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Abstract. The GLV method of Gallant, Lambert, and Vanstone (CRYPTO 2001)
computes any multiple kP of a point P of prime order n lying on an elliptic curve with
a low-degree endomorphism Φ (called GLV curve) over Fp as

kP = k1P + k2Φ(P ) with max
{|k1|, |k2|} ≤ C1

√
n

for some explicit constant C1 > 0. Recently, Galbraith, Lin, and Scott (EUROCRYPT
2009) extended this method to all curves over F

p2 which are twists of curves defined
over Fp . We show in this work how to merge the two approaches in order to get, for
twists of any GLV curve over F

p2 , a four-dimensional decomposition together with

fast endomorphisms Φ,Ψ over F
p2 acting on the group generated by a point P of

prime order n, resulting in a proven decomposition for any scalar k ∈ [1, n] given by

kP = k1P + k2Φ(P ) + k3Ψ (P ) + k4Ψ Φ(P ) with max
i

(|ki |
)
< C2 n1/4

for some explicit C2 > 0. Remarkably, taking the best C1,C2, we obtain C2/C1 < 412,
independently of the curve, ensuring in theory an almost constant relative speedup. In
practice, our experiments reveal that the use of the merged GLV–GLS approach sup-
ports a scalar multiplication that runs up to 1.5 times faster than the original GLV
method. We then improve this performance even further by exploiting the Twisted Ed-
wards model and show that curves originally slower may become extremely efficient
on this model. In addition, we analyze the performance of the method on a multicore
setting and describe how to efficiently protect GLV-based scalar multiplication against
several side-channel attacks. Our implementations improve the state-of-the-art perfor-
mance of scalar multiplication on elliptic curves over large prime characteristic fields
for a variety of scenarios including side-channel protected and unprotected cases with
sequential and multicore execution.

∗ This is the full version of a paper published at Asiacrypt 2012.

© International Association for Cryptologic Research 2013

mailto:plonga@microsoft.com
mailto:francesco.sica@nu.edu.kz


Four-Dimensional Gallant–Lambert–Vanstone Scalar Multiplication 249

Key words. Elliptic curves, GLV–GLS method, Scalar multiplication, Twisted Ed-
wards curve, Side-channel protection, Multicore computation.

1. Introduction

The Gallant–Lambert–Vanstone (GLV) method is a generic approach to speed up the
computation of scalar multiplication on some elliptic curves defined over fields of large
prime characteristic. Given a curve with a point P of prime order n, it consists essen-
tially in an algorithm that finds a decomposition of an arbitrary scalar multiplication kP

for k ∈ [1, n] into two scalar multiplications, with the new scalars having only about half
the bitlength of the original scalar. This immediately enables the elimination of half the
doublings by employing the Straus–Shamir trick for simultaneous point multiplication.

Whereas the original GLV method as defined in [13] works on curves over Fp with
an endomorphism of small degree (GLV curves), Galbraith–Lin–Scott (GLS) in [11]
have shown that over Fp2 one can expect to find many more such curves by basically
exploiting the action of the Frobenius endomorphism. One can therefore expect that on
the particular GLV curves, this new insight will lead to improvements over Fp2 . Indeed,
the GLS article itself considers four-dimensional decompositions on GLV curves with
nontrivial automorphisms (corresponding to the degree one cases) but leaves the other
cases open to investigation.

In this work, we generalize the GLS method to all GLV curves by exploiting fast
endomorphisms Φ,Ψ over Fp2 acting on a cyclic group generated by a point P of
prime order n to construct a proven decomposition with no heuristics involved for any
scalar k ∈ [1, n]

kP = k1P + k2Φ(P ) + k3Ψ (P ) + k4Ψ Φ(P ) with max
i

(|ki |
)
< Cn1/4

for some explicitly computable C. In doing this we provide a reduction algorithm for
the four-dimensional relevant lattice which runs in O(log2 n) by implementing two
Cornacchia-type algorithms [9,25], one in Z, the other in Z[i]. The algorithm is re-
markably simple to implement and allows us to demonstrate an improved C = O(

√
s)

(compared to the value obtained with LLL, which is only Ω(s3/2)). Thus, it guaran-
tees a relative speedup practically independent of the curve when moving from a two-
dimensional to a four-dimensional GLV method over the same underlying field. If par-
allel computation is available, then the computation of kP can possibly be implemented
(close to) four times faster in this case. When moving from two-dimensional GLV over
Fp to the four-dimensional case over Fp2 , our method still guarantees a relative speedup
that is quasi-uniform among all GLV curves (see Sect. 8 for details). In fact, we present
experimental results on different GLV curves that demonstrate that the relative speedup
between the original GLV method and the proposed method (termed GLV–GLS in the
remainder) is as high as 1.5 times.

Twisted Edwards curves [2] are efficient generalizations of the popular Edwards
curves [10], which exhibit high-performance arithmetic. By exploiting this curve model,
Galbraith, Lin, and Scott [12] showed that the GLS method can be improved in prac-
tice a further 10 %, approximately. Similar findings were later reported by Longa and
Gebotys [23] (see also Longa [22]). Galbraith et al. also described how to write down
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j -invariant 0 and 1728 curves in Edwards form to combine a four-dimensional decom-
position with the fast arithmetic provided by this curve model. We exploit this approach
and, most remarkably, lift the restriction to those special curves and show that in practice
the GLV–GLS curves discussed in this work may achieve extremely high-performance
and become virtually equivalent in terms of speed when written in Twisted Edwards
form.

In the last years multiple works have incrementally shown the impact of using the
GLS method for high performance [11,16,23]. However, it is still unclear how well the
method behaves on settings where side-channel attacks are a threat. Since it is usu-
ally assumed that required countermeasures once in place degrade performance signif-
icantly, it is also unclear if the GLS method would retain its current superiority in the
case of side-channel protected implementations. Here, we study this open problem and
describe how to protect implementations based on the GLV–GLS method against tim-
ing attacks, cache attacks, and similar ones and still achieve very high performance.
The techniques discussed naturally apply to GLV-based implementations in general. Fi-
nally, we discuss different strategies to implement GLV-based scalar multiplication on
modern multicore processors, and include the case in which countermeasures against
side-channel attacks are required.

The presented implementations corresponding to the GLV–GLS method improve the
state-of-the-art performance of point multiplication for all the cases under study: pro-
tected and unprotected versions with sequential and parallel execution. For instance,
on one core of an Intel Core i7-2600 processor and at roughly 128 bits of security, we
compute an unprotected scalar multiplication in only 91,000 cycles (which is 1.34 times
faster than a previous result reported by Hu, Longa, and Xu [16]) and a side-channel
protected scalar multiplication in only 137,000 cycles (which is 1.42 times faster than
the protected implementation presented by Bernstein et al. [3]).

Related Work Recently, a paper by Zhou, Hu, Xu, and Song [32] has shown that it is
possible to combine the GLV and GLS approaches by introducing a three-dimensional
version of the GLV method, which seems to work to a certain degree, with however no
justification but through practical implementations. The first author together with Hu
and Xu [16] studied the case of curves with j -invariant 0 and provided a bound for
this particular case. Our analysis supplements [16] by considering all GLV curves and
providing a unified treatment.

2. The GLV Method

In this section we briefly summarize the GLV method following [29]. Let E be an
elliptic curve defined over a finite field Fq , and P be a point on this curve with prime
order n such that the cofactor h = #E(Fq)/n is small, say h ≤ 4. Let us consider a
nontrivial endomorphism Φ defined over Fq and its characteristic polynomial X2 +
rX + s. In all the examples, r and s are actually small fixed integers, and q is varying in
some family. By hypothesis there is only one subgroup of order n in E(Fq), implying
that Φ(P ) = λP for some λ ∈ [0, n − 1], since Φ(P ) has order dividing the prime n. In
particular, λ is obtained as a root of X2 + rX + s modulo n.
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Define the group homomorphism (the GLV reduction map)

f : Z × Z → Z/n

(i, j) �→ i + λj (mod n).

Let K = ker f. It is a sublattice of Z × Z of rank 2 since the quotient is finite. Let
k > 0 be a constant (depending on the curve) such that we can find v1, v2 two linearly
independent vectors of K satisfying max{|v1|∞, |v2|∞} < k

√
n, where | · |∞ denotes

the rectangle norm.1 Express

(k,0) = β1v1 + β2v2,

where βi ∈ Q. Then round βi to the nearest integer bi = 	βi
 = 	βi + 1/2� and let

v = b1v1 +b2v2. Note that v ∈ K and that u
def= (k,0)−v is short. Indeed by the triangle

inequality we have that

|u|∞ ≤ |v1|∞ + |v2|∞
2

< k
√

n.

If we set (k1, k2) = u, then we get k ≡ k1 + k2λ (mod n) or equivalently kP = k1P +
k2Φ(P ) with max(|k1|, |k2|) < k

√
n.

In [29], the optimal value of k (with respect to large values of n, i.e., large fields,
keeping X2 + rX + s constant) is determined. Let Δ = r2 − 4s be the discriminant of
the characteristic polynomial of Φ . Then the optimal k is given by the following result.2

Theorem 1 [29, Theorem 4]. Assuming that n is the norm of an element of Z[Φ], the
optimal value of k is

k =
⎧
⎨

⎩

√
s

2 (1 + 1
|Δ| ) if r is odd,

√
s

2

√
1 + 4

|Δ| if r is even.

3. The GLS Improvement

In 2009, Galbraith, Lin, and Scott [11] realized that we do not need to have Φ2 +
rΦ + s = 0 in End(E) but only in a subgroup of E(F) for a specific finite field F. In
particular, considering Ψ = Frobp the p-power Frobenius endomorphism of a curve E

defined over Fp , we know that Ψ m(P ) = P for all P ∈ E(Fpm). While this tells nothing
useful if m = 1,2, it does offer new nontrivial relations for higher-degree extensions.
The case m = 4 is particularly useful here.

In this case, if P ∈ E(Fp4)\E(Fp2), then Ψ 2(P ) = −P , and hence on the subgroup
generated by P , Ψ satisfies the equation X2 +1 = 0. This implies that if Ψ (P ) is a mul-
tiple of P (which happens as soon as the order n of P is sufficiently large, say at least

1 The rectangle norm of (x, y) is by definition max(|x|, |y|). As remarked in [29], we can replace it by any
other metric norm. We will use the term “short” to denote smallness in the rectangle norm.

2 There is a mistake in [29] in the derivation of k for odd values of r . This affects [29, Corollary 1] for

curves E2 and E3, where the correct values of k are respectively 2/3 and 4
√

2/7.
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2p), we can apply the previous GLV construction and split again a scalar multiplication
as kP = k1P + k2Ψ (P ) with max(|k1|, |k2|) = O(

√
n). Contrast this with the charac-

teristic polynomial of Ψ which is X2 − apX + p for some integer ap , a nonconstant
polynomial to which we cannot apply efficiently the GLV paradigm.

For efficiency reasons, however, one does not work with E/Fp4 directly but with
E′/Fp2 isomorphic to E over Fp4 but not over Fp2 , that is, a quadratic twist over Fp2 . In
this case, it is possible that #E′(Fp2) = n ≥ (p−1)2 be prime. Furthermore, if ψ : E′ →
E is an isomorphism defined over Fp4 , then the endomorphism Ψ = ψ Frobp ψ−1 ∈
End(E′) satisfies the equation X2 + 1 = 0, and if p ≡ 5 (mod 8), it can be defined
over Fp .

This idea is at the heart of the GLS approach, but it only works for curves over Fpm

with m > 1, and therefore it does not generalize the original GLV method but rather
complements it.

4. Combining GLV and GLS

Let E/Fp be a GLV curve. As in Sect. 3, we will denote by E′/Fp2 a quadratic
twist Fp4 -isomorphic to E via the isomorphism ψ : E → E′. We also suppose that
#E′(Fp2) = nh where n is prime and h ≤ 4. We then have the two endomorphisms of
E′, Ψ = ψ Frobp ψ−1 and Φ = ψφψ−1, with φ the GLV endomorphism coming with
the definition of a GLV curve. They are both defined over Fp2 since if σ is the nontrivial
Galois automorphism of Fp4/Fp2 , then ψσ = −ψ , so that Ψ σ = ψσ Frobσ

p(ψ−1)σ =
(−ψ)Frobp(−ψ−1) = Ψ , meaning that Ψ ∈ EndF

p2 (E
′). Similarly for Φ , where we

are using the fact that φ ∈ EndFp
(E). Notice that Ψ 2 + 1 = 0 and that Φ has the

same characteristic polynomial as φ. Furthermore, since we have a large subgroup
〈P 〉 ⊂ E′(Fp2) of prime order, Φ(P ) = λP and Ψ (P ) = μP for some λ,μ ∈ [1, n−1].
We will assume that Φ and Ψ , when viewed as algebraic integers, generate disjoint
quadratic extensions of Q. In particular, we are not dealing with Example 1 from Ap-
pendix A, but this can be treated separately with a quartic twist as described in Ap-
pendix B.

Consider the biquadratic (Galois of degree 4, with Galois group Z/2 × Z/2) number
field K = Q(Φ,Ψ ). Let oK be its ring of integers. The following analysis is inspired
by [29, Sect. 8].

We have Z[Φ,Ψ ] ⊆ oK . Since the degrees of Φ and Ψ are much smaller than n, the
prime n is unramified in K , and the existence of λ and μ above means that n splits
in Q(Φ) and Q(Ψ ), namely that n splits completely in K . There exists therefore a
prime ideal n of oK dividing noK , such that its norm is n. We can also suppose that
Φ ≡ λ (mod n) and Ψ ≡ μ (mod n). The four-dimensional GLV–GLS method works
as follows.

Consider the GLV–GLS reduction map F defined by

F : Z
4 → Z/n

(x1, x2, x3, x4) �→ x1 + x2λ + x3μ + x4λμ (mod n).
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If we can find four linearly independent vectors v1, . . . , v4 ∈ kerF with maxi |vi |∞ ≤
Cn1/4 for some constant C > 0, then for any k ∈ [1, n − 1], we write

(k,0,0,0) =
4∑

j=1

βjvj

with βj ∈ Q. As in the GLV method, one performs a Babai rounding to obtain the closest
lattice vector v = ∑4

j=1	βj 
vj and defines

u = (k,0,0,0) − v = (k1, k2, k3, k4).

We then get

kP = k1P + k2Φ(P ) + k3Ψ (P ) + k4Ψ Φ(P ) with max
i

(|ki |
) ≤ 2Cn1/4. (1)

We next focus on the study of kerF in order to find a reduced basis v1, v2, v3, v4 with
an explicit C. We can factor the GLV–GLS map F as

Z
4 f−−−−→ Z[Φ,Ψ ] reduction−−−−−−−−−−−→

mod n ∩ Z[Φ,Ψ ] Z/n

(x1, x2, x3, x4) �−→ x1 + x2Φ + x3Ψ + x4ΦΨ �−→ x1 + x2λ + x3μ + x4λμ (mod n).

Notice that the kernel of the second map (reduction mod n ∩ Z[Φ,Ψ ]) is exactly n ∩
Z[Φ,Ψ ]. This can be seen as follows. The reduction map factors as

Z[Φ,Ψ ] −→ oK −→ oK/n ∼= Z/n,

where the first arrow is inclusion, and the second is reduction mod n corresponding to
reducing the xi ’s mod n ∩ Z = nZ and using Φ ≡ λ,Ψ ≡ μ (mod n). But the kernel of
this map consists precisely of elements of Z[Φ,Ψ ] which are in n, and that is what we
want.

Moreover, since the reduction map is surjective, we obtain an isomorphism
Z[Φ,Ψ ]/n∩Z[Φ,Ψ ] ∼= Z/n, which says that the index of n∩Z[Φ,Ψ ] inside Z[Φ,Ψ ]
is n. Since the first map f is an isomorphism, we get that kerF = f −1(n ∩ Z[Φ,Ψ ])
and that kerF has index [Z4 : kerF ] = n inside Z

4.
We can also produce a basis of kerF by the following observation. Let Φ ′ = Φ − λ,

Ψ ′ = Ψ − μ, and hence Φ ′Ψ ′ = ΦΨ − λΨ − μΦ + λμ. In matrix form,
⎛

⎜⎜
⎝

1
Φ ′
Ψ ′

Φ ′Ψ ′

⎞

⎟⎟
⎠ =

⎛

⎜⎜
⎝

1 0 0 0
−λ 1 0 0
−μ 0 1 0
λμ −μ −λ 1

⎞

⎟⎟
⎠

⎛

⎜⎜
⎝

1
Φ

Ψ

ΦΨ

⎞

⎟⎟
⎠ .

Since the determinant of the square matrix is 1, we deduce that Z[Φ,Ψ ] = Z[Φ ′,Ψ ′].
But in this new basis, we claim that

n ∩ Z
[
Φ ′,Ψ ′] = nZ + ZΦ ′ + ZΨ ′ + ZΦ ′Ψ ′.
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Indeed, reverse inclusion (⊇) is easy since Φ ′,Ψ ′,Φ ′Ψ ′ ∈ n and so is n, because n

divides noK is equivalent to n ⊇ noK . On the other hand, the index of both sides in
Z[Φ ′,Ψ ′] is n, which can only happen, once an inclusion is proved, if the two sides are
equal. Using the isomorphism f , we see that a basis of kerF ⊂ Z

4 is therefore given by

w1 = (n,0,0,0),w2 = (−λ,1,0,0),w3 = (−μ,0,1,0),w4 = (λμ,−μ,−λ,1).

The LLL algorithm [20] then finds, for a given basis w1, . . . ,w4 of kerF , a reduced3

basis v1, . . . , v4 in polynomial time (in the logarithm of the norm of the wi ’s) such that
(cf. [8, Theorem 2.6.2, p. 85])

4∏

i=1

|vi |∞ ≤ 8
[
Z

4 : kerF
] = 8n. (2)

Lemma 1. Let Φ and Ψ be as defined at the beginning of this section,

N : Z
4 → Z

(x1, x2, x3, x4) �→
∑

i1,i2,i3,i4≥0
i1+i2+i3+i4=4

bi1,i2,i3,i4x
i1
1 x

i2
2 x

i3
3 x

i4
4

be the norm of an element x1 + x2Φ + x3Ψ + x4ΦΨ ∈ Z[Φ,Ψ ], where the bi1,i2,i3,i4 ’s
lie in Z. Then, for any nonzero v ∈ kerF , one has

|v|∞ ≥ n1/4

(
∑

i1,i2,i3,i4
i1+i2+i3+i4=4

|bi1,i2,i3,i4 |)1/4
. (3)

Proof. For v ∈ kerF , we have N (v) ≡ 0 (mod n), and if v �= 0, we must therefore
have |N (v)| ≥ n. On the other hand, if we did not have (3), then every component of
v would be strictly less than the right-hand side, and plugging this upper bound in the
definition of |N (v)| would yield a quantity < n, a contradiction. �

Let B be the denominator of the right-hand side of (3). Then (2) and (3) imply that

|vi |∞ ≤ 8B3n1/4, i = 1,2,3,4. (4)

Remark 1. In our case, where Ψ 2 + 1 = 0 and Φ2 + rΦ + s = 0, we get as norm
function

x4
1 + s2x4

2 + x4
3 + s2x4

4 − 2rx3
1x2 − 2rsx1x

3
2 − 2rx3

3x4 − 2rsx3x
3
4

+ (
r2 + 2s

)
x2

1x2
2 + 2x2

1x2
3 + (

r2 − 2s
)
x2

1x2
4

+ (
r2 − 2s

)
x2

2x2
3 + 2s2x2

2x2
4 + (

r2 + 2s
)
x2

3x2
4

− 2rx2
1x3x4 − 2rsx2

2x3x4 − 2rx1x2x
2
3 − 2rsx1x2x

2
4 + 8sx1x2x3x4,

3 The estimates are usually given for the Euclidean norm of the vectors. But it is easy to see that the
rectangle norm is upper bounded by the Euclidean norm.
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and therefore,

B = (
4 + 4s2 + 8s + 8|r| + 8|r|s + 2

(
r2 + 2s

) + 2|r2 − 2s|)1/4
. (5)

From (1) and (4) we have proved the following theorem.

Theorem 2. Let E/Fp be a GLV curve, and E′/Fp2 a twist, together with the two
efficient endomorphisms Φ and Ψ , where everything is defined as at the start of this
section. Suppose that the minimal polynomial of Φ is X2 +rX+s = 0. Let P ∈ E′(Fp2)

be a generator of the large subgroup of prime order n. There exists an efficient algorithm
which for any k ∈ [1, n] finds integers k1, k2, k3, k4 such that

kP = k1P + k2Φ(P ) + k3Ψ (P ) + k4Ψ Φ(P ) with max
i

(|ki |
) ≤ 16B3n1/4

and

B = (
4 + 4s2 + 8s + 8|r| + 8|r|s + 2

(
r2 + 2s

) + 2
∣∣r2 − 2s

∣∣)1/4
.

5. Uniform Improvements and a Tale of Two Cornacchia Algorithms

The previous analysis is only the first step of our work. It shows that the GLV–GLS
method works as predicted in a four-way decomposition on twists of GLV curves over
Fp2 . However, the constant B3 involved is rather large and, hence, does not guarantee
a non-negligible gain when switching from two to four dimensions (especially on those
GLV curves with more complicated endomorphism rings). A much deeper argument
allows us to prove the following result.

Theorem 3. When performing an optimal lattice reduction on kerF , it is possible to
decompose any k ∈ [1, n] into integers k1, k2, k3, k4 such that

kP = k1P + k2Φ(P ) + k3Ψ (P ) + k4Ψ Φ(P )

with maxi (|ki |) < 103(
√

1 + |r| + s)n1/4.

The significance of this theorem lies in the improvement of the constant 16B3, which
is Ω(s3/2) in Theorem 2, to a value that is an absolute constant times greater than the
minimal bound for the two-dimensional GLV method (Theorem 1). Hence, this guaran-
tees in practice a more uniform improvement when switching from two-dimensional to
four-dimensional GLV independently of the curve.

To prove Theorem 3, first note that Lemma 1 gives a rather poor bound when applied
to more than one vector, as is done three times for the proof of Theorem 2. A more direct
treatment of the reduced vectors of kerF becomes necessary, and this is done via a mod-
ification of the original GLV approach. This results in a new, easy-to-implement lattice
reduction algorithm which employs two Cornacchia-type algorithms [8, Sect. 1.5.2],
one in Z (as in the original GLV method), the other one in Z[i] (Gaussian Cornac-
chia).
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The full proof of Theorem 3 via the new lattice reduction algorithm can be found in
Appendix D.

5.1. The Euclidean Algorithm in Z

The first step is to find ν = a + ib ∈ Z[i] such that |ν|2 = a2 + b2 = n, i.e., a Gaussian
prime above n. Recall that n splits in Z[i]. Let ν = a + ib a prime above n. We can
furthermore assume that νP = aP + biP := aP + bΨ (P ) = 0 since νν̄P = nP = 0,
and hence either ν̄P is a nonzero multiple of P and therefore νP = 0, or else ν̄P = 0,
so that in any case one of the Gaussian primes (WLOG ν) above n will have νP = 0.
We can find ν by Cornacchia’s algorithm [8, Sect. 1.5.2], which is a truncated form of
the Euclidean algorithm. For completeness and consistency with what will follow, we
recall how this is done.

Let μ ∈ [1, n] be such that μ ≡ i (mod n), with i being defined by Ψ (P ) = iP .
Actually, in the GLS approach [11], it has been pointed out that this value of μ can
be readily computed from #E(Fp). The extended Euclidean algorithm to compute the
gcd of n and μ produces three terminating sequences of integers (rj )j≥0, (sj )j≥0 and
(tj )j≥0 such that

(
rj+2 sj+2 tj+2
rj+1 sj+1 tj+1

)
=

(−qj+1 1
1 0

)(
rj+1 sj+1 tj+1
rj sj tj

)
, j ≥ 0, (6)

for some integer qj+1 > 0 and initial data

(
r1 s1 t1
r0 s0 t0

)
=

(
μ 0 1
n 1 0

)
. (7)

This means that at step j ≥ 0,

rj = qj+1rj+1 + rj+2

and similarly for the other sequences. The sequence (qj )j≥1 is uniquely defined by
imposing that the previous equation be the integer division of rj by rj+1. In other terms,
qj+1 = 	rj /rj+1�. This implies by induction that all the sequences are well defined in
the integers, together with the following properties.

Lemma 2. The sequences (rj )j≥0, (sj )j≥0, and (tj )j≥0 defined by (6) and (7) with
qj+1 = 	rj /rj+1� satisfy the following properties, valid for all j ≥ 0.

1. rj > rj+1 ≥ 0 and qj+1 ≥ 1,
2. (−1)j sj ≥ 0 and |sj | < |sj+1| (this last inequality valid for j ≥ 1),
3. (−1)j+1tj ≥ 0 and |tj | < |tj+1|,
4. sj+1rj − sj rj+1 = (−1)j+1r1,
5. tj+1rj − tj rj+1 = (−1)j r0,
6. r0sj + r1tj = rj .

These properties lie at the heart of the original GLV algorithm. They imply in par-
ticular via property 1 that the algorithm terminates (once rj reaches zero) and that it
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has O(logn) steps, as rj = qj+1rj+1 + rj+2 ≥ rj+1 + rj+2 > 2rj+2. Note that proper-
ties 1, 2, and 3 imply that properties 4 and 5 can be rewritten in our case respectively
as

|sj+1rj | + |sj rj+1| = μ and |tj+1rj | + |tj rj+1| = n. (8)

The Cornacchia (as well as the GLV) algorithm does not make use of the full se-
quences (rj ), (sj ), and (tj ) but rather stops at the m ≥ 0 such that rm ≥ √

n and
rm+1 <

√
n. An application of (8) with j = m yields |tm+1rm| < n or |tm+1| <

√
n.

Since by property 6 we have rm+1 − μtm+1 = nsm+1 ≡ 0 (mod n), we deduce that
r2
m+1 + t2

m+1 = (rm+1 − μtm+1)(rm+1 + μtm+1) ≡ 0 (mod n). Moreover, tm+1 �= 0
by property 3, so that 0 < r2

m+1 + t2
m+1 < n + n = 2n, which therefore implies that

r2
m+1 + t2

m+1 = n and finally that ν = rm+1 − itm+1.
We present here the pseudo-code of this Euclidean algorithm in Z.

Algorithm 1 (Cornacchia’s GCD in Z).

Input: n ≡ 1 (mod 4) prime, 1 < μ < n such that μ2 ≡ −1 (mod n).
Output: ν = ν(R) + iν(I) Gaussian prime dividing n, such that
νP = 0.

1. initialize:
r0 ← n, r1 ← μ, r2 ← n,
t0 ← 0, t1 ← 1, t2 ← 0,
q ← 0.

2. main loop:
while r2

2 ≥ n do
q ← 	r0/r1�,
r2 ← r0 − qr1, r0 ← r1, r1 ← r2,
t2 ← t0 − qt1, t0 ← t1, t1 ← t2.

3. return:
ν = r1 − it1, ν(R) = r1, ν(I) = −t1

5.2. The Euclidean Algorithm in Z[i]
In the previous subsection we have given a meaning to zP , where z ∈ Z[i], and we
have seen how to construct ν, a Gaussian prime such that νP = 0. By identifying4

(x1, x2, x3, x4) ∈ Z
4 with (z1, z2) = (x1 + ix3, x2 + ix4) ∈ Z[i]2, we can rewrite the

4-GLV reduction map F of Sect. 4 as (using the same letter F by abuse of notation)

F : Z[i]2 → Z[i]/ν ∼= Z/n

(z1, z2) �→ z1 + λz2 (mod ν).

This F should be compared with the map f of Sect. 2. In mimicking the GLV original
paper [13] we would like to apply the extended Euclidean algorithm (defined exactly as

4 It is important to keep in mind that this association is only an isomorphism of abelian groups (Z-

modules). However, Z[i]2 is also endowed with a structure of Z[i]-module.
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before, with integer divisions occurring in Z[i], henceforth denoted EGEA in short for
extended Gaussian Euclidean algorithm) to the pair (r0, r1) = (λ, ν) if λ ≥ √

2 |ν| and
(r0, r1) = (λ + n, ν) otherwise (the latter case being exceptionally rare). This should
output short vectors in Z[i]2, which we can transform into short vectors in Z

4 using the
previous isomorphism, thus proving Theorem 3 by the Babai rounding argument given
in Sect. 4.

What are the difficulties in following this path? Let us note that properties 4, 5, and
6 of Lemma 2 still hold and property 1 holds in modulus (in particular, the algorithm
terminates). However, in the analysis of this algorithm, especially in [29], a crucial role
is played by (8), in order to derive a bound on |sj+1rj | and |sj rj+1| from a bound on

sj+1rj − sj rj+1 = (−1)j+1ν (9)

in the present case. This fact, as we saw, stems from the alternating sign of the sequence
(sj ), which results from taking a canonical form of integer division with positive quo-
tients qj+1 and nonnegative remainders rj+2, a property which is not available here.
Nevertheless, we can still use a similar reasoning using (9), provided that the arguments
of sj+1rj and sj rj+1 are not too close, so as to avoid a high degree of cancellation. In
other terms, in order to follow the argument of [29, Theorem 1], we need a property of
the kind

|sj+1rj − sj rj+1| ≤ M =⇒ max
(|sj+1rj |, |sj rj+1|

) ≤ cM

for some explicit absolute constant c (equal to 1 in [29]). This is in general impossible
to attain because in the EGEA, in contrast to the usual extended Euclidean algorithm,
we have no control over the arguments of the rj ’s or the sj ’s. However, in most cases
something of the sort can be proved. This is the content of Lemma 4 (Appendix D).
We define the corresponding indices (terms) of the sequences rj , sj as “good” when
this happens. If all the terms were good, then the proof of [29, Theorem 1] could be
carried over to proving Theorem 3 without almost any change (the final constant of
the theorem would be different, depending on c). However, this is not the case, and
the main difficulty here lies in the treatment of the terms which are not good (called
therefore “bad”). The surprising fact is that we can still control the contribution of bad
terms to our advantage (see Lemma 5) and, ultimately, the combination of Lemmas 4
and 5 becomes the main ingredient in the proof of Theorem 3. All above makes the
reasoning noticeably more sophisticated than in [29].

We now turn to the description of the EGEA. The first observation is that in the case
of Gaussian integers, there can be 2, 3, or 4 possible choices for a remainder in the j th
step of the integer division rj = qj+1rj+1 + rj+2. It turns out that choosing at each step
j ≥ 0 of the EGEA a remainder rj+2 with smallest modulus will yield Theorem 3.

We give the pseudo-code of Cornacchia’s Algorithm in Z[i] in two forms, working
with complex numbers (see Algorithm 2) and separating real and imaginary parts (see
Algorithm 3, Appendix C).
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Algorithm 2 (EGEA or Cornacchia’s algorithm in Z[i]—compact form).

Input: ν Gaussian prime dividing n rational prime, 1 < λ < n

such that λ2 + rλ + s ≡ 0 (mod n).
Output: Two Z[i]-linearly independent vectors v1 & v2 of kerF ⊂
Z[i]2 of rectangle norms < 51.5(

√
1 + |r| + s)n1/4.

1. initialize:
If λ2 ≥ 2n then

r0 ← λ,
else

r0 ← λ + n,
r1 ← ν, r2 ← n,
s0 ← 1, s1 ← 0, s2 ← 0,
q ← 0.

2. main loop:
while |r2|4(1 + |r| + s)2 ≥ n do

q ← closest Gaussian integer to r0/r1,
r2 ← r0 − qr1, r0 ← r1, r1 ← r2,
s2 ← s0 − qs1, s0 ← s1, s1 ← s2.

3. return:
v1 = (r0,−s0), v2 = (r1,−s1)

Remark 2. In the case of the LLL algorithm, we have not managed to demonstrate a
bound as good as the one obtained with our lattice reduction algorithm.

Remark 3. Nguyen and Stehlé [26] have produced an efficient lattice reduction in four
dimensions which finds successive minima and hence produces a decomposition with
relatively good bounds. Our algorithm represents a very simple and easy-to-implement
alternative that may be ideal for certain cryptographic libraries.

6. GLV–GLS using the Twisted Edwards Model

The GLV–GLS method can be sped up in practice by writing down GLV–GLS curves
in the Twisted Edwards model. Note that arithmetic on j -invariant 0 Weierstrass curves
is already very efficient. However, some GLV curves do not exhibit such high-speed
arithmetic. In particular, curves in Examples 3–6 from Appendix A have Weierstrass
coefficients a4 · a6 �= 0 for curve parameters a4 and a6, and hence they have more ex-
pensive point doubling (even more if we consider the extra multiplication by the twisted
parameter u when using the GLS method). So the impact of using Twisted Edwards is
expected to be especially significant for these curves. In fact, if we consider that suitable
parameters can be always chosen, the use of Twisted Edwards curves isomorphic to the
original Weierstrass GLV–GLS curves uniformizes the performance of all of them.

Let us illustrate how to produce a Twisted Edwards GLV–GLS curve with the GLV
curve from Example 4, Appendix A. First, consider its quadratic twist over Fp2

E′/Fp2 : x3 − 15

2
u2x − 7u3 = (x + 2u) ·

(
x2 − 2ux − 7

2
u2

)
.
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The change of variables x1 = x + 2u transforms E′ into

y2 = x3
1 − 6ux2

1 + 9u2

2
x1.

Let β = 3u/
√

2 ∈ Fp2 and substitute x1 = βx′ to get

1

β3
y2 = x′3 − 6u

β
x′2 + x′,

and this is a Montgomery curve MA,B : Bv2 = u3 + Au2 + u, where A �= ±2,B �= 0,
with

B = 1

β3
= 2

√
2

27u3
, A = −6u

β
= −2

√
2.

The corresponding Twisted Edwards GLV–GLS curve is then Ea,d : ax2 + y2 = 1 +
dx2y2 with

a = A + 2

B
= 27u3

(√
2

2
− 1

)
, d = A − 2

B
= −27u3

(√
2

2
+ 1

)
.

The map E′ → Ea,d is

(x, y) �→
(

x + 2u

βy
,
x + 2u − β

x + 2u + β

)
= (X,Y )

with inverse

(X,Y ) �→
(

β − 2u + (β + 2u)Y

1 − Y
,

1 + Y

(1 − Y)X

)
.

We now specify the formulas for Φ and Ψ , obtained by composing these endomor-
phisms on the Weierstrass model with the birational maps above. We found an extremely
appealing expression in the case where u = 1 + i and i2 = −1. Then β = 3u/

√
2 = 3ζ8

where ζ8 is a primitive 8th root of unity. We have

Φ(X,Y ) =
(

− (ζ 3
8 + 2ζ 2

8 + ζ8)XY 2 + (ζ 3
8 − 2ζ 2

8 + ζ8)X

2Y
,

(ζ 2
8 − 1)Y 2 + 2ζ 3

8 − ζ 2
8 + 1

(2ζ 3
8 + ζ 2

8 − 1)Y 2 − ζ 2
8 + 1

)

and

Ψ (X,Y ) =
(

ζ8X
p,

1

Yp

)
.

In this case,

a = 54
(
ζ 3

8 − ζ 2
8 + 1

)
, d = −54

(
ζ 3

8 + ζ 2
8 − 1

)
.
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Finally, one would want to use the efficient formulas given in [15] for the case a =
−1. After ensuring that −a be a square in Fp2 , we use the map (x, y) �→ (x/

√−a, y) to
convert to the isomorphic curve −x2 + y2 = 1 + d ′x2y2, where d ′ = −d/a.

7. Side-Channel Protection and Parallelization of the GLV–GLS Method

Given the potential threat posed by attacks that exploit timing information to deduce
secret keys ([7,19]), many works have proposed countermeasures to minimize the risks
and achieve the so-called constant-time execution during cryptographic computations.
In general, to avoid leakage, the execution flow should be independent of the secret key.
This means that conditional branches and secret-dependent table lookup indices should
be avoided [4,18]. There are five key points that are especially vulnerable during the
computation of scalar multiplication: inversion, modular reduction in field operations,
precomputation, scalar recoding, and double-and-add execution.

A well-known technique that is secure and easy to implement for inverting any field
element a consists of computing the exponentiation ap−2 modp using a short addition
chain for p − 2.

To protect field operations, one may exploit conditional move instructions typically
found on modern x86 and x64 processors (a.k.a. cmove). Since conditional checks hap-
pen during operations such as addition and subtraction as part of the reduction step, it is
standard practice to replace conditional branches with the conditional move instruction.
Luckily, these conditional branches are highly unpredictable, and, hence, the substitu-
tion above does not only make the execution constant-time but also more efficient in
most cases. An exception happens when performing modular reduction during a field
multiplication or squaring, where a final correction step could happen very rarely, and
hence a conditional branch may be more efficient.

For the case of precomputation in the setting of elliptic curves, recent work [18] and
later [3] showed how to enable the use of precomputed points by employing constant-
time table lookups that mask the extraction of points, which is a known technique in
the literature (see, for example, [5]). In our implementations (see Sect. 8), we exploit a
similar approach based on cmove and conditional vector instructions instead, which is
expected to achieve higher performance on some platforms than implementations based
on logical instructions (see Listing 1 in [18]). Note that it is straightforward to enable
the use of signed-digit representations that allow negative points by performing a second
table lookup between the point selected in the first table lookup and its negated value.

To protect the scalar recoding and its corresponding double-and-add algorithm, one
needs a regular pattern execution. Based on a method in [27], Joye and Tunstall [17]
proposed a constant-time recoding that supports a regular execution double-and-add al-
gorithm that exploits precomputations. The nonzero density of the method is 1/(w−1),
where w is the window width. Therefore, there is certain loss in performance in com-
parison with an unprotected version with nonzero density 1/(w + 1). In GLV-based im-
plementations one has to deal with more than one scalar, and these scalars are scanned
simultaneously, using interleaving [13], for instance, during multi-exponentiation. So
there are two issues that arise. First, how are the several scalars aligned with respect to
their zero and nonzero digit representation? And second, how do we guarantee the same
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representation length for all scalars so that no dummy operations are required? The first
issue is inherently solved by the recoding algorithm itself. The input is always an odd
number, which means that, from left to right, one obtains the execution pattern (w − 1)

doublings, d additions, (w − 1) doublings, d additions, . . . , (w − 1) doublings and d

additions, for d-dimensional GLV. For dealing with even numbers, one may employ
the technique described in [17] in a constant-time fashion, namely, scalars ki that are
even are replaced by ki + 1 and scalars that are odd are replaced by ki + 2 (the correc-
tion, also constant-time, is performed after the scalar multiplication computation using
d point additions). A solution to the second issue was also hinted by [17]. We present
in Appendix E the modified recoding algorithm that outputs a regular pattern represen-
tation with fixed length. Note that in the case of Twisted Edwards, one can alternatively
use unified addition formulas that also work for doubling (see [2,15] for details). How-
ever, our analysis indicates that this approach is consistently slower because of the high
cost of these unified formulas in comparison to doubling and the extra cost incurred by
the increase in constant-time table lookup accesses.

7.1. Multicore Computation and Its Side-Channel Protection

Parallelization of scalar multiplication over prime fields is particularly difficult on mod-
ern multicore processors. This is due to the difficulty to perform point operations con-
currently when executing the double-and-add algorithm from left to right. From right to
left parallelization is easier, but performance is hurt because the use of precomputations
is cumbersome. Hence, parallelization should be ideally performed at the field arith-
metic level. Unfortunately, current multicore processors still impose a severe overhead
for thread creation/destruction. During our tests, we observed overheads of a few thou-
sands of cycles on modern 64-bit CPUs (that is, much more costly than a point addition
or doubling). Given this limitation, for the GLV method, it seems the ideal approach
(from a speed perspective) to let each core manage a separate scalar multiplication with
ki . This is simple to implement, minimizes thread management overhead and also eases
the task of protecting the implementation against side-channel attacks since each scalar
can be recoded using Algorithm 4, Appendix E. Using d cores, the total cost of a pro-
tected d-dimensional GLV l-bit scalar multiplication (disregarding precomputation) is
approximately l/d doublings and l/((w − 1) · d) mixed additions. A somewhat slower
approach (but more power efficient) would be to let one core manage all doublings and
let one or two extra cores manage the additions corresponding to nonzero digits. For in-
stance, for dimension four and three cores, the total cost (disregarding precomputation)
is approximately l/d doublings and l/((w − 1) · d) general additions, always that the
latency of (w − 1) doublings be equivalent or greater than the addition part (otherwise,
the cost is dominated by nonmixed additions).

8. Performance Analysis and Experimental Results

For our analysis and experiments, we consider the five curves below: two GLV curves in
Weierstrass form with and without nontrivial automorphisms, their corresponding GLV–
GLS counterparts, and one curve in Twisted Edwards form isomorphic to the GLV–GLS
curve E′

3 (see below).
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– GLV–GLS curve with j -invariant 0 in Weierstrass form E′
1/Fp2

1
: y2 = x3 + 9u,

where p1 = 2127 − 58309 and #E′
1(Fp2

1
) = r , where r is a 254-bit prime. We

use Fp2
1

= Fp1 [i]/(i2 + 1) and u = 1 + i ∈ Fp2
1
. E′

1 is the quadratic twist of the
curve in Example 2, Appendix A. Φ(x,y) = λP = (ξx, y) and Ψ (x, y) = μP =
(u(1−p)/3xp,u(1−p)/2yp), where ξ3 = 1 mod p1. We have that Φ2 + Φ + 1 = 0
and Ψ 2 + 1 = 0.

– GLV curve with j -invariant 0 in Weierstrass form E2/Fp2 : y2 = x3 + 2, where
p2 = 2256 − 11733, and #E2(Fp2) is a 256-bit prime. This curve corresponds to
Example 2, Appendix A.

– GLV–GLS curve in Weierstrass form E′
3/Fp2

3
: y2 = x3 − 15/2 u2x − 7u3, where

p3 = 2127 − 5997 and #E′
3(Fp2

3
) = 8r , where r is a 251-bit prime. We use Fp2

3
=

Fp3[i]/(i2 +1) and u = 1+ i ∈ Fp2
3
. E′

3 is the quadratic twist of a curve isomorphic
to the one in Example 4, Appendix A. The formula for Φ(x,y) = λP can be easily
derived from ψ(x, y), and Ψ (x, y) = μP = (u(1−p)xp,u3(1−p)/2yp). It can be
verified that Φ2 + 2 = 0 and Ψ 2 + 1 = 0.

– GLV–GLS curve in Twisted Edwards form E′
T 3/Fp2

3
: −x2 + y2 = 1 + dx2y2,

where

d = 170141183460469231731687303715884099728

+ 116829086847165810221872975542241037773 i,

p3 = 2127 − 5997 and #E′
T 3(Fp2

3
) = 8r , where r is a 251-bit prime. We use again

Fp2
3
= Fp3[i]/(i2 + 1) and u = 1 + i ∈ Fp2

3
. E′

T 3 is isomorphic to curve E′
3 above

and was obtained following the procedure in Sect. 6. The formulas for Φ(x,y) and
Ψ (x, y) are also given in Sect. 6. It can be verified that Φ2 +2 = 0 and Ψ 2 +1 = 0.

– GLV curve E4/Fp4 : y2 = x3 − 15/2 x − 7, where p4 = 2256 − 45717 and
#E4(Fp4) = 2r , where r is a 256-bit prime. This curve is isomorphic to the curve
in Example 4, Appendix A.

For our experiments, we also explored the case of p = 2128 − c, with a relatively
small integer c, for GLV–GLS curves. We finally decided on p = 2127 − c because it
was consistently faster thanks to the use of lazy reduction in the multiplication over
Fp2 [21] at the expense of a slight reduction in security.

Let us first analyze the performance of the GLV–GLS method over Fp2 in comparison
with the traditional 2-GLV case over Fp . We assume the use of a pseudo-Mersenne
prime of the form p = 2m − c with small c (for our targeted curves, groups with (near)
prime order cannot be constructed using the attractive Mersenne prime p = 2127 − 1).
Given that we have a proven ratio C2/C1 < 412 that is independent of the curve, the
only values left that could affect significantly a uniform speedup between GLV–GLS
and 2-GLV are the quadratic nonresidue β used to build Fp2 as Fp[i]/(i2 − β), the
value of the twisting parameter u, and the cost of applying the endomorphisms Φ and
Ψ . In particular, if |β| > 1, a few extra additions (or a multiplication by a small constant)
are required per Fp2 multiplication and squaring. Luckily, for all the GLV curves listed
in Appendix A, one can always use a suitably chosen modulus p so that |β| can be one
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Table 1. Operation counts and performance for scalar multiplication at approximately 128 bits of security.
To determine the total costs, we consider 1i = 66m, 1s = 0.76m, and 1a = 0.18m for E′

1, E′
3, and E′

T 3; and
1I = 290M, 1S = 0.85M, and 1A = 0.18M for E2 and E4. The cost ratio of multiplications over Fp and F

p2

is M/m = 0.91. These values and the performance figures (in cycles) were obtained by benchmarking full
implementations on a single core of a 3.4 GHz Intel Core i7-2600 (Sandy Bridge) processor.

Curve Method Operation Count Total Cost Gain Performance Gain

E′
1(F

p2
1
) 4-GLV–GLS, 32pts. 2i + 617m + 404s + 847a 1209m 51 % 99,000cc 53 %

E2(Fp2 ) 2-GLV, 16pts. 1I + 904M + 690S + 1240A 2004M ≈ 1824m – 151,000cc –

E′
T 3(F

p2
3
) 4-GLV–GLS, 16pts. 1i + 742m + 225s + 767a 1117m 97 % 91,000cc 102 %

E′
3(F

p2
3
) 4-GLV–GLS, 16pts. 2i + 678m + 581s + 1200a 1468m 50 % 121,000cc 52 %

E4(Fp4 ) 2-GLV, 16pts. 1I + 950M + 970S + 1953A 2416M ≈ 2199m – 184,000cc –

or at least very close to it. Similar comments apply to the twisting parameter u. In this
case, the extra cost (equivalent to a few additions) is added to the cost of point doubling
always that the curve parameter a in the Weierstrass equation be different to zero (e.g., it
does not affect j -invariant 0 curves). In the case of Twisted Edwards, we applied a better
strategy, that is, we eliminated the twisting parameter u in the isomorphic curve. The
cost of applying Φ and Ψ does depend on the chosen curve, and it could be relatively
expensive. If computing Φ(P ), Ψ (P ) or Ψ Φ(P ) is more expensive than point addition,
then its use can be limited to only one application (i.e., multiples of those values—if
using precomputations—should be computed with point additions). Further, the extra
cost can be minimized by choosing the optimal window width for each ki .

To illustrate how the parameters above may affect the performance gain, we detail in
Table 1 estimates for the cost of computing a scalar multiplication with our representa-
tive curves. For the remainder, we use the following notation: M, S, A, and I represent
field multiplication, squaring, addition, and inversion over Fp , respectively, and m, s,
a, and i represent the same operations over Fp2 . Side-channel protected multiplication
and squaring are denoted by ms and ss . We consider the cost of addition, subtraction,
negation, multiplication by 2, and division by 2 as equivalent. For the targeted curves
in Weierstrass form, a mixed addition consists of 8 multiplications, 3 squarings, and 7
additions, and a general addition consists of 12 multiplications, 4 squarings, and 7 addi-
tions. For E′

1 and E2, a doubling consists of 3 multiplications, 4 squarings, and 7 addi-
tions, and for E′

3 and E4, a doubling consists of 3 multiplications, 6 squarings, and 12
additions. For Twisted Edwards, we consider the use of mixed homogeneous/extended
homogeneous projective coordinates [15]. In this case, a mixed addition consists of 7
multiplications and 7 additions, a general addition consists of 8 multiplications and 6 or
7 additions, and a doubling consists of 4 multiplications, 3 squarings, and 5 additions.
We also assume the use of interleaving [13] with width-w nonadjacent form (wNAF)
and the use of the LM scheme for precomputing points on the Weierstrass curves [24]
(see also [22, Chap. 3]).

According to our theoretical estimates, it is expected that the relative speedup when
moving from 2-GLV to GLV-GLS be as high as 1.5 times, approximately. To confirm
our findings, we realized full implementations of the methods. Experimental results,
also displayed in Table 1, closely follow our estimates and confirm that speedups in
practice are about 1.52 times. Most remarkably, the use of the Twisted Edwards model
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Table 2. Operation counts for scalar multiplication at approximately 128 bits of security using curves E′
1,

E2, and E′
T 3 in up to four variants: unprotected and side-channel protected implementations with sequential

and multicore execution. To determine the total costs we consider 1i = 66m, 1s = 0.76m, and 1a = 0.18m
for unprotected versions of E′

1 and E′
T 3; 1i = 79ms , 1ss = 0.81ms , and 1a = 0.17ms for protected versions

of E′
1 and E′

T 3; t = 0.83ms for E′
1 (32pts.); t = 1.28ms for E′

T 3 (36pts.); t = 0.78ms for E′
T 3 (20pts.); and

1I = 290M, 1S = 0.85M, and 1A = 0.18M for E2. In our case, M/m = 0.91 and ms /m = 1.11. These values
were obtained by benchmarking full implementations on a 3.4 GHz Intel Core i7-2600 (Sandy Bridge) pro-

cessor.

Curve Method Protection # Cores Operation Count Total Cost

E′
T 3(F

p2
3
) 4-GLV–GLS, 16pts. no 1 1i + 742m + 225s + 767a 1117m

E′
T 3(F

p2
3
) 4-GLV–GLS, 36pts. yes 1 1i + 1014ms + 217ss + 997a + 68t 1525ms ≈ 1693m

E′
T 3(F

p2
3
) 4-GLV–GLS, 16pts. no 4 1i + 420m + 198s + 484a 724m

E′
T 3(F

p2
3
) 4-GLV–GLS, 20pts. yes 4 1i + 503ms + 196ss + 532a + 22t 848ms ≈ 941m

E′
1(F

p2
1
) 4-GLV–GLS, 32pts. no 1 2i + 617m + 404s + 847a 1209m

E′
1(F

p2
1
) 4-GLV–GLS, 36pts. yes 1 2i + 849ms + 489ss + 1001a + 68t 1630ms ≈ 1809m

E′
1(F

p2
1
) 4-GLV–GLS, 32pts. no 4 2i + 371m + 316s + 593a 850m

E′
1(F

p2
1
) 4-GLV–GLS, 36pts. yes 4 2i + 425ms + 335ss + 637a + 17t 977ms ≈ 1084m

E′
1(F

p2
1
) non-GLV, 8pts. no 1 2i + 1169m + 1169s + 2141a 2575m

E2(Fp2 ) 2-GLV, 16pts. no 1 1I + 904M + 690S + 1240A 2004M ≈ 1824m

E2(Fp2 ) 2-GLV, 16pts. no 2 1I + 681M + 615S + 1103A 1692M ≈ 1540m

pushes performance even further. In Table 1, the expected gains for E′
T 3 are 31 % and

97 % in comparison with 4-GLV–GLS and 2-GLV in Weierstrass form (respectively).
In practice, we achieved similar speedups, namely, 33 % and 102 % (respectively).
Likewise, a rough analysis indicates that a Twisted Edwards GLV–GLS curve for a
j -invariant 0 curve would achieve roughly similar speed to E′

T 3, which means that in
comparison to its corresponding Weierstrass counterpart the gains are in the order of 9 %
and 66 % (respectively). This highlights the impact of using Twisted Edwards especially
over those GLV–GLS curves relatively slower in the Weierstrass model. Timings were
registered on a single core of a 3.4 GHz Intel Core i7-2600 (Sandy Bridge) processor.

Let us now focus on curves E′
1, E2, and E′

T 3 to assess performance of implemen-
tations targeting four scenarios of interest: unprotected and side-channel protected ver-
sions with sequential and multicore execution. Operation counts for computing a scalar
multiplication at approximately 128 bits of security for the different cases are displayed
in Table 2. The techniques to protect and parallelize our implementations are described
in Sect. 7. In particular, the execution flow and memory address access of side-channel
protected versions are not secret and are fully independent of the scalar. For our ver-
sions running on several cores, we used OpenMP. We use an implementation in which
each core is in charge of one scalar multiplication with ki . Given the high cost of thread
creation/destruction, this approach guarantees the fastest computation in our case (see
Sect. 7 for a discussion). Note that these multicore figures are only relevant for scenar-
ios in which latency rather than throughput is targeted. Finally, we consider the cost
of constant-time table lookups (denoted by t) given its nonnegligible cost in protected
implementations.
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Focusing on curve E′
1, it can be noted a significant cost reduction when switching

from non-GLV to a GLV–GLS implementation. The speedup is more than twofold for
sequential, unprotected versions. Significant improvements are also expected when us-
ing multiple cores. A remarkable factor 3 speedup is expected when using GLV–GLS
on four cores in comparison with a traditional execution (listed as non-GLV).

In general for our targeted GLV–GLS curves, the speedup obtained by using four
cores is in between 1.42–1.80 times. Interestingly, the improvement is greater for pro-
tected implementations since the overhead of using a regular pattern execution is min-
imized when distributing computation among various cores. Remarkably, protecting
implementations against timing attacks slowdowns performance by a factor in between
1.28–1.52, approximately. On the other hand, in comparison with curve E2, an opti-
mal execution of GLV–GLS on four cores is expected to run 1.81 times faster than an
optimal execution of the standard 2-GLV on two cores.

To confirm our findings, we implemented the different versions using curves E′
1, E2,

and E′
T 3. To achieve maximum performance and ease the task of parallelizing and pro-

tecting the implementations, we wrote our own standalone software without employing
any external library. For our experiments we used a 3.4 GHz Intel Core i7-2600 pro-
cessor, which contains four cores. The timings in terms of clock cycles are displayed in
Table 3. As can be seen, closely following our analysis, GLV–GLS achieves a twofold
speedup over a non-GLV implementation on a single core. Parallel execution improves
performance by up to 1.76 times for side-channel protected versions. In comparison
with the non-GLV implementation, the four-core implementation runs 3 times faster.
Our results also confirm the lower-than-expected cost of adding side-channel protec-
tion. Sequential versions lose about 50 % in performance, whereas parallel versions
only lose about 28 %. The relative speedup when moving from 2-GLV to GLV-GLS on
j -invariant 0 curves is 1.53 times, closely following the theoretical factor-1.5 speedup
estimated previously. Four-core GLV–GLS supports a computation that runs 1.81 times
faster than the standard 2-GLV on two cores. Finally, in practice our Twisted Edwards
curve achieves up to 9 % speedup on the sequential, nonprotected scenario in compari-
son with the efficient j -invariant 0 curve based on Jacobian coordinates.

Comparison to Related Work Let us now compare our best numbers with recent re-
sults in the literature for elliptic curves over large prime characteristic fields. Focusing
on one-core unprotected implementations, the first author together with Hu and Xu re-
ported in [16] 122,000 cycles for a j -invariant 0 Weierstrass curve on an Intel Core
i7-2600 (Sandy Bridge) processor. We report 91,000 cycles with the GLV–GLS Twisted
Edwards curve E′

T 3, improving that number by a factor-1.34 speedup. We benchmarked
on the same processor the side-channel protected software recently presented by Bern-
stein et al. [3] and obtained 194,000 cycles. Thus, our protected implementation, which
runs in 137,000 cycles, is 1.42 times faster. Our result is also 1.12 times faster than the
recent implementation by Hamburg [14].

It is also relevant to mention very recent results in settings other than elliptic curves
over large prime characteristic fields. Taverne et al. [31] reported a protected implemen-
tation of a binary Edwards curve that runs in 225,000 cycles on an Intel Core i7-2600
(Sandy Bridge) machine, which is 1.64 times slower than our corresponding result.
Aranha et al. [1] presented an implementation of the Koblitz curve K-283 that runs in
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Table 3. Point multiplication timings (in clock cycles), 64-bit processor.

Curve Method Protection # Cores Core i7

E′
T 3(F

p2
3
) 4-GLV–GLS, 16pts. no 1 91,000

E′
T 3(F

p2
3
) 4-GLV–GLS, 36pts. yes 1 137,000

E′
T 3(F

p2
3
) 4-GLV–GLS, 16pts. no 4 61,000

E′
T 3(F

p2
3
) 4-GLV–GLS, 20pts. yes 4 78,000

E′
1(F

p2
1
) 4-GLV–GLS, 32pts. no 1 99,000

E′
1(F

p2
1
) 4-GLV–GLS, 36pts. yes 1 145,000

E′
1(F

p2
1
) 4-GLV–GLS, 32pts. no 4 70,000

E′
1(F

p2
1
) 4-GLV–GLS, 36pts. yes 4 89,000

E′
1(F

p2
1
) non-GLV, 8pts. no 1 201,000

E2(Fp2 ) 2-GLV, 16pts. no 1 151,000

E2(Fp2 ) 2-GLV, 16pts. no 2 127,000

99,000 cycles on the same machine, which is 9 % slower than our GLV–GLS Twisted
Edwards curve E′

T 3 (unprotected sequential execution). Aranha et al. do not report tim-
ings for side-channel protected implementations. A faster (although also unprotected)
implementation of a GLS binary curve over a quadratic extension field of characteristic
two was recently announced in ECC2012. The running time in this case is about 73,000
cycles on the same Sandy Bridge processor [28]. These results highlight the signifi-
cant impact of the carryless multiplier on the efficiency of characteristic two fields in
the newest Intel processors. Efficient implementations on genus-2 (hyperelliptic) curves
were recently reported in Bos et al. [6]. For instance, a protected implementation on a
Kummer surface over a prime field runs in approximately 117,000 cycles on an Intel
Core i7-3520M (Ivy Bridge) processor. Note that this processor architecture is in gen-
eral more efficient than Sandy Bridge.

To the best of our knowledge, we have presented the first scalar multiplication im-
plementation running on multiple cores that is protected against timing attacks, cache
attacks, and several others.

9. Conclusion

We have shown how to generalize the GLV scalar multiplication method by combin-
ing it with Galbraith–Lin–Scott’s ideas to perform a proven almost fourfold speedup on
GLV curves over Fp2 . We have introduced a new and easy-to-implement reduction algo-
rithm, consisting in two applications of the extended Euclidean algorithm, one in Z and
the other in Z[i]. The refined bound obtained from this algorithm has allowed us to get a
relative improvement from 2-GLV to 4-GLV–GLS practically independent of the curve.
Our analysis and experimental results on different GLV curves show that in practice
one should expect a factor-1.5 speedup, approximately. We improve performance even
further by exploiting the Twisted Edwards model over a larger set of curves and show
that this approach is especially significant to certain GLV curves with slow arithmetic in
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the Weierstrass model. This makes available to implementers new curves that achieve
close to optimal performance. Moreover, we have shown how to protect GLV-based
implementations against certain side-channel attacks with relatively low overhead and
carried out a performance analysis on modern multicore processors. Our implementa-
tions of the generalized GLV–GLS method improve the state-of-the-art performance of
elliptic curve point multiplication over fields of large prime characteristic for multiple
scenarios: unprotected and side-channel protected versions with sequential and parallel
execution. Finally, we have produced new families of GLV curves and written all such
curves (up to isomorphism) with nontrivial endomorphisms of degree ≤ 3.
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Appendix A. Examples

We give a few examples of GLV curves, which are curves defined over C with complex
multiplication by a quadratic integer of small norm, corresponding to an endomorphism
φ of small degree.5 They make up an exhaustive list, up to isomorphism, in increasing
order of endomorphism degree up to degree 3. While the first four examples appear in
the previous literature, the next ones (degree 3) are new and have been computed with
the Stark algorithm [30].

Example 1. Let p ≡ 1 (mod 4) be a prime. Define an elliptic curve E over Fp by

y2 = x3 + ax.

If β is an element of order 4, then the map φ defined in the affine plane by

φ(x, y) = (−x,βy)

is an endomorphism of E defined over Fp with End(E) = Z[φ] ∼= Z[√−1] since φ

satisfies the equation6

φ2 + 1 = 0.

Example 2. Let p ≡ 1 (mod 3) be a prime. Define an elliptic curve E over Fp by

y2 = x3 + b.

5 By small we mean really small, usually less than 5. In particular, for cryptographic applications, the
degree is much smaller than the field size.

6 This is the only case where we cannot apply Lemma 1. It needs a separate treatment, given in Ap-
pendix B.
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If γ is an element of order 3, then we have an endomorphism φ defined over Fp by

φ(x, y) = (γ x, y),

and End(E) = Z[φ] ∼= Z[ 1+√−3
2 ] since φ satisfies the equation

φ2 + φ + 1 = 0.

Example 3. Let p > 3 be a prime such that −7 is a quadratic residue modulo p. Define
an elliptic curve E over Fp by

y2 = x3 − 3

4
x2 − 2x − 1.

If ξ = (1 + √−7)/2 and a = (ξ − 3)/4, then we get the Fp-endomorphism φ defined
by

φ(x, y) =
(

x2 − ξ

ξ2(x − a)
,
y(x2 − 2ax + ξ)

ξ3(x − a)2

)
,

and End(E) = Z[φ] ∼= Z[ 1+√−7
2 ] since φ satisfies the equation

φ2 − φ + 2 = 0.

Example 4. Let p > 3 be a prime such that −2 is a quadratic residue modulo p. Define
an elliptic curve E over Fp by

y2 = 4x3 − 30x − 28

together with the Fp-endomorphism φ defined7 by

φ(x, y) =
(

−2x2 + 4x + 9

4(x + 2)
, y

2x2 + 8x − 1

4
√−2(x + 2)2

)
.

We have End(E) = Z[φ] ∼= Z[√−2] since φ satisfies the equation

φ2 + 2 = 0.

Example 5. Let p > 3 be a prime such that −11 is a quadratic residue modulo p. We
define the elliptic curve E over Fp

y2 = x3 − 13824

539
x + 27648

539

7 We take the opportunity to correct a typo found and transmitted in many sources, where a y factor was
absent in the second coordinate. Its sign is irrelevant.
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with a = (1 + √−11)/2 and the endomorphism φ defined by

φ(x, y)

=
(

(− 539
5184a + 539

1728 )x3 + ( 28
27a − 35

18 )x2 + (− 92
9 a + 8

3 )x + 1728
77 a + 192

77

( 2695
5184a − 539

864 )x2 + (− 217
54 a + 49

18 )x + 64
9 a − 4

3

, y

( 3773
373248a − 18865

995328 )x3 + (− 2695
20736a + 539

3456 )x2 + ( 7
432a − 91

144 )x + 20
27a + 1

9

(− 18865
1492992a + 116963

995328 )x3 + ( 7007
20736a − 539

432 )x2 + (− 791
432a + 581

144 )x + 74
27a − 35

9

)

such that End(E) = Z[φ] ∼= Z[ 1+√−11
2 ]. The characteristic polynomial of φ is

φ2 − φ + 3 = 0.

Example 6. Let p > 3 be a prime such that −3 is a quadratic residue mod p. We define
the elliptic curve E over Fp

y2 = x3 − 3375

121
x + 6750

121

with the endomorphism φ defined by

φ(x, y) =
(

−1331x3 − 10890x2 + 81675x − 189000

33(11x − 45)2
,

y
1331x3 − 16335x2 + 7425x + 43875

3
√−3(11x − 45)3

)

such that8 End(E) = Z[φ] ∼= Z[√−3]. The characteristic polynomial of φ is

φ2 + 3 = 0.

Appendix B. Treatment of the j = 1728 Curve

Let a ∈ Fp , and u ∈ Fp8 be such that u4 ∈ Fp2 . Let E1 be the curve of equation y2 =
x3 + ax over Fp8 and E′

1 the curve of equation y2 = x3 + au4x over Fp2 . Then E1
is isomorphic to E′

1 over Fp8 via the isomorphism ψ : E1 → E′
1 defined by ψ(x, y) =

(u2x,u3y). In other terms, E′
1 is a quartic twist of E1. We define Ψ = ψ Frobp ψ−1 ∈

End(E′
1).

8 This is the first example where the endomorphism ring is not the maximal order of its field of fractions.

It can be summarily seen as follows: End(E) ⊇ Z[√−3]. If not equal, then it must be the full ring of integers

Z[ 1+√−3
2 ]. This would imply that j = 0, as there is only h(−3) = 1 isomorphism class of elliptic curves with

complex multiplication by Z[ 1+√−3
2 ], given in Example 2 (see [30] for an abridged description of the theory

of complex multiplication). This is clearly not the case here. Alternatively, one can see that there would exist

a nontrivial automorphism (a primitive cube root of unity) corresponding to −1+√−3
2 . A direct computation

then shows that this is impossible.
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Then, since Frob8
p = 1 and Frob4

p �= 1 on E1(Fp8), we have Ψ 8 = 1 on E′
1(Fp2),

and, if u /∈ Fp4 , then Ψ 4 + 1 = 0. In this case, we can proceed as in Sect. 4, defining
Φ = Ψ 2. Note that K = Q(Ψ ) is a quartic field with oK = Z[Ψ ]. Lemma 1 still holds
with the norm function of K/Q. Finally, Theorem 2 is true with 16B3 replaced by
16 · 243/4 ≈ 173.49.

Appendix C. Cornacchia’s algorithm in Z[i]—real & imaginary parts

Algorithm 3 (EGEA or Cornacchia’s algorithm in Z[i]—real & imaginary parts).

Input: ν Gaussian prime dividing n rational prime, 1 < λ < n

such that λ2 + rλ + s ≡ 0 (mod n).
Output: Four Z-linearly independent vectors v1, v2, v3, and v4 ∈
kerF ⊂ Z

4 of rectangle norms < 51.5(
√

1 + |r| + s)n1/4.

1. initialize:
If λ2 ≥ 2n then

r0,(R) ← λ,
else

r0,(R) ← λ + n,
r0,(I ) ← 0,
r1,(R) ← ν(R), r1,(I ) ← ν(I),
r2,(R) ← n, r2,(I ) ← 0,
s0,(R) ← 1, s0,(I ) ← 0,
s1,(R) ← 0, s1,(I ) ← 0,
s2,(R) ← 0, s2,(I ) ← 0,
q(R) ← 0, q(I) ← 0.

2. main loop:
while (r4

2,(R) + 2r2
2,(R)r

2
2,(I ) + r4

2,(I ))(1 + |r| + s)2 ≥ n do

q(R) ←
⌈

r0,(R)r1,(R) + r0,(I )r1,(I )

r2
1,(R) + r2

1,(I )

⌋
,

q(I) ←
⌈

r0,(I )r1,(R) − r0,(R)r1,(I )

r2
1,(R) + r2

1,(I )

⌋
,

r2,(R) ← r0,(R) − (q(R)r1,(R) − q(I)r1,(I )),
r2,(I ) ← r0,(I ) − (q(R)r1,(I ) + q(I)r1,(R)),
r0,(R) ← r1,(R), r1,(R) ← r2,(R),
r0,(I ) ← r1,(I ), r1,(I ) ← r2,(I ),
s2,(R) ← s0,(R) − (q(R)s1,(R) − q(I)s1,(I )),
s2,(I ) ← s0,(I ) − (q(R)s1,(I ) + q(I)s1,(R)),
s0,(R) ← s1,(R), s1,(R) ← s2,(R),
s0,(I ) ← s1,(I ), s1,(I ) ← s2,(I ).

3. return:
v1 = (r0,(R),−s0,(R), r0,(I ),−s0,(I )), v2 = (r1,(R),−s1,(R), r1,(I ),−s1,(I )),
v3 = (−r0,(I ), s0,(I ), r0,(R),−s0,(R)), v4 = (−r1,(I ), s1,(I ), r1,(R),−s1,(R)).
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Appendix D. Proof of Theorem 3

This section is devoted to proving that Algorithms 2 and 3 produce a reduced basis of
kerF of rectangle norm < 51.5(

√
1 + |r| + s)n1/4. The proof of the decomposition of

k follows from the deduction recalled in Sect. 4.
Let us note first, about the running time, that it is known that the extended Euclidean

algorithm runs in O(log2 n) bits. The same analysis will also show that its Gaussian
version runs in O(log2 n) bits since its number of steps is also logarithmic. In short, this
works as follows: if bj = 	log2(|rj |)� (i.e., the bitsize of |rj |), then step j of the EGEA
necessitates to find qj+1 and then rj+2. One can show that integer division of two h-bit
Gaussian integers with an �-bit quotient runs in O(h(�+ 1)) binary operations. Finding
qj+1 has therefore a runtime O(bj (cj+1 + 1)), where cj+1 = 	log2(|qj+1|)� = bj −
bj+1 +O(1). Similarly, knowing qj+1, computing rj+2 can be done in O(bj+1cj+1)+
O(bj+1) = O(bj+1(bj − bj+1)) + O(bj+1). If S = O(logn) is the number of steps of
the EGEA, the total runtime is less than a constant times

S∑

j=0

bj (bj − bj+1) + bj = O
(
b2

0 + b0S
) = O

(
log2 n

)
.

In the following, whenever z ∈ C
∗, its argument value arg(z) will be always chosen

in (−π,π]. By lattice square we mean a square of side length one with vertices in Z[i].
We single out eight exceptional lattice squares, which are those lattice squares with a
vertex of modulus 1 (that is, ±1 or ±i) but not containing the origin as a vertex. Our
analysis of the EGEA rests on the following lemmas.

Lemma 3 (A geometric property of squares). There exists an absolute real constant
θ ≈ 2.45861 (with 2 arctan 2 < θ ) such that, for any point P of a lattice square, different
from the vertices, letting V1 be the closest vertex to P , there exists another vertex V2 �=
V1 with θ ≤ V̂1PV2 ≤ π . (Note that V1P ≤ 1/

√
2.)

Proof. This is one case where a picture is worth one thousand words. We refer to
Fig. D.1 for a visual explanation of why the argument works. The dotted and dashed
circle arcs are centered on the vertices and have radius 1/

√
2. The plain circle arcs have

the following property: for any point P on them, the two square vertices V and V ′
belonging to them make an angle of θ with P , in other terms, |V̂ PV ′| = θ . Therefore
points between two bigger arcs (in one of the two almond-shaped regions) “look” at
the diagonally opposite vertices marking the intersection of these arcs with an angle
between θ and π . We then choose the closest vertex to get a distance ≤ 1/

√
2. In case

P is at the intersection of the two almond-shaped regions (in the “blown square”), we
may have to choose one region where one of the vertices is at distance ≤ 1/

√
2, but

this is always possible, since the dashed and dotted disks cover everything. Finally, if P

does not belong to the union of the two almond-shaped regions, then it lies inside one
of the smaller plain disks, where its angle between two appropriate consecutive vertices
will also be between θ and π . Furthermore, by choosing the closest vertex V1 to P , we
have V1P < 1/

√
2. �
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Fig. D.1. Existence of θ

Fig. D.2. Calculation of cot(θ/2)

It remains to explain how we can calculate θ , or rather its value on the usual trigono-
metric functions sin θ and cos θ (which is what we really need later), since we can show
that they are algebraic numbers expressible by radicals, but θ/π /∈ Q.

We concentrate on finding the Cartesian coordinates of R = (1/2,1−u/2), appearing
in Fig. D.1, supposing the vertices are the origin, (1,0), (1,1), and (0,1). Our aim is
then to find u ∈ (0,1). A look at Fig. D.2 shows the disposition of the angles, so that
u = cot(θ/2) and 2 − u = cot(3θ/2 − π) = cot(3θ/2). The triplication formulas for the
cotangent then show that u satisfies the equation

u + 3u − u3

1 − 3u2
= 2 ⇐⇒ 2u3 − 3u2 − 2u + 1 = 0.
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Solving it yields that the root we are looking for is

u = (
√

3i + 1)(12
√

237i − 54)
1
3

122
1
3

+ 72
1
3 (1 − √

3i)

4(12
√

237i − 54)
1
3

+ 1

2
≈ 0.3554157,

where the determination of the cube root is the one in the first quadrant.

Remark 4. One can see that θ/π /∈ Q in the following way.

cot(θ/2) = i
eiθ/2 + e−iθ/2

eiθ/2 − e−iθ/2
,

and supposing for contradiction that θ/π ∈ Q, we would have that eiθ is a root of unity.
The preceding equality shows that then cot(θ/2) belongs to a cyclotomic extension of
Q, whose Galois group is abelian. But we have seen that the irreducible polynomial of
cot(θ/2) is 2x3 − 3x2 − 2x + 1, with discriminant 316, not a rational square. Therefore,
its Galois group is the nonabelian S3, a contradiction.

Remark 5. When applying Lemma 3, it is essential that we be able to choose from the
set of all vertices of the lattice square which ones are the adequate V1 and V2. Since
the only excluded quotient qj is zero, it means that we must be careful to avoid all four
squares which have the origin as a vertex. But this follows from the fact that at all steps
j ≥ 0 we always have |rj /rj+1| ≥

√
2.

Define Θ = arctan 2 − π/3 and A = 1/ sinΘ = 2
√

5(8 + 5
√

3)/
√

13 + 4
√

3 ≈
16.6902. In the following analysis of the EGEA, it will be useful to make the following
distinction between indices.

Definition 1 (Good and bad j ’s). A step j ≥ 0 of the EGEA will be called bad if,
during the (j − 1)th step, among all four choices of qj as a vertex of the lattice square
containing rj−1/rj (and consequent choice of rj+1 and sj+1, noting that for the purpose
of this definition, we do not require that |rj+1| < |rj |), we always have sj sj+1rj+1 �= 0
and

∣
∣∣∣arg

(
sj+1rj

sj rj+1

)∣
∣∣∣ < Θ.

Otherwise j is called good.

Remark 6. Note that j = 0 and j = 1 are always good since s1 = 0.

Lemma 4 (Use of good j ’s). If j is good, then for some choice of r ′
j+1 as per preced-

ing definition (and relative s′
j+1), we have

∣∣s′
j+1rj − sj r

′
j+1

∣∣ ≥ sinΘ max
(∣∣s′

j+1rj
∣∣,

∣∣sj r ′
j+1

∣∣),
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and, therefore, since rj+1 in the EGEA has smallest modulus among all four choices
r ′
j+1, we have

max
(|sj rj+1|, |sj+1rj |

) ≤ (A + 1)|ν|.

Proof. Notice that the result holds trivially if sj s
′
j+1r

′
j+1 = 0. Otherwise, this is a

straightforward application of a general inequality about complex numbers that we can
express as follows: let ζ ∈ C

∗ with π ≥ | arg(ζ )| ≥ Θ . We claim that under these con-
ditions, |1 − ζ | ≥ sinΘ . Indeed, writing ζ = reiψ with Θ ≤ ψ ≤ π , we have

|1 − ζ |2 = (
1 − reiψ

)(
1 − re−iψ

) = 1 − 2r cosψ + r2.

First note that we can suppose ψ ≤ π/2, otherwise clearly |1 − ζ | ≥ 1. The last ex-
pression in r , when viewed as a quadratic polynomial, has minimum (over R) equal
to −Δ/4 = −(4 cos2 ψ − 4)/4 = sin2 ψ ≥ sin2 Θ . Therefore |1 − ζ | ≥ sinΘ , thereby
proving our claim. The first part of the lemma will follow by applying the claim to
ζ = s′

j+1rj /sj r
′
j+1 and ζ = sj r

′
j+1/s

′
j+1rj successively.

The second part follows from

|sj rj+1| ≤
∣∣sj r ′

j+1

∣∣ ≤ A
∣∣s′

j+1rj − sj r
′
j+1

∣∣ = A|ν|,
and therefore,

|sj+1rj | = |sj+1rj − sj rj+1 + sj rj+1| ≤ |sj+1rj − sj rj+1| + |sj rj+1| ≤ |ν| + A|ν|.
�

Remark 7. We have seen in the course of the proof the preceding lemma the following
fact: if ζ ∈ C

∗ with π ≥ | arg(ζ )| ≥ ψ , then |1 − ζ | ≥ sinψ . This is equivalent to the
following assertion (set ζ = 1 − ξ ), used in the proof of the next lemma: if |ξ | < sinψ ,
then | arg(1 − ξ)| < ψ .

The next result is crucial in controlling what happens in the bad cases. Its proof is
rather elaborated.

Lemma 5 (Bad-j behavior of sj ). If j is bad, then

|sj+1| ≤ 2
√

2|sj−1| and |sj | ≤ |sj−1|.

Proof. We first suppose that the point P corresponding to rj−1/rj does not belong
to an exceptional lattice square. Let V1 and V2 as in Lemma 3 correspond respectively
to qj and q ′

j . Upon defining r ′
j+1 = rj−1 − q ′

j rj , since rj+1 = rj−1 − qj rj , Lemma 3
states that π ≥ | arg((qj − rj−1/rj )/(q

′
j − rj−1/rj ))| = | arg(rj+1/r ′

j+1)| ≥ θ . By the
definition of “bad” we have, denoting s′

j+1 = sj−1 − q ′
j sj ,

∣∣
∣∣arg

(
sj+1rj

sj rj+1

)∣∣
∣∣ < Θ and

∣∣
∣∣arg

(
s′
j+1rj

sj r
′
j+1

)∣∣
∣∣ < Θ,
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and this yields

∣∣∣
∣arg

(
sj+1r

′
j+1

s′
j+1rj+1

)∣∣∣
∣ =

∣∣∣
∣arg

(
sj+1rj

sj rj+1

)
+ arg

(
sj r

′
j+1

s′
j+1rj

)∣∣∣
∣

≤
∣∣∣∣arg

(
sj+1rj

sj rj+1

)∣∣∣∣ +
∣∣∣∣arg

(
sj r

′
j+1

s′
j+1rj

)∣∣∣∣ < 2Θ.

We deduce
∣∣∣∣arg

(
sj+1r

′
j+1

s′
j+1rj+1

)
+ arg

(
rj+1

r ′
j+1

)∣∣∣∣ ≥
∣∣∣∣

∣∣∣∣arg

(
rj+1

r ′
j+1

)∣∣∣∣ −
∣∣∣∣arg

(
sj+1r

′
j+1

s′
j+1rj+1

)∣∣∣∣

∣∣∣∣

> θ − 2Θ >
2π

3
,

while, on the other hand,

∣∣∣∣arg

(
sj+1r

′
j+1

s′
j+1rj+1

)∣∣∣∣ +
∣∣∣∣arg

(
rj+1

r ′
j+1

)∣∣∣∣ < 2Θ + π < θ − 2π

3
+ π <

4π

3
,

which together imply
∣
∣∣∣arg

(
sj+1

s′
j+1

)∣
∣∣∣ >

2π

3
. (D.1)

Now assume that |sj | > |sj−1|. Then |qj sj | >
√

2 |sj−1| and |q ′
j sj | >

√
2 |sj−1|,

since the quotients qj , q
′
j are Gaussian integers of modulus different from zero or one.

Furthermore, since there is at most one Gaussian integer of modulus
√

2 in a lattice
square, we have that either |qj sj | > 2|sj−1| or |q ′

j sj | > 2|sj−1|. Therefore, by Re-
mark 7,

∣∣∣∣arg

(
qj sj − sj−1

qj sj

)∣∣∣∣ =
∣∣∣∣arg

(
1 − sj−1

qj sj

)∣∣∣∣ ≤ π

4
,

and, similarly,
∣∣∣∣arg

(
q ′
j sj − sj−1

q ′
j sj

)∣∣∣∣ ≤ π

4

with at least one of them being ≤ π/6. We then get, using that | arg(qj /q
′
j )| ≤ π/4,

∣∣∣∣arg

(
sj+1

s′
j+1

)∣∣∣∣ =
∣∣∣∣arg

(
qj sj − sj−1

qj sj

)
+ arg

(
qj

q ′
j

)
+ arg

(
q ′
j sj

q ′
j sj − sj−1

)∣∣∣∣

≤ π

4
+ π

4
+ π

6
= 2π

3
,

contradicting (D.1).
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Fig. D.3. Exceptional regions

Exceptional Choices of V1 and V2 We now discuss the exceptional cases where qj or
q ′
j = ±1,±i, which need to be handled ad hoc. By symmetry (without loss of general-

ity), we place ourselves in the case where rj−1/rj lies in the lattice square of vertices
i,1 + i,1 + 2i,2i. It then belongs to one of the five regions labeled 1 to 5 on Fig. D.3.
Note that the open gray region is off-limits since |rj−1/rj | ≥

√
2. Each of these regions

contains two lattice points, which as before we will denote V1 for the one closest to
the point P of affix rj−1/rj and V2 for the other one (in case P lies on the boundary
between two or more zones, their distinction is immaterial). Note that V1 is closest to P

among all four vertices.
Region 1 (delimited by a triangle of vertices i,1/4 + 3i/2,2i): In this case,

| arg(rj+1/r ′
j+1)| = V̂1PV2 ≥ 2 arctan 2. Supposing to fix notations that qj = i and

q ′
j = 2i, we have, assuming that |sj | > |sj−1| and using Remark 7,

∣∣∣∣arg

(
qj sj − sj−1

qj sj

)∣∣∣∣ ≤ π

2
,

∣∣∣∣arg

(
q ′
j sj − sj−1

q ′
j sj

)∣∣∣∣ ≤ π

6
.

On the other hand, a reasoning similar to the one leading to (D.1) with the value
2 arctan 2 instead of θ will show that again | arg(sj+1/s

′
j+1)| > 2π/3, which leads to

a contradiction since

∣∣∣∣arg

(
sj+1

s′
j+1

)∣∣∣∣ =
∣∣∣∣arg

(
qj sj − sj−1

qj sj

)
+ arg

(
qj

q ′
j

)
+ arg

(
q ′
j sj

q ′
j sj − sj−1

)∣∣∣∣

≤ π

2
+ 0 + π

6
= 2π

3
.

The other four cases are treated similarly, and we briefly outline them.
Region 2 (delimited by a triangle of vertices 2i,1 + 7i/4,1 + 2i): Here

| arg(rj+1/r ′
j+1)| ≥ 2 arctan 2. Letting qj = 2i, q ′

j = 1 + 2i, one can show, assuming
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that |sj | > |sj−1|, that

2π

3
<

∣∣
∣∣arg

(
sj+1

s′
j+1

)∣∣
∣∣ =

∣∣
∣∣arg

(
qj sj − sj−1

qj sj

)
+ arg

(
qj

q ′
j

)
+ arg

(
q ′
j sj

q ′
j sj − sj−1

)∣∣
∣∣

≤ π

6
+

(
π

2
− arctan 2

)
+

(
π

2
− arctan 2

)
<

π

2
<

2π

3
,

a contradiction.

Region 3 (delimited by a triangle of vertices 1 + 2i,3/4 + i/2,1 + i): Here

| arg(rj+1/r ′
j+1)| ≥ 2 arctan 2. Letting qj = 1 + i, q ′

j = 1 + 2i, one can show, assuming

that |sj | > |sj−1|, that

2π

3
<

∣∣∣∣arg

(
sj+1

s′
j+1

)∣∣∣∣ =
∣∣∣∣arg

(
qj sj − sj−1

qj sj

)
+ arg

(
qj

q ′
j

)
+ arg

(
q ′
j sj

q ′
j sj − sj−1

)∣∣∣∣

≤ π

4
+ arctan(1/3) +

(
π

2
− arctan 2

)
= π

2
<

2π

3
,

a contradiction.

Region 4 (the red zone): Here | arg(rj+1/r ′
j+1)| ≥ π −arctan 2+arctan(2/3). Letting

qj = i, q ′
j = 1 + 2i, one can show, assuming that |sj | > |sj−1|, that

5π

3
− 3 arctan(2) + arctan(2/3)

<

∣
∣∣∣arg

(
sj+1

s′
j+1

)∣
∣∣∣

=
∣∣∣∣arg

(
qj sj − sj−1

qj sj

)
+ arg

(
qj

q ′
j

)
+ arg

(
q ′
j sj

q ′
j sj − sj−1

)∣∣∣∣

≤ π

2
+

(
π

2
− arctan 2

)
+

(
π

2
− arctan 2

)

<
5π

3
− 3 arctan(2) + arctan(2/3),

a contradiction.
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Region 5 (the yellow zone): Here | arg(rj+1/r ′
j+1)| ≥ π − arctan(4/7). Letting qj =

1 + i, q ′
j = 2i, one can show, assuming that |sj | > |sj−1|, that

5π

3
− 3 arctan(2) + arctan(2/3)

<

∣∣∣∣arg

(
sj+1

s′
j+1

)∣∣∣∣

=
∣∣
∣∣arg

(
qj sj − sj−1

qj sj

)
+ arg

(
qj

q ′
j

)
+ arg

(
q ′
j sj

q ′
j sj − sj−1

)∣∣
∣∣

≤ π

4
+ π

4
+ π

6
= 2π

3

<
5π

3
− 3 arctan(2) + arctan(2/3),

a contradiction.
We have thus proved that in any case |sj | ≤ |sj−1|. To show the first part of the

lemma, we proceed similarly, although there is a slight difference. We assume at first
that |sj+1| > 2 |sj−1| and |s′

j+1| >
√

2 |sj−1|. Then, by Remark 7,

∣∣∣∣arg

(
sj+1 − sj−1

sj+1

)∣∣∣∣ =
∣∣∣∣arg

(
1 − sj−1

sj+1

)∣∣∣∣ ≤ π

6

and
∣∣∣∣arg

(
s′
j+1 − sj−1

s′
j+1

)∣∣∣∣ ≤ π

4
.

Proceeding as previously,

∣∣∣∣arg

(
sj+1

s′
j+1

)∣∣∣∣ =
∣∣∣∣arg

(
sj+1

sj+1 − sj−1

)
+ arg

(
qj

q ′
j

)
+ arg

(
s′
j+1 − sj−1

s′
j+1

)∣∣∣∣

≤ π

4
+ π

4
+ π

6
= 2π

3
,

again contradicting (D.1), which also holds in the exceptional cases, as we have just
seen. Therefore, |sj+1| ≤ 2 |sj−1| or |s′

j+1| ≤ √
2 |sj−1| (or both). In the first case, we

are done. Otherwise, since sj+1 + qj sj = s′
j+1 + q ′

j sj = sj−1, we derive

|sj+1| ≤
∣∣s′

j+1

∣∣ + ∣∣qj − q ′
j

∣∣|sj | ≤
√

2|sj−1| +
√

2|sj−1| = 2
√

2|sj−1|

by the already proved second part of the lemma and the fact that qj , q
′
j correspond to

two vertices of the same lattice square, so that |qj − q ′
j | ≤

√
2. �
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Lemma 6 (Lower bound on generic vectors of kerF ). For any nonzero (z1, z2) ∈
kerF , we have

max
(|z1|, |z2|

) ≥
√|ν|√

1 + |r| + s
.

In particular, for any j ≥ 0, we have

max
(|rj |, |sj |

) ≥
√|ν|√

1 + |r| + s
.

Proof. This proof uses an argument already appearing in the proof of the original
GLV algorithm (see [29]) and Lemma 1. If (0,0) �= (z1, z2) ∈ kerF , then z1 + λz2 ≡ 0
(mod ν). If λ′ is the other root of X2 + rX + s (mod n), we get that

z2
1 − rz1z2 + sz2

2 ≡ (z1 + λz2)
(
z1 + λ′z2

) ≡ 0 (mod ν).

Since X2 + rX + s is irreducible in Q(i) because the two quadratic fields are linearly
disjoint, we therefore have |z2

1 − rz1z2 + sz2
2| ≥ |ν|. On the other hand, if

max
(|z1|, |z2|

)
<

√|ν|√
1 + |r| + s

,

then
∣∣z2

1 − rz1z2 + sz2
2

∣∣ ≤ |z1|2 + |r||z1||z2| + s|z2|2 < |ν|,
a contradiction. To show the second part, it suffices to note that since r0sj + νtj = rj
(where, as mentioned previously, r0 = λ or λ + n), we have that

0 ≡ νtj = rj − r0sj ≡ rj − λsj (mod ν),

so that (rj ,−sj ) ∈ kerF for every j ≥ 0. �

Proof of Theorem 3. It remains here to show the improved bound, which brings us
to finding four Q-linearly independent vectors of kerF of rectangle norm bounded by
Cn1/4. Define m ≥ 1 as the index such that

|rm| ≥
√|ν|√

1 + |r| + s
and |rm+1| <

√|ν|√
1 + |r| + s

. (D.2)

Let us consider an index j ≤ m. If it is good, then by Lemma 4 we have |sj+1rj | ≤
(A + 1)|ν|, and therefore, since (|rj |) is a decreasing sequence,

|sj+1| ≤ 2
√

2(A + 1)
√

1 + |r| + s
√|ν|. (D.3)
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On the other hand if it is bad, then let l < j be the largest good index less than j . By
Lemma 5 and Lemma 4 we have

|sj+1|
2
√

2
≤ |sj−1| ≤ |sj−2| ≤ · · · ≤ |sl | ≤ (A + 1)

|ν|
|rl+1|

≤ (A + 1)
√

1 + |r| + s
√|ν|,

and therefore in any case (D.3) holds. Applying this to j = m − 1 and j = m, we find
that

max
(|sm|, |sm+1|

) ≤ 2
√

2(A + 1)
√

1 + |r| + s
√|ν|. (D.4)

Moreover, using

sm+1rm − smrm+1 = (−1)m+1ν, (D.5)

from (D.2) and (D.4) we deduce

|sm+1rm| ≤ |ν| + |smrm+1| ≤ |ν| + 2
√

2(A + 1)|ν|.
In addition, by Lemma 6 we must have

|sm+1| ≥
√|ν|√

1 + |r| + s
,

which therefore implies that

|rm| ≤ (
2
√

2(A + 1) + 1
)√

1 + |r| + s
√|ν|.

This last equation, together with (D.4) and (D.2), shows that the two vectors v1 =
(rm,−sm), v2 = (rm+1,−sm+1) ∈ kerF ⊂ Z[i]2 have rectangle norms bounded by
C

√|ν| = Cn1/4 for C = (2
√

2(A+1)+1)
√

1 + |r| + s < 51.5
√

1 + |r| + s (that these
two vectors belong to kerF was shown in the proof of Lemma 6).

We can find two more vectors by noticing that (D.5) implies that v1 and v2 are Q(i)-
linearly independent. Therefore, the vectors v1, v2, v3 = iv1, v4 = iv2 are Q-linearly
independent. They all belong to kerF and have rectangle norms bounded by Cn1/4. In
view of the fact that the Euclidean norm upper-bounds the rectangle norm, the corre-
sponding vectors in Z

4 also have rectangle norms bounded by Cn1/4, thus concluding
the proof of the theorem, since these are exactly the four vectors returned by Algo-
rithm 3. �

Appendix E. Side-Channel Resistant Recoding Algorithm for d-Dimensional
GLV Scalar Multiplication

Below is the recoding algorithm with regular execution that, likewise, enables a scalar
multiplication with regular pattern execution. It modifies Algorithm 6 from [17] to sup-
port a recoding of fixed length. To apply the recoding to GLV-based scalar multiplica-
tion, Algorithm 4 has to be applied to each scalar derived from the GLV decomposition.
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Algorithm 4 (Regular Pattern Recoding Algorithm with Fixed Length).

Input: k odd, dimension d of l-bit GLV scalar multiplication,
and window width w.
Output: n = (kt , . . . , k0), where ki ∈ {±1,±3, . . . ,±(2w−1 − 1)}.
1. t = �l/(d · (w − 1))

2. for i = 0 to (t − 1) do
3. ki = (k mod 2w) − 2w−1

4. k = (k − ki)/2w−1

5. end
6. kt = k

Proof. The correctness of Algorithm 4 can be found in [17]. We still need to show
that all scalars in a GLV-based scalar multiplication can be represented with exactly
t +1 = �l/(d · (w−1))
+1 digits. For all practical purposes, it can be assumed that the
GLV method decomposes an l-bit scalar into �l/d
-bit scalars. What is left is to show
that every (w − 1) bits of the scalar are converted to exactly (w − 1) digits (padding
with zeroes in the most significant positions if required). This is precisely what happens
since at every iteration (w − 1) bits are replaced by (w − 2) zero digits and one nonzero
digit. The updating step sets to one the least significant bit of the new partial value k.
After all iterations are done this bit is assigned to kt as the (t + 1)th digit. �
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