4. If D is corrupted and some honest party outputs a CORE, then every other hon-
est party eventually does the same. Moreover, except with probability ε, the row
polynomials of the honest parties in CORE lie on a unique bivariate polynomial
of degree-(d, t).

Proof. From Lemma 9, a single instance of Single-Verifier incurs a total broadcast of
O(n2 log |F|) bits. In protocol S-Ver-Agree, n instances of Single-Verifier are executed
which will incur a total broadcast of O(n3 log |F|) bits.

The information-theoretic security for s follows from Lemma 8 and the fact that in
each instance of Single-Verifier, independent masking polynomials are used.

If D is honest, then the set of 3t + 1 honest parties will be eventually present in every
AgreeSetPα

, corresponding to every verifier Pα . Moreover, every honest verifier will
be eventually included in the set VerifierSeti of every honest Pi . If D is honest, then
D will eventually construct a CORED of size 3t + 1 and broadcasts the same and by the
property of the broadcast, the set will be received by every honest party. Moreover, every
honest Pi will find that CORED ⊆ COREi and will output CORE. It is easy to see that
the row polynomials of the honest parties in CORE will define the original polynomial
F(x, y) selected by D.

If D is corrupted and some honest Pi has output a CORE, then it implies that Pi has
received CORE from the broadcast of D. Moreover, Pi must have found the condition
CORE ⊆ COREi to hold. From the properties of the broadcast, every other honest party
Pj will also eventually receive the same CORE from the broadcast of D. Moreover,
from the steps for the construction of COREi , we find that eventually, COREi ⊆ COREj

will hold and so Pj will also find that CORE ⊆ COREj and hence will output CORE.
We now show that except with probability ε, the row polynomials of the honest par-
ties in CORE lie on a unique bivariate polynomial of degree-(d, t). By Lemma 10, the
row polynomials held by the honest parties in AgreeSetPα

corresponding to an honest
verifier Pα , define a unique bivariate polynomial, say F(x, y), of degree-(d, t), with
probability at least (1 − ε). Next by Lemma 11, the row polynomials held by the honest
parties in the union of all the sets AgreeSetPα

, corresponding to the honest parties Pα ,
will also define the same polynomial F(x, y) with probability at least (1 − ε). By the
construction of CORE, every party in CORE is guaranteed to be present in at least one
AgreeSetPα

, where the verifier Pα is honest. This implies that the row polynomials held
by the honest parties in CORE define F(x, y). �

In the next section, we present the statistical AVSS scheme for sharing a single value.

3.1.3. Statistical AVSS Scheme for a Single Secret

The sharing protocol S-Sh for the statistical scheme SAVSS is presented in Fig. 11.
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Fig. 11. Protocol for the sharing phase of the statistical AVSS scheme.

Theorem 5. Protocols (S-Sh,Rec) constitute a statistical AVSS scheme that gener-
ates d-sharing of s. Protocol S-Sh incurs a communication of O(n3 log |F|) bits and
a total broadcast of O(n3 log |F|) bits. Protocol Rec has communication complexity
O(n2 log |F|) bits.

Proof. If D is honest, then every honest party will eventually terminate S-Sh with its
share of the secret s. This follows from Lemmas 12(3) and 2(1). From Lemma 12(4), if
D is corrupted and some honest party has output a CORE, then every other honest party
will output the same CORE. Moreover, except with probability ε, the row polynomials
of the honest parties in CORE will lie on a unique bivariate polynomial of degree-(d, t).
So from Lemma 2(1), executing the protocol Gen generates d-sharing. If the honest
parties execute Rec, then s will be reconstructed correctly. This follows from Lemma 3.
This proves the correctness and the termination condition.

For secrecy, we have to consider an honest D. Without loss of generality, let
P1, . . . ,Pt be under the control of At . From Lemmas 12(2) and 8, by the end of the
protocol S-Ver-Agree, At learns t (d + 1) distinct points on the polynomial F(x, y)

from t row polynomials of degree at most d . At the end of the protocol Gen, the adver-
sary gets the column polynomials g1(y), . . . , gt (y), which provide it t additional points
on F(x, y). So in total, At learns t (d + 1) + t distinct points on F(x, y). This implies
that At lacks (t + 1)(d + 1) − t (d + 1) − t = d + 1 − t points on F(x, y) to uniquely
reconstruct F(x, y). Since d ≥ t , we obtain information-theoretic security for s.

The communication complexity follows from Claim 1, Lemmas 12(1), 2(2) and 3. �

This marks the end of our discussion on the statistical AVSS scheme for sharing a
single secret.

3.2. Sub-protocols for the Perfect AVSS Scheme

We now present the protocols P-Distr and P-Ver-Agree which are the sub-protocols for
our perfect AVSS scheme PAVSS.

3.2.1. Protocol P-Distr

The protocol is similar to the protocol S-Distr with the following differences: D does
not share any masking polynomial. Moreover, it distributes both row and column poly-
nomials to the parties (recall that in S-Distr, only the row polynomials were distributed
by D). Protocol P-Distr is presented in Fig. 12.

The following claim about P-Distr trivially follows from the protocol description.



Efficient Asynchronous Verifiable Secret Sharing and Multiparty Computation 83

Fig. 12. Protocol for the distribution by D phase of the perfect AVSS scheme. Here D is the dealer, s is the
secret to be shared and d is the degree of the sharing.

Claim 2. Protocol P-Distr incurs a communication of O((nd + n2) log |F|) =
O(n2 log |F|) bits by D.

3.2.2. Protocol P-Ver-Agree

The goal of the protocol P-Ver-Agree is to enable the (honest) parties identify the pres-
ence of a CORE in an error-free fashion. For this, we proceed as follows: we ask the
parties to interact with each other and check the consistency of their common values
(on the polynomials received from D). Specifically, every pair (Pi,Pj ) of parties check
whether f i(j) = gj (i), which should ideally hold, if D,Pi and Pj are honest. Here
f i(x) and gi(y) denote the row and column polynomial received by Pi . The parties
broadcast OK messages if the consistency check passes. Using these messages, we con-
struct a consistency graph with the edges representing pairwise consistency and check
for the presence of an (n, t)-star (see Sect. 2.3). The intuition is that if D is honest, then
eventually every honest party will receive its row and column polynomial, which will
be pairwise consistent with the polynomials of every other honest party and eventually
there will be a clique of size at least n − t in the consistency graph. So eventually we
should find an (n, t)-star in the consistency graph. Let (C,D) be such a star. Our first
observation is that the row polynomials of the honest parties in C and the column poly-
nomials of the honest parties in D will be pairwise consistent and thus they lie on a
unique bivariate polynomial, say F(x, y), of degree-(d, t). This is due to Lemma 1 and
the fact that there will be at least t +1 and 2t +1 honest parties in C and D, respectively.
Moreover, if D is honest then F(x, y) = F(x, y).

The next obvious question is: does the presence of (C,D) implies the existence of a
CORE? Recall that we want CORE to be of size 3t + 1. Clearly C is not qualified to be
a CORE. On the other hand, even though D is of size 3t + 1, it cannot be considered as
a CORE. This is because we want the row polynomials of the honest parties in CORE
to lie on a unique bivariate polynomial; whereas an (n, t)-star ensures that the column
polynomials of the honest parties in D lie on a unique bivariate polynomial. If we con-
sider D as a CORE, then we cannot “complete” the d-sharing by executing the protocol
Gen on D. So we cannot directly confirm the presence of a CORE from the presence of
an (n, t)-star. However, we observe that if indeed D is honest then there will be “addi-
tional” honest parties, apart from the honest parties in C, whose row polynomials will
also lie on F(x, y). The reason is that we have at least 3t + 1 honest parties. We search
for these additional honest parties using the following two-fold, non-intuitive strategy:

• We first try to “expand” the set D by identifying additional parties not in D whose
column polynomial also lie on F(x, y). The expanded set, denoted by F, includes
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all the parties having edges with at least 2t + 1 parties from C in the consistency
graph. The parties in D will be automatically included in F. It is easy to note that
the column polynomial of an honest Pj ∈ P \D satisfying the above condition will
lie on F(x, y). This is because the honest Pj ensures that its column polynomial
has degree at most t and since Pj will have an edge with at least 2t + 1 parties
from C, this implies that its column polynomial is pairwise consistent with the row
polynomial of at least t + 1 honest parties from C, which lie on F(x, y).

• We then try to “expand” the set C. Specifically, we search for the parties Pj , who
have an edge with at least d + t + 1 parties from F in the consistency graph. The
idea is that the row polynomial of such a Pj has degree at most d and out of
the d + t + 1 parties from F (with whom Pj has an edge), at least d + 1 will
be honest. Thus, the row polynomial of Pj will be pairwise consistent with the
column polynomials of at least d + 1 honest parties from F, which lie on F(x, y).
So the row polynomial of Pj will lie on F(x, y). We include all such parties Pj in
a set E. Notice that all the parties in C will be included in E.

If we find E to be of size 3t + 1, then E is taken as a CORE. It is easy to see that indeed
the row polynomials of all the honest parties in E will lie on F(x, y). However there is
a subtle issue. In the above approach, the honest parties may have to wait indefinitely
for the “expansion” of D and C sets until E admits a size of 3t + 1. Consider the case
when d = 2t and C and D are exactly of size 2t + 1 and 3t + 1, respectively, such that
they contain t corrupted parties. If the corrupted parties in C choose to be inconsistent
with the parties outside D, then the honest parties outside D will have edges with only
t + 1 parties from C and will not be included in the set F. So F will remain the same
as D and will not include any additional party. Similarly, if the corrupted parties in F
choose to be inconsistent with the parties outside C, then the honest parties outside C
will have edges with only 2t + 1 parties from F and will be never included in the set E.
So C may never expand from its initial size of 2t + 1.

To deal with the above situation, we carefully look into the properties of the consis-
tency graph and the algorithm Find-Star. We observe that if D is honest then eventually
all honest parties (at least 3t + 1) will be consistent with each other and there will be a
clique in the consistency graph involving all the honest parties. We further note that if
the Find-Star algorithm is executed on “this” graph, containing a clique of size at least
3t + 1 involving the honest parties, then the C component of the obtained (n, t)-star
will have at least 2t + 1 honest parties. When C contains at least 2t + 1 honest parties,
then eventually the set D will expand to the set F, which will contain all the 3t + 1 hon-
est parties and eventually the set C will expand to the set E containing at least 3t + 1
parties. This crucial observation is at the heart of protocol P-Ver-Agree. However, it is
difficult to identify an instance of the consistency graph that contains a clique involving
at least 3t + 1 honest parties. This problem is eliminated by repeating the star-finding
process and the expansion of C and D for every instance of the consistency graph. In
a more detail, after every update in the consistency graph (on receiving new OK mes-
sages), we check for the presence of a new (n, t)-star in the graph (which was not found
earlier) along with the corresponding F and E sets and update the existing F and E sets
(corresponding to all the previously generated (n, t)-stars). This is continued till we
find an instance of E of size 3t + 1. Such an E will be considered as a CORE. Surely
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Fig. 13. Protocol for the Verification & Agreement on CORE phase for the perfect AVSS scheme.

if D is honest, then we will get an E with the desired size. We let D moderate these
repetitions by asking it to repeat the star-finding process and the expansion of C and
D for every instance of the consistency graph. Upon finding a CORE, D makes all the
parties agree on CORE by broadcasting the star and the corresponding E and F sets.
The parties then verify if the broadcasted star and the sets are “valid” with respect to
their local consistency graph.

This process of repetition after every update in the consistency graph is some what
analogous to the situation in the protocol S-Ver-Agree, where we have to keep ex-
panding ReceivedSet till the “appropriate” conditions are satisfied. However, unlike
the protocol S-Ver-Agree, where each repetition requires communication, in protocol
P-Ver-Agree, each repetition requires only local computation by the parties. The com-
munication is required finally to make an agreement when a CORE is found by D.

With the above intuition in mind, we present the protocol P-Ver-Agree in Fig. 13. In
the protocol, the pair (Cβ,Dβ) denotes the βth instance of an (n, t)-star and the pair
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(Eβ,Fβ) denotes the corresponding E and F sets. After every update in the consistency
graph, (Eβ,Fβ) may be updated. In the sequel, we will show that there will be a finite
number of instances of (n, t)-star (and the corresponding E and F sets) that can result
from the consistency graph. We will also prove the following three key observations on
which the protocol P-Ver-Agree is based upon:

1. If D is honest, then eventually some (n, t)-star (Cβ,Dβ) will be generated, where
Cβ will contain at least 2t +1 honest parties (Lemma 14). This crucial observation
is at the heart of the protocol P-Ver-Agree.

2. If D is honest and the C component of an (n, t)-star (Cβ,Dβ) contains at least
2t + 1 honest parties, then a CORE will be eventually generated from (Cβ,Dβ)

(Lemma 15).
3. For any (n, t)-star (Cβ,Dβ), the row polynomials of the honest parties in Cβ de-

fine a unique bivariate polynomial of degree-(d, t), irrespective of D (Lemma 13).
Moreover, if a CORE is generated from this (Cβ,Dβ), then the row polynomials
of the honest parties in CORE define the same bivariate polynomial (Lemma 17).

We now prove the properties of the protocol P-Ver-Agree.

Lemma 13. Let (C,D) be any (n, t)-star in the consistency graph Gk of an honest
party Pk . Then the row polynomials held by the honest parties in C define a unique
bivariate polynomial, say F(x, y), of degree-(d, t), such that F(x, i) = f i(x) and
F(j, y) = gj (y) holds for every honest Pi and Pj in C and D, respectively. Moreover,
if D is honest then F(x, y) = F(x, y).

Proof. For any (n, t)-star (C,D), we know that |C| ≥ n−2t and |D| ≥ n− t . So C and
D contains at least n−3t ≥ t +1 and n−2t ≥ 2t +1 honest parties, respectively. More-
over, every honest party Pi in C will be pairwise consistent with every honest party in
D. That is, f i(j) = gj (i) and f j (i) = gi(j) will hold for every honest Pi ∈ C and ev-
ery honest Pj ∈ D. Furthermore, the row and column polynomials of the honest parties
will have degree at most d (where d ≤ 2t) and t , respectively. The proof now follows
from Lemma 1. It is very easy to see that if D is honest, then F(x, y) = F(x, y). �

The next two lemmas are very crucial as they show that if D is honest then eventually
every honest party outputs a CORE and terminates the protocol P-Ver-Agree.

Lemma 14. If D is honest then eventually an (n, t)-star (Cβ,Dβ) will be generated
by D, such that Cβ contains at least 2t + 1 honest parties.

Proof. If D is honest then eventually the edges between each pair of honest parties
will vanish in the complementary graph GD. So each edge in GD will be eventually
either (a) between an honest and a corrupted party or (b) between two corrupted parties.
Moreover, the set of honest parties will form an independent set of size at least n− t . Let
(Cβ,Dβ) be the (n, t)-star which is obtained while applying the Find-Star algorithm on
GD, when GD contains edges of only the above two types. Now, by the construction of
Cβ (see Algorithm Find-Star), it excludes the parties in N (the set of parties that are
associated with the maximum matching M) and T (the set of parties that are associated
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with the triangle-heads). An honest Pi belonging to N implies that (Pi,Pj ) ∈ M for
some Pj and hence Pj is corrupted (as we are considering the instance when GD does
not have any edge between two honest parties). Similarly, an honest party Pi belonging
to T implies that there is some (Pj ,Pk) ∈ M such that (Pi,Pj ) and (Pi,Pk) are edges
in GD. This clearly implies that both Pj and Pk are surely corrupted. So for every honest
Pi outside Cβ , at least one (if Pi belongs to N , then one; if Pi belongs to T , then two)
corrupted party also remains outside Cβ . As there are at most t corrupted parties, Cβ

may exclude at most t honest parties. So Cβ is bound to contain at least 2t + 1 honest
parties.

To complete the proof, we now have to show that GD will contain the edges of the
above two types after a finite number of steps. We observe that an honest D may compute
O(n2) distinct (n, t)-stars in GD. This is because D applies Find-Star on GD every time
when an edge is added to GD and we know that there can be O(n2) edges in GD. Now
(Cβ,Dβ) with Cβ containing at least 2t + 1 honest parties will occur among these
O(n2) (n, t)-stars. �

Lemma 15. In protocol P-Ver-Agree, if D is honest, then eventually a CORE will be
generated by D and every honest party will output CORE and terminate the protocol
P-Ver-Agree.

Proof. By Lemma 14, if D is honest then eventually it will obtain an (n, t)-star
(Cβ,Dβ) in the consistency graph GD, such that Cβ will contain at least 2t + 1 hon-
est parties. Moreover, every honest party will eventually have an edge with every other
honest party in GD. So every honest party in P will eventually have an edge with all
the honest parties in Cβ . This implies that every honest party in P will eventually have
at least 2t + 1 neighbors in Cβ and so they will be included in Fβ . Following a similar
argument, every honest party in P will eventually have at least d + t +1 neighbors in Fβ

and so they will be included in Eβ . So D will find that |Eβ | ≥ 3t + 1 and |Fβ | ≥ 3t + 1
and will assign Eβ as CORE and broadcast ((Cβ,Dβ), (Eβ,Fβ)). By the property of the
broadcast, every honest party Pi will receive these sets correctly from D and will even-
tually find that (Cβ,Dβ) is an (n, t)-star in the consistency graph Gi . This is because if
an honest D has included the edges between the parties in Cβ and Dβ in its consistency
graph GD, then the same edges will also be eventually included by every honest Pi in
its consistency graph Gi . Due to the same reason, an honest Pi will find that every party
in Fβ has at least 2t + 1 neighbors in Cβ in the graph Gi and similarly, every party in
Eβ has at least d + t + 1 neighbors in Fβ in the graph Gi eventually. So Pi will output
CORE = Eβ and terminate the protocol P-Ver-Agree. �

The previous two lemmas ascertained that the honest parties will eventually termi-
nate the protocol P-Ver-Agree if D is honest. The next lemma shows that even if D is
corrupted and some honest party terminates the protocol P-Ver-Agree then every honest
party also eventually does the same.

Lemma 16. If D is corrupted and some honest party Pi terminates the protocol
P-Ver-Agree outputting a CORE, then every other honest party Pj eventually does the
same.
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Proof. If an honest Pi has output a CORE, then this implies that it has received
((Cγ ,Dγ ), (Eγ ,Fγ )) from the broadcast of D, with CORE = Eγ , and verified the fol-
lowing in its consistency graph Gi : (a) (Cγ ,Dγ ) is an (n, t)-star; (b) every party in Fγ

has at least 2t +1 neighbors in Cγ and (c) every party in Eγ has at least d + t +1 neigh-
bors in Fγ . From the properties of the broadcast, every other honest party Pj will also
receive the same ((Cγ ,Dγ ), (Eγ ,Fγ )) from the broadcast of D. Moreover, Pj will also
find that eventually the above three conditions are also satisfied in its consistency graph
Gj . So Pj will also eventually output CORE and terminate the protocol P-Ver-Agree. �

The next lemma shows that if a CORE is generated then indeed the row polynomials
of the honest parties in CORE define a unique bivariate polynomial of degree-(d, t).

Lemma 17. If an honest Pi has output a CORE, then the row polynomials of the
honest parties in CORE define a unique bivariate polynomial, say F(x, y), of degree-
(d, t). Moreover, if D is honest then F(x, y) = F(x, y).

Proof. If an honest Pi has output a CORE, then it implies that it has received
((Cγ ,Dγ ), (Eγ ,Fγ )) from the broadcast of D and checked their validity with respect
to its own consistency graph Gi . This means that (Cγ ,Dγ ) is an (n, t)-star in Gi .
Lemma 13 implies that the row polynomials of the honest parties in Cγ define a unique
bivariate polynomial, say F(x, y), of degree-(d, t). Recall that Eγ is obtained by ex-
panding the set Cγ . To complete the proof we need to show that even the row polyno-
mials of the honest parties in Eγ \ Cγ lie on F(x, y). We do so in two stages: we first
claim that the column polynomial gj (y) of every honest Pj in Fγ lies on F(x, y). This
is because by the construction of Fγ , every honest Pj ∈ Fγ has at least 2t + 1 neighbors
in Cγ , which implies that f kj = f k(j) = gj (k) for at least 2t + 1 parties Pk in the set
Cγ . Moreover, the degree of gj (y) is at most t . Now out of these 2t + 1 parties Pk , at
least t + 1 are honest. Also the row polynomials of those Pk lie on F(x, y). This clearly
implies that gj (y) = F(j, y).

Next we claim that the row polynomial f j (x) of every honest party Pj ∈ Eγ also lies
on F(x, y). By the construction of Eγ , every such Pj has at least d + t + 1 neighbors
in Fγ , which means that f j (k) = gkj = gk(j) for at least d + t + 1 parties Pk in Fγ .
Moreover, the degree of f j (x) is at most d . Now out of the d + t + 1 parties Pk in Fγ

(with whom Pj has an edge), at least d + 1 are honest. Also the column polynomials
of such Pk lie on F(x, y). This clearly implies that f j (x) = F(x, j). Hence the row
polynomials of the honest parties in CORE define F(x, y). �

The next two lemmas are related to the secrecy and the communication complexity
of the protocol P-Ver-Agree.

Lemma 18. In protocol P-Ver-Agree if D is honest then s remains information-
theoretically secure.

Proof. Without loss of generality, let P1, . . . ,Pt be under the control of the adversary.
So At will know the row polynomials f1(x), . . . , ft (x) and the column polynomials
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Fig. 14. Protocol for the sharing phase of the perfect AVSS scheme.

g1(y), . . . , gt (y). The adversary will also receive from the honest parties the common
points on their row and column polynomials. However, these points do not add any
new information to the view of the adversary about F(x, y), as they can be computed
from f1(x), . . . , ft (x), g1(y), . . . , gt (y). The adversary is completely oblivious of the
communication done between the honest parties. So it has no information about the
common points exchanged between the honest parties. The knowledge of CORE does
not add any information about F(x, y) to the view of the adversary. So overall, At

has f1(x), . . . , ft (x), g1(y), . . . , gt (y). From these polynomials, it obtains t (d + 1) + t

distinct points on F(x, y). However F(x, y) is of degree-(d, t). So the adversary lacks
(t + 1)(d + 1) − t (d + 1) − t = d + 1 − t points to uniquely recover F(x, y). This
implies information-theoretic security for the secret s. �

Lemma 19. Protocol P-Ver-Agree incurs a communication of O(n2 log |F|) bits and
a total broadcast of O(n2 log |F|) bits.

Proof. In the protocol, the parties exchange the common points on their row and
column polynomials, which requires a communication of O(n2 log |F|) bits. In addi-
tion, the parties also broadcast the OK(	, 	) messages, which requires a broadcast of
O(n2 log |F|) bits. Furthermore, broadcasting of ((Cγ ,Dγ ), (Eγ ,Fγ )) requires a broad-
cast of O(n2 log |F|) bits. �

In the next section, we present the perfect AVSS scheme and prove its properties.

3.2.3. Perfect AVSS Scheme for a Single Secret

The sharing protocol P-Sh for the perfect scheme PAVSS is presented in Fig. 14.

Theorem 6. Protocols (P-Sh,Rec) constitute a perfect AVSS scheme, which generates
d-sharing of s. Protocol P-Sh requires a communication of O(n2 log |F|) bits and a total
broadcast O(n2 log |F|) bits. Protocol Rec has communication complexity O(n2 log |F|)
bits.
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Proof. If D is honest then every honest party eventually terminates the protocol P-Sh.
This follows from Lemmas 15 and 2(1). If D is corrupted and some honest party ter-
minates P-Sh, then every other honest party will also eventually terminate the protocol
P-Sh. This follows from Lemmas 16 and 2(1). Moreover, if the honest parties invoke
the protocol Rec, then every honest party will eventually terminate Rec. This follows
from Lemma 3. This completes the proof of termination.

If D is honest then at the end of P-Sh, every honest party will have its share of s.
This follows from Lemmas 17 and 2(1). Moreover, every honest party on terminating
the protocol Rec will output s. This follows from Lemma 3. On the other hand, even if
D is corrupted and some honest party terminates P-Sh, then it implies that a CORE is
generated and agreed upon, which from Lemma 17 further implies that D has committed
the polynomial F(x, y) and hence the value s = F(0,0) to the honest parties in CORE.
The property of Gen (Lemma 2(1)) ensures that every honest party will have the share
of s. Moreover, the honest parties on terminating Rec will output s. This proves the
correctness property.

Information-theoretic security of s for an honest D follows from Lemma 18. Finally
the communication complexity follows from Claim 2, Lemmas 19, 2(2) and 3. �

This completes our discussion on the AVSS schemes for sharing a single secret.

4. AVSS for Sharing Multiple Secrets

The AVSS schemes that we discussed so far allow to d-share a single element from F.
Now consider a situation where we have to d-share S = (s1, . . . , s�) ∈ F

�, where � > 1
(indeed in our AMPC protocols, every party has to share multiple values). One simple
way to d-share S is to individually d-share each sl ∈ S by executing an instance of
SAVSS (resp. PAVSS). This will require a communication complexity which is � times
the communication complexity of SAVSS (resp. PAVSS). We now show how to d-share
all the elements of S concurrently, such that the point-to-point communication depends
on �, but the broadcast communication is independent of �. Since the broadcast is an
expensive protocol,15 we save a lot of communication in our AMPC protocols by using
our new AVSS schemes for sharing multiple secrets concurrently.

The main idea behind making the broadcast communication independent of � is the
following: we observe that in the sub-protocols dealing with a single secret, the steps
which involve point-to-point communication among the parties can be extended in a
“natural” way to deal with � values. For example, instead of taking a single bivariate
polynomial, D now selects � such polynomials and accordingly every party receives �

row and column polynomials. However, we need not have to extend the steps involving
broadcast in the same way to deal with � secrets. Instead, those steps can be “modified”
to deal with all the � values concurrently to keep the broadcast communication indepen-
dent of �. In the sequel we elaborate on this. We do not present the complete protocols,
as this calls for un-necessary repetition; instead we only discuss the key steps that are
modified in the earlier sub-protocols for a single value to deal with � values. We also

15 Recall that the best known broadcast protocol due to [13] incurs a communication of O(n2) bits to
broadcast a single bit.
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do not present the proofs for the new sub-protocols, as they trivially follow from the
properties of the sub-protocols dealing with a single value. The new sub-protocols have
“MS” in their names, indicating that they deal with multiple secrets. We first discuss the
sub-protocols for the statistical scheme.

4.1. Sub-protocols for the Statistical Scheme to Share � Values

The statistical scheme is called SAVSS-MS, which consists of the protocol S-MS-Sh for
the sharing phase and protocol Rec-MS for the reconstruction phase (this protocol is also
the protocol for the reconstruction phase of the perfect scheme for � values). Now the
sharing protocol S-MS-Sh consists of a sequence of three phases (similar to the protocol
S-Sh), each implemented by a specific sub-protocol discussed below:

1. Protocol S-MS-Distr: This protocol implements the distribution by D phase. Here
for each sl ∈ S, the dealer D selects a random bivariate polynomial Fl(x, y) of
degree-(d, t) with the constant term as sl and distributes the ith row polynomial
fl,i(x) = Fl(x, i) to Pi . Thus each Pi receives � row polynomials. In addition,
D shares (t +1)n masking polynomials, each of degree at most t , as in the protocol
S-Distr (Fig. 8). D does not distribute the column polynomials gl,i(y) = Fl(i, y)

to Pi as in the protocol S-Distr.
2. Protocol S-MS-Ver-Agree: This protocol allows the parties to verify the pres-

ence of a CORE and to agree on a CORE of size at least 3t + 1 if it exists,
where CORE has the following property: for l = 1, . . . , �, the row polynomials
{f l,i(x) : Pi ∈ CORE and Pi is honest} define a unique bivariate polynomial, say
F l(x, y), of degree-(d, t). Moreover, if D is honest then F l(x, y) = Fl(x, y). Here
f l,i(x) denotes the row polynomials received by Pi from D. The protocol uses an-
other sub-protocol Single-MS-Verifier as a black-box. This protocol is almost the
same as the protocol Single-Verifier (Fig. 9) with the following modifications: In
step i, party Pi waits to receive � row polynomials f 1,i (x), . . . , f �,i(x), each of
degree at most d from D. In step iii, D broadcasts the linear combination of �n col-
umn polynomials (instead of n column polynomials) and a masking polynomial.
Specifically, D broadcasts E(V,β)(y), where

E(V,β)(y) = r0
(V ,β)m(V,β)(y) + r1

(V ,β)g1,1(y) + · · · + rn
(V,β)g1,n(y)

+ · · · + r
(�−1)n+1
(V ,β)

g�,1(y) + · · · + r�n
(V,β)g�,n(y).

Accordingly, in step iv.1, party Pi will broadcast a linear combination of the share
of a masking polynomial and n points on each of its � row polynomial. Specifi-
cally, Pi broadcasts e(V,β,i), where

e(V,β,i)
def= r0

(V ,β)m(V,β)(i) + r1
(V ,β)f 1,i (1) + · · · + rn

(V,β)f 1,i (n)

+ · · · + r
(�−1)n+1
(V ,β) f �,i(1) + · · · + r�n

(V,β)f �,i(n).

The rest of the steps for the protocol Single-MS-Verifier are the same as in the
protocol Single-Verifier. Now protocol S-MS-Ver-Agree is exactly the same as
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protocol S-Ver-Agree (Fig. 10), except that all instances of Single-Verifier in
S-Ver-Agree are now replaced with the instances of Single-MS-Verifier.

3. Protocol Gen-MS: If a CORE is generated and agreed upon then this protocol is
invoked to complete the d-sharing of the secrets in S. This protocol is a simple
extension of the protocol Gen (Fig. 6): each party Pi in CORE sends the j th points
f 1,i (j), . . . , f �,i(j) on its row polynomials to Pj , who then applies the OEC on
these points to reconstruct the column polynomials g1,j (y), . . . , g�,j (y) and hence
the share Shl,j = gl,j (0) of sl ∈ S, for l = 1, . . . , �.

The reconstruction protocol Rec-MS is a straight forward extension of the pro-
tocol Rec (Fig. 7), where for every sl ∈ S, every party Pi simply sends its share
Shl,i of sl to every other party Pj and then by applying the OEC, every party recon-
structs sl . We now state the following theorem which follows from the properties
of the statistical scheme for sharing a single secret.

Theorem 7. Protocols (S-MS-Sh,Rec-MS) constitute a statistical AVSS scheme
SAVSS-MS, which generates d-sharing of S = (s1, . . . , s�). In S-MS-Sh, the par-
ties communicate O((�nd + n3) log |F|) = O((�n2 + n3) log |F|) bits and broadcast
O(n3 log |F|) bits. Protocol Rec-MS incurs a communication of O(�n2 log |F|) bits.

We next discuss the sub-protocols for the perfect AVSS scheme to share � values.

4.2. Sub-protocols for the Perfect Scheme to Share � Values

The extension of the perfect scheme PAVSS to PAVSS-MS is very simple. PAVSS-MS
consists of the protocol P-MS-Sh for the sharing phase and protocol Rec-MS (dis-
cussed in the previous section) for the reconstruction phase. Now the sharing protocol
P-MS-Sh consists of a sequence of three phases (similar to the protocol P-Sh), each
implemented by a specific sub-protocol described below:

1. Protocol P-MS-Distr: This protocol implements the distribution by D phase. Here
for each sl ∈ S, the dealer D selects a random bivariate polynomial Fl(x, y) of
degree-(d, t) with sl as the constant term and distributes the ith row polynomial
fl,i(x) = Fl(x, i) and the ith column polynomial gl,i(y) = Fl(i, y) to Pi . Thus
each Pi receives � row and column polynomials.

2. Protocol P-MS-Ver-Agree: This protocol allows the parties to agree on a CORE
and it is almost the same as the protocol P-Ver-Agree (Fig. 13), except that step
i is extended to deal with � values as follows: first, each Pi waits to receive �

row polynomials f 1,i (x), . . . , f �,i(x), each of degree at most d and � column
polynomials g1,i (y), . . . , g�,i(y), each of degree at most t from D. After receiving,
Pi proceeds to check the pairwise consistency of � row and � column polynomials
with each Pj . Specifically, Pi sends � values f l,i,j = f l,i(j), for l = 1, . . . , � on
its row polynomials and another � values gl,i,j = gl,i(j), for l = 1, . . . , � on its
column polynomials to Pj . Now on receiving the � values f l,j,i , for l = 1, . . . , �

and the � values gl,j,i , for l = 1, . . . , � from Pj , party Pi checks if f l,i(j)
?=

gl,j,i and gl,i(j)
?= f l,j,i , for all l = 1, . . . , �. If the test passes for every l =

1, . . . , �, then Pi broadcasts the message OK(Pi,Pj ). The rest of the steps for
P-MS-Ver-Agree will be now the same as in the protocol P-Ver-Agree.
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Fig. 15. Protocol for generating (t,2t)-sharing of S = (s1, . . . , s�).

3. Protocol Gen-MS: This protocol is the same as discussed in the previous section.
The footnote mentioned in the protocol P-Sh (see the footnote in Fig. 14) applies
here, as well. That is, the parties in CORE are not required to communicate in the
protocol Gen-MS in the perfect AVSS scheme.

We now state the following theorem that follows from the properties of the perfect
scheme for sharing a single secret.

Theorem 8. Protocols (P-MS-Sh,Rec-MS) constitute a perfect AVSS scheme
PAVSS-MS, which generates d-sharing of S = (s1, . . . , s�). In P-MS-Sh, the parties
communicate O(�n2 log |F|) bits and broadcast O(n2 log |F|) bits. During Rec-MS, the
parties communicate O(�n2 log |F|) bits.

5. Protocols for Generating (t,2t)-Sharing of � Values

Once we have an AVSS scheme that can d-share � values for any given d , where d ≤ 2t ,
generating (t,2t)-sharing of � values can be done using the following simple idea (out-
lined earlier in the introduction): to (t,2t)-share S = (s1, . . . , s�), the dealer D first per-
forms the t-sharing of S. In addition, it also does the (2t − 1)-sharing of � random
values, say R = (r1, . . . , r�). This implies that each sl and rl is shared through poly-
nomials, say fl(x) and gl(x), of degree at most t and 2t − 1, respectively, with every
honest party holding its shares fl(i) and gl(i) of sl and rl , respectively. Now consider
the polynomial hl(x) = fl(x) + x · gl(x). It has degree at most 2t with the constant
term as sl . Moreover, every party can locally compute hl(i) = fl(i) + i · gl(i). It is
easy to see that each sl is (t,2t)-shared through the polynomials fl(x) and hl(x). To
implement this idea, the dealer has to invoke two instances of the sharing protocol of
our AVSS schemes (dealing with � values). Now depending upon whether it invokes
the protocol S-MS-Sh or P-MS-Sh, the resulting protocol will either have a negligible
error or no error in the correctness. We call the resulting protocols as S-(t,2t)-Sh and
P-(t,2t)-Sh, respectively. We present the protocol in Fig. 15.

We now state the properties of the protocol S-(t,2t)-Sh and P-(t,2t)-Sh, that follow
from the properties of the protocols S-MS-Sh and P-MS-Sh, respectively.
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Theorem 9. Let D ∈ P have the input S = (s1, . . . , s�). Then protocol S-(t,2t)-Sh
achieves the following properties for every possible At :

1. Termination: (a) If D is honest, then all the honest parties eventually terminate
S-(t,2t)-Sh. (b) If D is corrupted and some honest party terminates S-(t,2t)-Sh,
then all the honest parties eventually terminate the protocol.

2. Correctness: If some honest party terminates the protocol, then there exist � val-
ues, say S = (s1, . . . , s�), which will be eventually (t,2t)-shared among the par-
ties in P , except with probability at most ε. Moreover, if D is honest, then S = S.

3. Secrecy: If D is honest then S remains information-theoretically secure during the
protocol.

4. Communication Complexity: The protocol requires a communication of O((�n2 +
n3) log |F|) bits and a total broadcast of O(n3 log |F|) bits.

Proof. The proof follows from the properties of the protocol S-MS-Sh (Theorem 7). �

The proof of the following theorem follows from the properties of P-MS-Sh.

Theorem 10. Let D ∈ P have the input S = (s1, . . . , s�). Then protocol P-(t,2t)-Sh
achieves the following properties for every possible At :

1. Termination: (a) If D is honest, then all the honest parties eventually terminate
the protocol. (b) If D is corrupted and some honest party terminates P-(t,2t)-Sh,
then all the honest parties eventually terminate P-(t,2t)-Sh.

2. Correctness: If some honest party terminates the protocol, then there exist � val-
ues, say S = (s1, . . . , s�), which will be eventually (t,2t)-shared among the par-
ties in P . Moreover, if D is honest, then S = S.

3. Secrecy: If D is honest then S remains information-theoretically secure during the
protocol.

4. Communication Complexity: Protocol P-(t,2t)-Sh incurs a communication of
O(�n2 log |F|) bits and a total broadcast of O(n2 log |F|) bits.

6. AMPC Protocols with n = 4t + 1

Once we have an efficient protocol for generating (t,2t)-sharing, we can design an
AMPC protocol following the approach of Ref. [5]. Structurally, both our statistical
and perfect AMPC protocols are divided into a sequence of three phases. Depending
upon the type of sub-protocols (with a negligible error or without any error) used in
these phases, we get either a statistical AMPC or a perfect AMPC protocol. Let F be
the publicly known function over F (which the parties want to compute), represented
by an arithmetic circuit over F, consisting of input gates, linear gates, multiplication
gates, random gates and output gates of bounded fan-in. Without loss of generality,
we assume that the multiplication gates have fan-in two and the random gates have
fan-in zero. Let cI , cL, cM, cR and cO denote the number of input, linear, multiplica-
tion, random and output gates respectively in the circuit representing F . We denote by
IGate,LGate,MGate,RGate and OGate the input, linear, multiplication, random and
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output gates, respectively. For simplicity, we assume that F : Fn → F
n, where each

party Pi has the input xi ∈ F for the computation and all the n parties receive the func-
tion output F(x1, . . . , xn). This implies that cI = n and cO = n. The three phases of our
AMPC protocols are as follows:

1. Preparation Phase: The goal of this phase is to prepare the “raw material” to be
used later during the evaluation of the circuit. Specifically, in this phase, the parties
interact to generate (t,2t)-sharing of cM + cR uniformly random values from F,
that are information-theoretically secure.

2. Input Phase: In this phase, the parties share their actual inputs for the function F .
For this, every party t-shares its input and then the parties agree on a common
subset of at least n − t parties, whose inputs will be eventually t-shared among
the parties.

3. Computation Phase: Here, based on the inputs of the parties in the common subset
(agreed in the previous phase), the circuit is evaluated gate by gate in a shared
fashion, such that the output of each gate remains t-shared among the parties.

We now present the protocols for each of the above phases.

6.1. Preparation Phase

Here the parties interact to generate (t,2t)-sharing of cM +cR uniformly random values
from F. The shared values should also remain information-theoretically secure. For this,
every party in P acts as a dealer and (t,2t)-shares cM+cR

n−2t
uniformly random values from

F. The parties then agree on a common subset C of at least n − t parties, who correctly
(t,2t)-shared cM+cR

n−2t
values. The parties then apply the randomness-extraction function

Ext (see Sect. 2.3) on the values shared by the parties in C to output cM + cR (t,2t)-
shared values; since the values shared by the honest parties in C are indeed random and
information-theoretically secure, the output (t,2t)-shared values will be indeed random
and information-theoretically secure. In Fig. 16, we present the protocol for this phase.
Now depending upon whether the parties invoke the protocol S-(t,2t)-Sh (having a
negligible error) or P-(t,2t)-Sh (having no error) for sharing the values, we get the
protocol S-Preparation or P-Preparation, respectively, for the preparation phase.

We now prove the properties of the protocol S-Preparation and P-Preparation, which
follows from the properties of S-(t,2t)-Sh and P-(t,2t)-Sh, respectively, along with
the properties of Ext.

Lemma 20. Protocol S-Preparation satisfies the following properties for every possi-
ble At :

1. Termination: All the honest parties eventually terminate the protocol.
2. Correctness: Except with probability at most ε, the parties output (t,2t)-sharing

of cM + cR uniformly random values.
3. Secrecy: For i = 1, . . . , n − 2t and j = 1, . . . , cM+cR

n−2t
, the shared values ri,j re-

main information-theoretically secure.
4. Communication Complexity: The protocol incurs a communication of O(((cM +

cR)n2 + n4) log |F|) bits, a total broadcast of O(n4 log |F|) bits and requires one
invocation of ACS.
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Fig. 16. Protocol for the preparation phase.

Proof. For the termination property, we first notice that the invocation of ACS will
indeed output a common subset C of n− t parties. This is because there are at least n− t

honest parties, who will invoke an instance of S-(t,2t)-Sh and these instances will be
eventually terminated by every honest party. We next claim that every honest party will
eventually terminate the S-(t,2t)-Sh instance of every party (dealer) in C. The claim is
trivially true for every honest party in C. For any corrupted party Pj in C, at least one
honest party must have terminated the instance S-(t,2t)-Shj ; the termination property
of S-(t,2t)-Sh ensures that the instance S-(t,2t)-Shj will be eventually terminated by
every other honest party.

If the common subset C contains only honest parties then the correctness property
holds trivially without any error. This is because each honest party indeed (t,2t)-shares
random values. We now consider the worst case, when C can contain t corrupted parties
(dealers). Even in this case, there will be n−2t honest parties in C and they will (t,2t)-
share random values. The correctness property of S-(t,2t)-Sh ensures that even a cor-
rupted party in C does (t,2t)-sharing of L values (possibly non-random), except with
probability ε in its instance of S-(t,2t)-Sh. This implies that except with probability at
most t · ε, every corrupted party in C has done (t,2t)-sharing of L values. Assuming
that either t · ε ≈ ε or by invoking each instance of S-(t,2t)-Sh to have an error prob-
ability of at most ε

t
, we can ensure that except with probability at most ε, every party

in C has done (t,2t)-sharing of L values. Moreover, at least (n − 2t) · L = cM + cR of
these |C| · L values will be uniformly random. Now the property of Ext ensures that the
output (t,2t)-shared values are indeed random.

The secrecy property of S-(t,2t)-Sh ensures that the L values which are (t,2t)-
shared by the honest parties in C are information-theoretically secure. This implies
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that out of the total |C| · L values which are shared by the parties in C, at least
(|C| − t) · L = cM + cR values are information-theoretically secure. The property of
Ext ensures that for i = 1, . . . , n − 2t and j = 1, . . . , cM+cR

n−2t
, the output shared values

ri,j are information-theoretically secure. In the protocol, other than the execution of the
instances of S-(t,2t)-Sh, there is no interaction among the parties. The function Ext is
applied locally on the shares of the values, shared by the parties in C. This implies that
the ri,j values remain information-theoretically secure.

In the protocol, each party executes an instance of S-(t,2t)-Sh to (t,2t)-share
L = cM+cR

n−2t
values. Substituting � = L in Theorem 9, this requires a communication of

O((Ln3 + n4) log |F|) bits and a total broadcast of O(n4 log |F|) bits. Since L = cM+cR

n−2t

and n − 2t = Θ(n), the communication complexity turns out to be O(((cM + cR)n2 +
n4) log |F|) bits. Moreover, the protocol requires one invocation of ACS. �

The proof of the following lemma follows using the same arguments as used in the
previous lemma, except that we now depend on the properties of P-(t,2t)-Sh instead
of S-(t,2t)-Sh.

Lemma 21. Protocol P-Preparation satisfies the following properties for every possi-
ble At :

1. Termination: All the honest parties eventually terminate the protocol.
2. Correctness: In the protocol, the parties output (t,2t)-sharing of cM + cR uni-

formly random values.
3. Secrecy: For i = 1, . . . , n − 2t and j = 1, . . . , cM+cR

n−2t
, the shared values ri,j re-

main information-theoretically secure.
4. Communication Complexity: the protocol incurs a communication of O((cM +

cR)n2 log |F|) bits, a total broadcast of O(n3 log |F|) bits and requires one invo-
cation of ACS.

6.2. Input Phase

In this phase, each party Pi t-shares its input xi (for the computation), by executing
an instance of the sharing protocol of our AVSS schemes. If the parties invoke the
statistical protocol S-MS-Sh, then the resultant protocol for the input phase is called
S-Input. On the other hand, if the parties use the perfect protocol P-MS-Sh to share
their inputs, then the resultant protocol is called P-Input. The asynchrony of the net-
work does not allow the parties to wait for the termination of the S-MS-Sh/P-MS-Sh
instances of more than n − t parties. In order to agree on a common subset C (this
should not be confused with the common subset C of the previous phase) of par-
ties whose instance of S-MS-Sh/P-MS-Sh will eventually terminate, one instance of
ACS is invoked. The parties then consider t-sharing of the inputs shared by the par-
ties in the common subset C and substitute a default t-sharing of 0 correspond-
ing to the inputs of the parties not in C. The protocol for this phase is given in
Fig. 17.

We now prove the properties of the protocol S-Input and P-Input, which follows from
the properties of the protocol S-MS-Sh and P-MS-Sh, respectively.
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Fig. 17. Protocol for the input phase.

Lemma 22. Protocol S-Input satisfies the following properties for every possible At :

1. Termination: All honest parties eventually terminate the protocol.
2. Correctness: Except with probability at most ε, the parties output t-sharing of the

inputs of the parties in the common subset C.
3. Secrecy: The inputs of the honest parties in the set C remain information-

theoretically secure.
4. Communication Complexity: The protocol requires a communication of O((cI n

2 +
n4) log |F|) bits, a total broadcast of O(n4 log |F|) bits and requires one invocation
of ACS.

Proof. Every honest party will t-share its input and its instance of S-MS-Sh will be
eventually terminated by every honest party. Moreover, there are at least n − t honest
parties. This implies that the instance of ACS will eventually terminate with an output C.
To show the termination property, we require to show that the S-MS-Sh instance of the
corrupted parties in C will be eventually terminated by every honest party. However, this
follows from the termination property of S-MS-Sh and the fact that for every corrupted
party Pj ∈ C, there exists at least one honest party who terminates the S-MS-Sh instance
of Pj .

Every honest party in C will correctly t-share its input in its instance of S-MS-Sh.
The correctness property of S-MS-Sh also ensures that even a corrupted Pi ∈ C will
t-share a value xi (which may or may not be its actual input; but the value shared by
the party is considered as its intended input), except with probability at most ε. So the
inputs of each party in C will be t-shared, except with probability at most t · ε ≈ ε.

The secrecy property of S-MS-Sh ensures that the input xi of every honest Pi in C

remains information-theoretically secure in the instance S-MS-Shi . Apart from the ex-
ecution of the instances of S-MS-Sh, the protocol does not involve any communication
among the parties. This implies that the inputs of the honest parties in the set C will
remain information-theoretically secure.

In the protocol, each party executes an instance of S-MS-Sh to t-share its input
xi . From Theorem 7, we find that this requires a total communication of O((cI n

2 +
n4) log |F|) bits and a total broadcast of O(n4 log |F|) bits. In addition, the protocol
requires one invocation of ACS. �
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The proof of the following lemma follows using the similar arguments as used in the
previous lemma, except that we now depend upon the properties of P-MS-Sh, instead
of S-MS-Sh.

Lemma 23. Protocol P-Input satisfies the following properties for every possible At :

1. Termination: All the honest parties eventually terminate the protocol.
2. Correctness: The parties correctly output t-sharing of the inputs of the parties in

the common subset C.
3. Secrecy: The inputs of the honest parties in the set C remain information-

theoretically secure.
4. Communication Complexity: the protocol incurs a total communication of

O(cI n
2 log |F|) bits, a total broadcast of O(n3 log |F|) bits and requires one invo-

cation of ACS.

6.3. Computation Phase

The protocol for this phase is the same for both the statistical and the perfect AMPC
protocols. Here the circuit is evaluated gate by gate, where all intermediate values dur-
ing the computation remain t-shared. As soon as a party holds its shares of the input
values of a gate, it joins the evaluation of the gate. Due to the linearity of t-sharing,
linear gates can be evaluated locally by simply applying the linear function to the shares
of the inputs of the gate. With every random gate, one random (t,2t)-sharing (from
the preparation phase) is associated. The t-sharing of the associated (t,2t)-sharing is
directly used as the output of the random gate. With every multiplication gate, one ran-
dom (t,2t)-sharing is associated, which is then used to compute t-sharing of the prod-
uct, following the idea outlined earlier (in the introduction). This approach of evaluating
a multiplication gate was also used in the AMPC protocol of [5]. The protocol for this
phase is called Computation, which is presented in Fig. 18.

We now prove the properties of the protocol Computation.

Lemma 24. Given that cM + cR information-theoretically secure random values are
(t,2t)-shared among the parties and the inputs of all the parties are t-shared, protocol
Computation satisfies the following properties for every possible At :

1. Termination: All the honest parties eventually terminate the protocol.
2. Correctness: The parties correctly output the output of the function F .
3. Secrecy: The adversary obtains no additional information about the intermediate

values in the computation (in the information-theoretic sense), other than what is
inferred from the input and the output of the corrupted parties.

4. Communication Complexity: The protocol requires a communication of
O(n2(cM + cO) log |F|) bits.

Proof. The circuit representing the function F is finite. To prove the termination prop-
erty, we claim that each honest party will eventually evaluate each gate of the circuit.
The claim is trivially true for the input gates and the random gates. The linearity prop-
erty of t-sharing ensures that the claim is also true for the linear gates. Now consider
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Fig. 18. Protocol for the computation phase to evaluate the circuit of F .

a multiplication gate: the property of OEC (Theorem 3) implies that every honest party
will eventually reconstruct δ during the evaluation of the multiplication gate. After this,
the evaluation of the multiplication gate involves only local computation and so it will
be done eventually by every honest party. Similarly, the property of OEC ensures that
each honest party will eventually obtain the value of each output gate.

The linearity of t-sharing ensures that each linear gate is evaluated correctly by the
honest parties. Now consider a multiplication gate with inputs c, d and let r be the
random value, whose (t,2t)-sharing is associated with the multiplication gate. It is easy
to see that e = cḋ = (cḋ − r) + r = δ + r , where δ = (cḋ − r), which also implies that
[e]t = δ + [r]t , if δ is publicly known. The property of OEC ensures that every honest
party will correctly reconstruct δ, which implies that the multiplication gates will also be
evaluated correctly by the honest parties. The random gates will be evaluated correctly
due to the assumption that the associated (t,2t)-sharing is correct. Now if all the gates in
the circuit are evaluated correctly, it implies that each honest party will have the correct
share corresponding to t-sharing of the function output (namely the output gates). So
by the property of OEC, each honest party will correctly reconstruct the value of each
output gate and hence the function output.

To prove the secrecy, we claim the following for every intermediate gate (i.e. other
than the output gates) in the circuit: the evaluation of the gate reveals no additional
information to the adversary (in the information-theoretic sense) about the sharings as-
sociated with the input(s) of the gate (the sharings of the output gates are reconstructed
by all the parties and hence they will be known to everyone). Our claim is trivially true
for the random gates, as to evaluate a random gate, no communication is done among



Efficient Asynchronous Verifiable Secret Sharing and Multiparty Computation 101

the parties; the parties simply associate t-sharing of a random value (which is already
assumed to be information-theoretically secure) with the gate. The claim is also true for
any linear gate; the evaluation of the linear gates require only local computation and
no interaction among the parties. Now consider a multiplication gate, with inputs c and
d and let r be the random, information-theoretically secure value, associated with the
multiplication gate, which is (t,2t)-shared. Since r is (t,2t)-shared, it implies that r

is t-shared and 2t-shared through independent polynomials of degree at most t and 2t ,
respectively, with the adversary knowing at most t points on each polynomial. During
the evaluation of the multiplication gate, the 2t-sharing of δ = (c · d − r) is revealed
to the adversary (since it is reconstructed by every party). However, since r is random
and information-theoretically secure, the reconstruction of δ does not add any extra
information to the view of the adversary. Specifically, from the view-point of the ad-
versary, the reconstructed polynomial and its constant term (which is δ) is completely
random. Once δ is known, the evaluation of the multiplication gate involves only local
computation and so the adversary gains no extra information. This shows that during
the evaluation of the circuit, the adversary obtains no additional information about the
intermediate values, other than what is inferred from the input and the output of the
corrupted parties.16

The communication complexity follows from the fact that cM + cO values are recon-
structed in the protocol (one value per multiplication gate and one value per output gate)
and to reconstruct a value, every party sends its share to every other party, incurring a
communication of O(n2 log |F|) bits. �

6.4. Statistical AMPC Protocol with n = 4t + 1

The statistical AMPC protocol S-AMPC consists of the following three steps:

1. Invoke S-Preparation.
2. Invoke S-Input.
3. Invoke Computation.

We next state the properties of the protocol S-AMPC.

Theorem 11. Protocol S-AMPC is a statistical AMPC protocol, satisfying Defini-
tion 5. The protocol incurs a communication of O(((cI +cM +cR +cO)n2 +n4) log |F|)
bits, a total broadcast of O(n4 log |F|) bits and requires two invocations of ACS.

Proof. The proof follows from the properties of the protocol S-Preparation
(Lemma 20), protocol S-Input (Lemma 22) and protocol Computation (Lemma 24). �

6.5. Perfect AMPC Protocol with n = 4t + 1

The perfect AMPC protocol P-AMPC consists of the following three steps:

1. Invoke P-Preparation.

16 As mentioned earlier, we can prove the secrecy in the framework of real-world/ideal-world paradigm
of [7]. However, we avoid doing so, as it requires additional technicalities which will make the paper compli-
cated.
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2. Invoke P-Input.
3. Invoke Computation.

We next state the properties of the protocol P-AMPC.

Theorem 12. Protocol P-AMPC is a perfect AMPC protocol, satisfying Def. 5. The
protocol requires a communication of O((cI + cM + cR + cO)n2 log |F|) bits, a total
broadcast of O(n3 log |F|) bits and requires two invocations of ACS.

Proof. The proof follows from the properties of the protocol P-Preparation (Lemma
21), protocol P-Input (Lemma 23) and protocol Computation (Lemma 24). �

7. Packed Secret-Sharing: Another Perspective of Our AVSS Schemes

We now briefly discuss another important perspective of our AVSS schemes. For sim-
plicity and concreteness, we refer to our perfect AVSS scheme in the discussion below
(although the discussion holds for the statistical AVSS scheme, as well). Consider the
protocol P-Sh that can d-share a single secret: if D is honest in the protocol, then the
following holds at the end of protocol; there exists a polynomial f0(x) = F(x,0) of
degree at most d and every party Pi holds Shi = f0(i). Furthermore, the adversary At

knows at most t distinct points on f0(x) and it lacks d + 1 − t additional distinct points
on f0(x) to uniquely interpolate the polynomial f0(x). This fact suggests that from the
view-point of the adversary, f0(x) has d + 1 − t “degree of freedom”. So D can share
d + 1 − t secrets using the single polynomial f0(x). This concept, known as the packed
secret sharing was introduced in [26], but for the synchronous setting.17 In what follows
we show how the protocol P-Sh can be used as a packed secret-sharing scheme where
D can share d + 1 − t secrets simultaneously in the information-theoretic sense. More-
over, even if D is corrupted, there exist d + 1 − t values, to which D is committed to at
the end of the protocol.

Let s1, . . . , sk be the k values, which D wants to share among the parties, such
that k = d + 1 − t . D selects a polynomial f (x) over F of degree at most d . The
polynomial f (x) is an otherwise random polynomial such that f (0) = s1, f (−1) =
s2, . . . , f (−k +1) = sk . D then selects a bivariate polynomial F(x, y) over F of degree-
(d, t), which is an otherwise random polynomial such that F(x,0) = f (x). This im-

plies that f0(x)
def= F(x,0) = f (x). D then invokes the protocol P-Sh using the bivari-

ate polynomial F(x, y) selected as above and the parties participate in this instance of
P-Sh. If D is honest, then by the termination property of P-Sh, every honest party Pi

will eventually terminate the protocol, with its share Shi = f (i). Notice that Shi is the
share for the multi-secret s1, . . . , sk . Moreover, s1, . . . , sk are information-theoretically
secure, since f (x) has degree at most d and the adversary At gets at most t points on
f (x). Interestingly, even if D is corrupted, there are k values, say s1, . . . , sk , to which
D is committed to at the end of P-Sh. To recover s1, . . . , sk , the parties execute the
protocol Rec. From the property of Rec, every honest party will eventually reconstruct
f (x) correctly and will obtain the secrets s1, . . . , sk .

17 In [26], the concept was introduced in a slightly different way but the essence was the same.
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The above idea is also applicable for the protocol P-MS-Sh, where D can use � inde-
pendent bivariate polynomials, each of degree-(d, t) and using each polynomial, it can
share d +1− t values. This implies that it can share a total of � · (d +1− t) values. This
requires a communication of O(�n2 log |F|) bits and a broadcast of O(n2 log |F|) bits
(Theorem 8). Setting d = 2t (the maximum allowed value of d), we see that P-MS-Sh
can share �(t + 1) = Θ(�n) values, incurring a communication of O(�n2 log |F|) bits
and a broadcast of O(n2 log |F|) bits. As the broadcast communication is independent
of �, we may ignore it and conclude that the amortized cost of sharing a single secret
using P-MS-Sh is O(n log |F|) bits. The best known perfect AVSS of [5] requires an
amortized cost of O(n2 log |F|) bits for sharing a single secret. Hence P-MS-Sh shows
a clear improvement over the AVSS of [5] when both are interpreted as a packed secret-
sharing scheme. We further note that the amortized cost of sharing a single secret from
F in P-MS-Sh tolerating an active adversary matches the cost of sharing a single field
element in the presence of a passive adversary (for example, the Shamir’s secret-sharing
scheme [42]).

Notice that the above discussion holds for the statistical protocol S-MS-Sh, as well.
However, the protocol S-MS-Sh may involve a negligible error. On the other hand,
protocol P-MS-Sh is perfect in all respect and does not involve any error.

8. Flaw in the Statistical AMPC of Huang et al.

We now recall the statistical AMPC protocol of Huang et al. [30] and show that it does
not satisfy the correctness and the termination condition. The AMPC protocol in [30]
is divided into a sequence of three phases: the preparation phase, the input phase and
the computation and output phase. We concentrate on the preparation phase and show
that it fails to satisfy the correctness and the termination property, as claimed in [30].
This further implies that the AMPC protocol of Huang et al. [30] does not satisfy the
correctness and the termination property.

Recall that cM is the number of multiplication gates in the circuit expressing the
function F . The goal of the preparation phase is to generate cM random multiplication
triples (a1, b1, c1), . . . , (acM

, bcM
, ccM

), where for k = 1, . . . , cM , each ak , bk and ck

are t-shared among the parties in P with ak and bk being random and ck satisfying
ck = ak · bk . For this, the authors used the batch secret-sharing (BSS) scheme in [45]. In
[45], the authors claimed that their BSS scheme correctly generates cM shared random
multiplication triples over F. Moreover, every honest party will eventually terminate
the BSS protocol. However, we now show that their BSS scheme does not satisfy the
correctness property as well as the termination property. As a result, the AMPC protocol
in [30] (which uses the BSS scheme as a black box) does not satisfy the correctness and
the termination property.

The BSS scheme of Zheng et al. [45] is based on the player-elimination framework
[29], where the computation is divided into a sequence of segments. To show the weak-
ness in the BSS scheme of [45], we do not need to get into the details of the player-
elimination framework. We concentrate only on the crucial steps (presented in a sim-
plified form for the ease of presentation) which are executed in a segment to generate
t-sharing of one multiplication triple (a, b, c). The main steps in the generation of such
a triple are as follows:
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Fig. 19. Steps for generating t -sharing of a random a and b in the BSS scheme of Huang et al.

1. The parties in P jointly generate t-sharing of a random a and b.
2. The parties in P then jointly generate t-sharing of c = ab.

Now a t-sharing of a random a and b in the BSS scheme of [45] is generated by execut-
ing the steps presented in Fig. 19.

From Fig. 19, we find that step 2 that verifies whether a and b are indeed t-shared
among the parties in P , will work provided every (honest) Pi eventually holds ai and
bi . Clearly, this is possible if every (honest) party Pi eventually receives the points fj (i)

and gj (i) from every Pj ∈ C. In [45], the authors claimed that this will be indeed the
case. However, we now show that the adversary may behave (especially schedules the
messages) in such a way that every honest Pi has to wait indefinitely to compute ai and
bi .

Without loss of generality, let the first n− t parties (i.e. P1, . . . ,Pn−t ) be honest. Now
consider the following behavior of a corrupted Pj : it selects fj (x) and gj (x) of degree
higher than t and sends points on fj (x), gj (x) to only the first n − 2t honest parties
and to the t corrupted parties (but not to the remaining t honest parties in P). But still
Pj broadcasts 1 to indicate that it has done the sharing of fj (x) and gj (x). Moreover,
the adversary schedules the messages of Pj such that they reach their respective re-
ceivers immediately, without any delay. Now the first n − 2t honest parties and the t

corrupted parties will input 1 in ABAj during ACS, as they will receive points on fj (x)

and gj (x) from Pj and will also receive 1 from the broadcast of Pj . So in ABAj , there
are n− t inputs, with value 1. Now assuming that all the parties including the corrupted
parties behave honestly in ABAj , the property of ABA ensures that every party in P
will terminate ABAj with output 1 and hence Pj will be present in the common subset
C. However, notice that the t honest parties Pn−2t+1, . . . ,Pn−t do not feed any input
in ABAj . In fact, these honest parties will never receive their respective points on fj (x)

and gj (x), despite terminating ABAj with output 1. So even though a (corrupted) Pj is
present in C, potentially t honest parties may never receive their respective points on
fj (x) and gj (x).

Now using a similar strategy, another corrupted Pk ∈ C (where Pk 
= Pj ) may bar
another set of t honest parties in P , say the first t honest parties, from receiving their
respective points on fk(x) and gk(x). In the worst case, there can be t corrupted parties
in C, who may follow a similar strategy as explained above and can ensure that every
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honest party in P waits indefinitely to receive its respective points on the polynomials,
corresponding to some corrupted party (ies) in C. Thus every honest Pi in P may wait
indefinitely to compute ai and bi .

The Technical Problem and a Possible Solution The reason behind the above flaw
is that the BSS scheme of [45] (which basically is the Shamir secret-sharing scheme,
executed in the asynchronous setting, assuming an honest dealer), does not ensure that
if some honest party terminates the protocol with its share, then every other honest party
will also eventually do the same. A BSS scheme (in the asynchronous setting) with the
“stronger” termination property will certainly avoid the above problem; however we are
not aware of any BSS scheme satisfying such a termination property.

An alternative to fix the above problem is to ask each Pj to share two random val-
ues, say aj and bj using the Sh protocol of some AVSS scheme and then use the ACS
primitive to agree on a common subset of n − t parties C whose instances of Sh will be
eventually terminated by all the (honest) parties. Then each party Pi can locally com-
pute ai = ∑

Pj ∈C aj,i and bi = ∑

Pj ∈C bj,i , where aj,i and bj,i are the ith share of aj

and bj , respectively. By the termination property of AVSS, every (honest) Pi will even-
tually terminate the Sh instance and thus will receive aj,i , bj,i corresponding to every
Pj ∈ C and can compute ai and bi finally. However, the current best AVSS scheme
with n = 4t + 1 (prior to our work) is due to [5], which requires a communication of
O(�n2 log |F|) bits for concurrent sharing of � values. If this AVSS is used then the re-
sultant AMPC protocol will have a communication complexity of Ω(n3 log |F|) bits per
multiplication gate, which is clearly more than the communication complexity of our
AMPC protocols.

9. Open Problems

We presented information-theoretically secure AMPC protocols with n = 4t + 1, that
achieve an amortized communication complexity of O(n2 log |F|) bits per multiplica-
tion gate, which improves the communication complexity of the previous best known
protocols by a factor of Ω(n). The key innovation behind our protocols are new AVSS
schemes, which allow to verifiably share secrets with the degree of sharing d , with
t ≤ d ≤ 2t . While our perfect AMPC (and AVSS) protocol have optimal resilience, the
statistical protocols do not achieve optimal resilience. It would be interesting to improve
the resilience of our statistical protocols.
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Appendix A. Proof of the Technical Lemmas

Proof of Lemma 1. Let V (k) denote the k×k Vandermonde matrix, with [i0, . . . , ik−1]T
as the ith column, for i = 1, . . . , k. Now consider the polynomials f 1(x), . . . , f t+1(x)

and let E be the (t + 1) × (d + 1) matrix, where Eij is the coefficient of xj in f i(x),
for i = 1, . . . , t + 1 and j = 0, . . . , d . Thus, the (i, j)th entry in E · V (d+1) is f i(j).

Let H = ((V (t+1))T )
−1 · E be a (t + 1) × (d + 1) matrix. Let for i = 0, . . . , d , the

(i + 1)th column of H be [ri0, ri1, . . . , rit ]T . Now we define a degree-(d, t) bivariate
polynomial F(x, y) = ∑i=d

i=0
∑j=t

j=0 rij x
iyj . Then from the properties of bivariate poly-

nomials, for i = 1, . . . , t + 1 and j = 1, . . . , d + 1, we have

F(j, i) = (

V (t+1)
)T · H · V (d+1) = E · V (d+1) = f i(j) = gj (i).

This implies that for i = 1, . . . , t + 1, the polynomials F(x, i) and f i(x) have the same
value at d + 1 values of x. But since the degree of F(x, i) and f i(x) is at most d , this
implies that F(x, i) = f i(x). Similarly, for j = 1, . . . , d + 1, we have F(j, y) = gj (y),
as both these polynomials are of degree at most t and have the same value at t + 1
distinct points.

Next, we will show that for any t + 1 < i ≤ l, the polynomial f i(x) also lies on
F(x, y). In other words, F(x, i) = f i(x), for t + 1 < i ≤ l. This is easy to show
because according to the lemma statement, f i(j) = gj (i), for j = 1, . . . , d + 1 and
g1(i), . . . , gd+1(i) lie on F(x, i) and uniquely define F(x, i). Since both f i(x) and
F(x, i) are of degree at most d , this implies that F(x, i) = f i(x), for t +1 < i ≤ l. Now
using a similar argument, we can show that F(j, y) = gj (y), for d + 1 < j ≤ m. �

Proof of Lemma 4. On the contrary, assume that at least one of the polynomials
h0(y), . . . , hl(y) has degree more than t . Without loss of generality, let h1(y) have
the maximal degree among h0(y), . . . , hl(y), with degree tmax, where tmax > t (in our
context tmax will be finite). Then we write every hi(y) as hi(y) = ciy

tmax + ̂hi(y), where
̂hi(y) has degree lower than tmax. Then hcom(y)

def= r0h0(y) + . . . + rlhl(y) can be
written as:

hcom(y) = r0[c0y
tmax + ̂h0(y)

] + · · · + rl
[

cly
tmax + ̂hl(y)

]

,

= ytmax
(

r0c0 + · · · + rlcl

) + Σl
j=0r

j
̂hj (y),

= ytmaxccom + Σl
j=0r

j
̂hj (y), where ccom = r0c0 + · · · + rlcl .

By our assumption, c1 
= 0, as h1(y) has degree tmax. It implies that the vector
(c0, . . . , cl) is not a complete 0 vector. Hence ccom = r0c0 + · · ·+ rlcl will be zero with
probability at most l

|F| ≈ 2−Ω(κ) ≈ ε (which is negligible). This is because the vector
(c0, . . . , cl) can be considered as the set of coefficients of a polynomial, say μ(x), of
degree at most l and hence the value ccom is the value of μ(x) at x = r . Now, ccom will
be zero if r happens to be one of the possible l roots of μ(x) (since the degree of μ(x)

is at most l). So if r is a non-zero element, selected uniformly and randomly from F,
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then except with probability ε, ccom 
= 0 and so hcom(y) will have degree higher than t ,
which is a contradiction. �
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