
J. Cryptol. (2012) 25: 434–463
DOI: 10.1007/s00145-011-9101-6

Ideal Multipartite Secret Sharing Schemes∗

Oriol Farràs†

Dep. d’Enginyeria Informàtica i Matemàtiques, Universitat Rovira i Virgili, Tarragona, Catalonia, Spain
oriol.farras@urv.cat

Jaume Martí-Farré
Dep. de Matemàtica Aplicada 4, Universitat Politècnica de Catalunya, Barcelona, Catalonia, Spain

jaume.marti@ma4.upc.edu

Carles Padró‡

Division of Mathematical Sciences, Nanyang Technological University, Singapore, Singapore
cpadro@ma4.upc.edu, carlespl@ntu.edu.sg

Communicated by Stefan Wolf

Received 17 March 2010
Online publication 31 March 2011

Abstract. Multipartite secret sharing schemes are those having a multipartite access
structure, in which the set of participants is divided into several parts and all partic-
ipants in the same part play an equivalent role. In this work, the characterization of
ideal multipartite access structures is studied with all generality. Our results are based
on the well-known connections between ideal secret sharing schemes and matroids
and on the introduction of a new combinatorial tool in secret sharing, integer poly-
matroids.

Our results can be summarized as follows. First, we present a characterization of
multipartite matroid ports in terms of integer polymatroids. As a consequence of this
characterization, a necessary condition for a multipartite access structure to be ideal
is obtained. Second, we use representations of integer polymatroids by collections of
vector subspaces to characterize the representable multipartite matroids. In this way we
obtain a sufficient condition for a multipartite access structure to be ideal, and also a
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unified framework to study the open problems about the efficiency of the constructions
of ideal multipartite secret sharing schemes. Finally, we apply our general results to
obtain a complete characterization of ideal tripartite access structures, which was until
now an open problem.

Key words. Secret sharing, Ideal secret sharing schemes, Ideal access structures,
Multipartite secret sharing, Multipartite matroids, Integer polymatroids.

1. Introduction

Secret sharing was introduced in 1979 by Shamir [38] and Blakley [5]. Since then many
applications to several different kinds of cryptographic protocols have appeared. At
the same time, research in some basic open problems in secret sharing has developed a
rich mathematical theory with connections to combinatorics, information theory, coding
theory, algebra and algebraic geometry.

In a secret sharing scheme, every participant receives a share of a secret value. Only
the qualified sets of participants, which form the access structure of the scheme, can
recover the secret value from their shares. This paper deals exclusively with uncondi-
tionally secure perfect secret sharing schemes, that is, the shares of the participants in
an unqualified set do not provide any information about the secret value. The reader is
referred to [41] for an introduction to secret sharing.

An access structure on a set P of participants is a monotone increasing family Γ ⊆
P (P ), where P (P ) is the power set of P . That is, every subset of P containing a subset
in Γ is itself in Γ . The members of Γ are called the qualified subsets of the access
structure.

The first proposed secret sharing schemes [5,38] have threshold access structures, in
which the qualified subsets are those having at least a given number of participants. In
addition, those schemes are ideal, that is, the share of every participant has the same
length as the secret, which is the best possible situation in a perfect scheme [20]. While
the construction by Shamir [38] is based on polynomial interpolation, the one by Blak-
ley [5] uses finite geometries.

Secret sharing schemes for non-threshold access structures were first considered in
the seminal paper by Shamir [38], where weighted threshold secret sharing schemes
were introduced. In such a scheme, every participant has a weight (a positive integer)
and the sets whose weight sum is greater than a given threshold are qualified. The con-
struction proposed by Shamir is very simple: take a threshold scheme and give to ev-
ery participant as many shares as its weight. Nevertheless, the obtained scheme is not
ideal.

Ito, Saito, and Nishizeki [18] proved, in a constructive way, that there exists a secret
sharing scheme for every access structure, but the schemes that are obtained by this
method are very far from ideal. Actually, the length of the shares grows exponentially
with the number of participants. Benaloh and Leichter [3] proved that there exist access
structures that do not admit any ideal scheme and, as a consequence of the results in [9,
11] and other works, in some cases the shares must be much larger than the secret.
Actually, the open problem of optimizing the length of the shares in secret sharing
schemes for general access structures is very far from being solved, and there is a wide
gap between the best known lower and upper bounds.
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Another important and longstanding open problem is the characterization of the ideal
access structures, that is, the ones admitting an ideal secret sharing scheme. As a con-
sequence of the results by Brickell [7] and by Brickell and Davenport [8], this open
problem is strongly connected to matroid theory. Matroid ports, which were introduced
in 1964 by Lehman [22] to solve the Shannon switching game, play a fundamental role.
Basic definitions and facts about matroids and matroid ports and their connections to
secret sharing are recalled in Sect. 4.

Due to the difficulty (presumably, impossibility) of constructing an efficient secret
sharing scheme for every given access structure, it is worthwhile to find families of ac-
cess structures that admit ideal schemes and have useful properties for the applications
of secret sharing. This line of research was initiated by Kothari [21], who posed the
open problem of constructing ideal hierarchical secret sharing schemes, and by Sim-
mons [39], who introduced the multilevel and compartmented access structures that
are described in Sect. 8. Multilevel access structures are suitable for hierarchical or-
ganizations, while compartmented access structures can be used to initiate actions that
require the agreement of different parties. By generalizing the geometric method by
Blakley [5], Simmons [39] presented ideal secret sharing schemes for some particu-
lar examples of multilevel and compartmented access structures and provided ideas for
more general constructions. By introducing a new method to construct ideal secret shar-
ing schemes, which was partially anticipated by Kothari [21], Brickell [7] was able to
find ideal schemes for all multilevel and compartmented access structures.

The multilevel and compartmented access structures introduced by Simmons [39] are
multipartite, that is, the set of participants is divided into several parts and all partici-
pants in the same part play an equivalent role. Secret sharing schemes for multipartite
access structures have received considerable attention. This is due to the fact that mul-
tipartite secret sharing can be seen as a natural and useful generalization of threshold
secret sharing. While in threshold access structures all participants are equivalent, mul-
tipartite access structures can used in situations in which the participants are distributed
into different classes, as for instance in hierarchical organizations. In addition, simi-
larly to threshold access structures, multipartite access structures can be described in
a compact way, by using a few conditions that are independent of the total number of
participants.

On the basis of the well-known connection between ideal secret sharing schemes and
matroids, the characterization of the ideal multipartite access structures is studied in
this paper in all generality. Even though polymatroids have been used before in secret
sharing [11,24], in this paper integer polymatroids are used for the first time in the char-
acterization of ideal access structures. These combinatorial objects are proved to be a
very useful tool to study multipartite matroids and, in particular, the matroids defined
from ideal multipartite secret sharing schemes. Two general results are obtained by com-
bining the connection between integer polymatroids and multipartite matroids that we
present in this paper with the geometric representation of multipartite access structures
that was introduced in [34] for the bipartite case. Namely, a necessary condition and a
(different) sufficient condition for a multipartite access structure to be ideal.

As a consequence of our main general results, we obtain a complete characterization
of the ideal tripartite access structures, which was until now an open problem. In ad-
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dition, they are the main tool in the complete characterization of the ideal hierarchical
access structures that has been presented in a recent paper [12]. Moreover, our results
provide a unified framework, which encloses most of the constructions in the literature,
to describe and analyze methods to construct ideal multipartite secret sharing schemes.
Because of that, the open problems related to the efficiency of such constructions can
be described in a clearer and simpler way.

Therefore, this paper contains contributions to the two aforementioned lines of re-
search: the characterization of the ideal access structures and the construction of ideal
multipartite secret sharing schemes for interesting families of access structures.

2. Related Work

2.1. On the Construction of Ideal Multipartite Secret Sharing Schemes

The method to construct ideal secret sharing schemes proposed by Brickell [7] is a
linear algebra reformulation of the geometric ideas by Blakley [5] and Simmons [39].
In addition, Brickell’s construction can be seen also as a generalization of Shamir’s
threshold scheme [38], and hence it unifies the two seminal approaches to secret sharing.
Some of the ideas by Brickell [7] were anticipated by Kothari [21]. We use in this paper
the description of Brickell’s method in terms of linear codes due to Massey [25,26].
Namely, every linear code C over a finite field K defines an ideal secret sharing scheme
in which both the secret value and the shares are elements in K. Every codeword of C

corresponds to a possible distribution of shares. Such an ideal scheme is called a K-
vector space secret sharing scheme and its access structure is called a K-vector space
access structure. The vast majority of the constructions of ideal secret sharing schemes
that are found in the literature fit into this general method. This applies in particular to
all the constructions of ideal multipartite secret sharing schemes that are discussed next.

The search for ideal multipartite secret sharing schemes for interesting families of
access structures, the line of research that was initiated by Kothari [21], Simmons [39],
and Brickell [7], has been pursued by other authors. Constructions of ideal secret shar-
ing schemes for variants of the compartmented and multilevel access structures, and also
for some tripartite access structures, have been given in [1,2,16,31,42,43]. All these con-
structions provide vector space secret sharing schemes, but some interesting new tech-
niques are introduced in the ones by Tassa [42] and Tassa and Dyn [43]. Specifically, a
random polynomial and some of its derivatives are evaluated in several points to obtain
the shares in the scheme proposed in [42], and hence it is based on Birkhoff interpola-
tion, while the constructions in [43] are based on bivariate polynomial interpolation.

Two efficiency questions appear in the construction of ideal multipartite secret shar-
ing schemes. The first one deals with the computation needed to set up such a scheme.
In most of the aforementioned constructions, a huge number of determinants, which
can grow exponentially on the number of participants, have to be computed in order
to check that a scheme with the required access structure is obtained. Brickell [7] pro-
posed a method to avoid these checkings, but it requires the base field of the scheme to
be very large. Another strategy has been proposed in [42,43]. Namely, one can estimate
the probability that the required access structure is realized by randomly choosing the
field elements involved in the construction. But a very large field is also needed in order
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to obtain a large enough value for that probability. The second question is to minimize
the size of the base field among the multipartite vector space secret sharing schemes for
a given access structure. It has been studied for particular families of multilevel access
structures in [4,14], and it appears to be a very difficult open problem.

2.2. On the Characterization of Ideal Access Structures

The other line of research that is considered in this paper is the characterization of the
ideal access structures. As we mentioned before, tight connections of this open problem
to matroid theory were pointed out in the works by Brickell [7] and by Brickell and
Davenport [8]. Associated to every linear code C, there exists a unique representable
matroid M. The access structure Γ of the ideal secret sharing scheme defined from
the code C is determined by M. Actually, Γ is a port of the matroid M. Because
of that, the vector space access structures coincide with the ports of representable ma-
troids. Therefore, a sufficient condition for an access structure to be ideal is derived
from the construction by Brickell [7]: every port of a representable matroid is an ideal
access structure. As a consequence of the results by Brickell and Davenport [8], this
sufficient condition is not very far from being necessary. They proved that every ideal
secret sharing scheme determines a matroid such that the access structure is one of its
ports. Therefore, being a matroid port is a necessary condition for an access structure to
be ideal. These results are summarized in the following theorem.

Theorem 2.1 [7,8]. The ports of representable matroids are ideal access structures.
The access structure of every ideal secret sharing scheme is a matroid port.

Seymour [36] presented in 1976 a forbidden minor characterization of matroid ports
that has been used recently in [24] to obtain the following generalization of the result
by Brickell and Davenport [8].

Theorem 2.2 [24]. An access structure is a matroid port if it admits a secret sharing
scheme in which the length of every share is less than 3/2 times the length of the secret.

Matroids that are obtained from ideal secret sharing schemes are said to be secret
sharing representable (or ss-representable for short). Clearly, ideal access structures are
precisely the ports of ss-representable matroids. Since there exist non-ss-representable
matroids, the necessary condition in Theorem 2.1 is not sufficient. The first example,
the Vamos matroid, was found by Seymour [37]. In addition, the sufficient condition in
Theorem 2.1 is not necessary because of the non-Pappus matroid, which is not repre-
sentable but was proved to be ss-representable by Simonis and Ashikhmin [40]. A num-
ber of important results and interesting ideas for future research on the characterization
of ss-representable matroids can be found in the works by Simonis and Ashikhmin [40]
and Matúš [27]. The first one deals with the geometric structure that lies behind ss-
representations of matroids. The second one analyzes the algebraic properties that the
matroid induces in all its ss-representations. These properties make it possible to find
some restrictions on the ss-representations of a given matroid and, in some cases, to ex-
clude the existence of such representations. By using these tools, Matúš [27] presented
an infinite family of non-ss-representable matroids with rank three.
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Due to the difficulty of finding general results, the characterization of ideal access
structures has been studied for several particular classes of access structures as, for in-
stance, the access structures on sets of four [41] and five [19] participants, the ones
defined by graphs [6,8,9], and those with three or four minimal qualified subsets [23].
This problem has been considered as well for some families of multipartite access struc-
tures. Partial results about weighted threshold access structures were given in [28,34].
Subsequently, a complete characterization of the ideal access structures in this family
was presented by Beimel, Tassa and Weinreb [1]. The ideal bipartite access structures
were characterized in [34] and, independently, similar results were presented in [30,32].
Partial results on the characterization of tripartite access structures were presented in [1,
10,16]. The first attempt to provide general results on the characterization of ideal multi-
partite access structures was made by Herranz and Sáez [16], who gave some necessary
conditions for a multipartite access structure to be ideal.

3. Our Results

In this paper, we study the characterization of the ideal multipartite access structures.
By considering as many parts as participants every access structure is multipartite, and
hence we are not dealing here with a particular family of structures, but with the gen-
eral problem of characterizing the ideal access structures. We do not solve this open
problem, but we present some new results by looking at it under a different point of
view. Namely, we investigate the conditions given in Theorem 2.1 by taking into ac-
count that the set of participants can be divided into several parts formed by participants
playing an equivalent role in the structure. We introduce the natural concept of multi-
partite matroid, which applies to the matroids that are defined from ideal multipartite
secret sharing schemes. The study of multipartite matroids leads to integer polyma-
troids, which appear to be a very powerful tool to describe in a compact way multi-
partite matroids, and hence to characterize multipartite matroid ports. Even though our
results can be applied to the general case, their most meaningful consequences are ob-
tained when applied to access structures that are genuinely multipartite. That is, in the
case that the number of parts is significantly smaller than the number of participants,
or in situations in which the partition is derived from some special organization of the
participants as, for instance, in hierarchical access structures. In particular, we present
a complete characterization of the ideal tripartite access structures, which was an open
question until now. In addition, the results in this paper have been applied recently to
obtain a complete characterization of the ideal hierarchical access structures [12] that,
in particular, provides a new proof for the characterization of ideal weighted thresh-
old access structures in [1]. Our main contributions are described in more detail in the
following.

First, we investigate how the necessary condition in Theorem 2.1 can be applied to
multipartite access structures. Consequently, we study the properties of multipartite ma-
troid ports. The partition in the set of participants of a matroid port extends to the set
of points of the corresponding matroid. This leads us to introduce the natural concept
of multipartite matroid. We point out that every multipartite matroid with m parts de-
fines a integer polymatroid on a set of m points. Integer polymatroids are a particular
class of polymatroids. In the same way as matroids abstract some properties related
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to linear dependencies in collections of vectors in a vector space, integer polymatroids
abstract similar properties in collections of subspaces of a vector space. Integer poly-
matroids have been thoroughly studied by researchers in combinatorial optimization,
and the main results can be found in the books [13,29,35]. We use here the concise pre-
sentation of the basic facts about integer polymatroids by Herzog and Hibi [17], who
applied these combinatorial objects to commutative algebra. We present in Theorem 5.3
a characterization of multipartite matroid ports, which implies a necessary condition for
a multipartite access structure to be ideal. This result is based on the aforementioned
connection between integer polymatroids and multipartite matroids, together with the
geometric representation of multipartite access structures that was introduced in [34]
for the bipartite case. We present some examples showing that this necessary condition
is a useful tool to prove that a given multipartite access structure is not ideal.

Second, we study the application of the sufficient condition in Theorem 2.1 to multi-
partite access structures. Therefore, we study the existence of linear representations for
multipartite matroids, and we relate them to linear representations of integer polyma-
troids. In the same way as in a representation of a matroid a vector is assigned to each
point in the ground set, a subspace is assigned to each point in a representation of an in-
teger polymatroid. We prove in Theorem 6.1 that a multipartite matroid is representable
if and only if the corresponding integer polymatroid is representable. This implies a
sufficient condition for a multipartite access structure to be ideal. We think that Theo-
rem 6.1 is interesting not only for its implications in secret sharing, but also as a result
about representability of matroids. This result is specially useful if the number of parts
is small. For instance, a tripartite matroid can have many points, but as a consequence of
our result we only have to find three suitable subspaces of a vector space to prove that it
is representable. However, Theorem 6.1 does not provide an efficient algorithm to find
a representation of a multipartite matroid from a representation of its associated integer
polymatroid. It gives an upper bound on the minimum field size for such a represen-
tation, but this bound seems to be far from tight. Therefore, the aforementioned open
questions about the search of efficient constructions of ideal multipartite secret sharing
schemes are not solved here. Nevertheless, Theorems 5.3 and 6.1 provide a framework
in which those open problems can be better described and studied.

And third, we apply our general results to the tripartite case, and we present a com-
plete characterization of the ideal tripartite access structures. By using Theorem 5.3, we
characterize the tripartite matroid ports. Theorem 6.1 is used to prove that all matroids
related to these structures are representable, and hence that all tripartite matroid ports
are vector space access structures. Our characterization of the ideal tripartite access
structures is not a simple corollary of the main theorems in this paper, and it requires to
solve some non-trivial problems.

We observe that the last result above cannot be extended to m-partite access structures
with m ≥ 4, because there does not exist any ideal secret sharing scheme defining the
Vamos matroid [37], which is quadripartite. Hence, there exist quadripartite matroid
ports that are not ideal. Nevertheless, this does not mean that our general results are not
useful for m-partite access structures with m ≥ 4, as is demonstrated by the examples
that are given later and, specially, by the characterization of the ideal hierarchical secret
sharing schemes that has been presented recently in [12].
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After the results in this paper, the open problems about the characterization of ideal
multipartite access structures are as difficult as the open problems in the general case.
That is, closing the gap between the necessary and the sufficient conditions requires to
solve very difficult problems about representations of matroids and polymatroids, both
by vectors and vector subspaces and by random variables.

4. Multipartite Matroids and Integer Polymatroids

4.1. Ideal Secret Sharing Schemes, Matroids, and Matroid Ports

As a consequence of the results by Brickell [7], and Brickell and Davenport [8], the
characterization of ideal access structures has important connections with matroid the-
ory.

To illustrate these connections, we discuss in the following the method by Brickell [7]
to construct ideal secret sharing schemes, as described by Massey [25,26] in terms of
linear codes. Let P = {p1, . . . , pn} be a set of participants and consider a special par-
ticipant p0 /∈ P , which is usually called dealer, and the set Q = P ∪ {p0}. Let C be an
[n+1, k]-linear code over a finite field K and let M be a generator matrix of C, that is, a
k × (n+ 1) matrix over K whose rows span C. Such a code defines an ideal secret shar-
ing scheme on P . Specifically, every random choice of a codeword (s0, s1, . . . , sn) ∈ C

corresponds to a distribution of shares for the secret value s0 ∈ K, in which si ∈ K is
the share of the participant pi . Such an ideal scheme is called a K-vector space secret
sharing scheme and its access structures is called a K-vector space access structure.
The access structure of this scheme is determined from the linear dependencies among
the columns of the matrix M . Namely, it is easy to check that a set A ⊆ P is qualified if
and only if the column of M corresponding to the dealer p0 is a linear combination of
the columns corresponding to the participants in A.

Let P (Q) denote the power set of Q. For every X ⊆ Q, let r(X) be the rank of the
submatrix of M formed by the columns corresponding to the participants in X. This
defines a mapping r: P (Q) → Z with the following properties:

1. 0 ≤ r(X) ≤ |X| for every X ⊆ Q, and
2. r is monotone increasing: if X ⊆ Y ⊆ Q, then r(X) ≤ r(Y ), and
3. r is submodular: r(X ∪ Y) + r(X ∩ Y) ≤ r(X) + r(Y ) for every pair of subsets

X,Y of Q.

Matroids are combinatorial objects that abstract and generalize many concepts from lin-
ear algebra, including ranks, independent sets, bases, and subspaces. The reader is re-
ferred to [33,44] for general references on matroid theory. A matroid is defined as a pair
(Q, r) formed by a finite set Q, the ground set, and a rank function r: P (Q) → Z sat-
isfying the three properties above. A matroid M = (Q, r) is said to be K-representable
if there exists a matrix M with coefficients in K such that the rank function r can be
defined from M as before. In this situation, the matrix M is called a K-representation
of the matroid M.

All generator matrices of a linear code represent the same matroid. The access struc-
ture Γ of the ideal secret sharing scheme defined from a linear code C is determined
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from the representable matroid M = (Q, r) associated to C. Actually,

Γ = Γp0(M) = {
A ⊆ P : r

(
A ∪ {p0}

) = r(A)
}
.

That is, Γ is the port of the matroid M at the point p0. Consequently, a sufficient
condition for an access structure to be ideal is obtained: the ports of representable ma-
troids are ideal access structures. Actually, they coincide with the vector space access
structures.

Brickell and Davenport [8] proved that every ideal secret sharing scheme on a set
P of participants determines a matroid M with ground set Q = P ∪ {p0} such that the
access structure of the scheme is Γp0(M). Therefore, being a matroid port is a necessary
condition for an access structure to be ideal.

Matroids have been defined before by using the rank function, but this is only one of
the many different but equivalent existing definitions for this concept. We present next
the ones based on independent sets and on bases. The equivalence between these three
definitions, whose proof can be found in [33], is very useful to obtain our results.

Let M = (Q, r) be a matroid. The subsets X ⊆ Q with r(X) = |X| are said to be
independent. The following properties hold for the family I ⊆ P (Q) of the independent
sets of M.

1. ∅ ∈ I .
2. If I ∈ I and I ′ ⊆ I , then I ′ ∈ I .
3. If I1 and I2 are in I and |I1| < |I2|, then there exists x ∈ I2 − I1 such that

I1 ∪ {x} ∈ I .

Moreover, for every family I ⊆ P (Q) satisfying these conditions, there exists a unique
matroid whose independent sets are the members of I . Actually, such a family I de-
termines the rank function by taking r(X) as the maximum cardinality of the subsets
of X that are in I . If a matroid M is represented over a finite field K by a matrix M ,
then a subset X ⊆ Q is independent if and only if the corresponding columns of M are
linearly independent.

The bases of the matroid M are the maximally independent sets. Similarly to the
independent sets, the family B of the bases determines the matroid. Moreover, B ⊆
P (Q) is the family of bases of a matroid with ground set Q if and only if

1. B is nonempty, and
2. the following exchange condition is satisfied: for every B1,B2 ∈ B and x ∈ B1 −

B2, there exists y ∈ B2 − B1 such that (B1 − {x}) ∪ {y} is in B.

All bases have the same number of elements, which is the rank of M and is denoted
r(M). Actually, r(M) = r(Q). The dependent sets are those that are not independent,
and a circuit is a minimally dependent set. The minimal sets of a matroid port Γp0(M)

are determined from the circuits of M. Specifically,

minΓp0(M) = {
A ⊆ P : A ∪ {p0} is a circuit of M

}
.

A matroid is said to be connected if, for every two points in the ground set, there ex-
ists a circuit containing them. In a connected access structure, every participant is in a
minimal qualified subset. If Γ is a connected matroid port, then there exists a unique
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connected matroid M with Γ = Γp0(M). This is a consequence of the following two
facts. First, by [33, Proposition 4.1.2], the matroid M is connected if and only if one
of its ports is connected, and in this case all the ports of M are connected. Second,
a connected matroid is determined by the circuits that contain some given point [33,
Theorem 4.3.2].

4.2. Multipartite Access Structures and Multipartite Matroids

An m-partition Π = (X1, . . . ,Xm) of a set X is a disjoint family of m subsets of X with
X = X1 ∪ · · · ∪ Xm. A permutation σ on X is a Π -permutation if σ(Xi) = Xi for all
i = 1, . . . ,m. A combinatorial object defined on the set X is said to be Π -partite if every
Π -permutation is an automorphism of it. We say that a combinatorial object on X is m-
partite if it is Π -partite for some m-partition Π . In particular, a family Λ ⊆ P (X) of
subsets of X is Π -partite if σ(Λ) = Λ for every Π -permutation σ on X, where σ(Λ) =
{σ(A) : A ∈ Λ}. These concepts can be applied to access structures, which are actually
families of subsets of the set of participants. Observe that a matroid M is Π -partite
for a partition Π of its ground set Q if and only if its family I ⊆ P (Q) of independent
subsets is Π -partite. A matroid port is m-partite if and only if the corresponding matroid
is (m + 1)-partite for a similar partition. Specifically, we have the following result.

Lemma 4.1. Let M be a connected matroid with ground set Q. Consider a point
p0 ∈ Q and partitions Π = (P1, . . . ,Pm) and Π0 = ({p0},P1, . . . ,Pm) of the sets P =
Q − {p0} and Q, respectively. Then the matroid port Γp0(M) is Π -partite if and only
if the matroid M is Π0-partite.

Proof. Let σ be a permutation on Q with σ(p0) = p0. It induces a permutation σ̃

on P . If σ is an automorphism of M then σ̃ is an automorphism of Γ = Γp0(M), that
is, σ̃ (Γ ) = Γ . Conversely, since M is connected, it is univocally determined by its port
Γ = Γp0(M), and hence σ is an automorphism of M if σ̃ is an automorphism of Γ . �

We present in the following a very useful geometric representation of multipartite
access structures, which was first used in [34] for the bipartite case. We need to in-
troduce first some notation on vectors that will be used all through the paper. For a
finite set J , let R

J+ denote the set of vectors u = (ui)i∈J ∈ R
J with ui ≥ 0 for ev-

ery i ∈ J , and take Z
J+ = R

J+ ∩ Z
J . If u,v ∈ R

J+, we write u ≤ v if ui ≤ vi for every
i ∈ J , and we write u < v if u ≤ v and u �= v. The vector w = u ∨ v is defined by
wi = max{ui, vi}. The modulus of a vector u ∈ R

J+ is |u| = ∑
i∈J ui . For every subset

X ⊆ J , we write u(X) = (ui)i∈X ∈ R
X+ and |u(X)| = ∑

i∈X ui . For every i ∈ J , we take
the vector ei ∈ R

J+ with ei
j = 1 if j = i and ei

j = 0 otherwise. For every positive integer
m, we notate Jm = {1, . . . ,m} and J ′

m = {0,1, . . . ,m}. Of course the vector notation
that has been introduced here applies as well to R

m+ = R
Jm+ .

The members of a Π -partite family of subsets are determined by the number of
elements they have in each part. We formalize this in the following and we obtain
a compact way to represent a multipartite family of subsets. Let Π = (P1, . . . ,Pm)

be a partition of a set P . The partition Π defines a mapping Π : P (P ) → Z
m+ by tak-
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ing Π(A) = (|A ∩ P1|, . . . , |A ∩ Pm|). Consider P = Π(P (P )) = {u ∈ Z
m+ : 0 ≤ u ≤

Π(P )}. If a family Λ ⊆ P (X) of subsets is Π -partite, then A ∈ Λ if and only if
Π(A) ∈ Π(Λ) = {Π(B) : B ∈ Λ}. That is, Λ is completely determined by the par-
tition Π and the set of vectors Π(Λ) ⊆ P ⊆ Z

m+. If Γ ⊆ P (P ) is a Π -partite access
structure, then the set Π(Γ ) ⊆ P is monotone increasing, that is, if u ∈ Π(Γ ) and
v ∈ P are such that u ≤ v, then v ∈ Π(Γ ). Therefore, Π(Γ ) is univocally determined
by minΠ(Γ ), the family of its minimal vectors, that is, those representing the minimal
qualified subsets of Γ .

The support of a vector u ∈ Z
J+ is defined by supp(u) = {i ∈ J : ui �= 0} ⊆ J , and

the support of a set S ⊆ Z
J+ of vectors by supp(S) = {supp(u) : u ∈ S} ⊆ P (J ). For

a partition Π = (P1, . . . ,Pm) of a set P , the support of a subset A ⊆ P is supp(A) =
supp(Π(A)) ⊆ Jm, and the support of a Π -partite family Λ ⊆ P (P ) is supp(Λ) =
supp(Π(Λ)) ⊆ P (Jm). Observe that, if Γ is a Π -partite access structure, then supp(Γ )

is an access structure on the set Jm.

4.3. Integer Polymatroids

As we saw before, every ideal m-partite access structure is a port of an (m + 1)-partite
matroid. Therefore, multipartite matroids are fundamental for the characterization of
ideal multipartite access structures. In this section, we present a connection between
multipartite matroids and integer polymatroids that will be very useful for our purposes.
Specifically, we prove that every m-partite matroid can be described by an integer poly-
matroid on a ground set with m elements. We introduce first some definitions and facts
about polymatroids and we discuss in more detail the special class of the integer poly-
matroids. Afterwards, we discuss the connections between multipartite matroids and
integer polymatroids. The reader is referred to [33,35,44] for more information about
polymatroids. A detailed exposition about basic facts on integer polymatroids and the
different ways to define them, including full proofs for the results that are not proved in
this section, can be found in [17].

A polymatroid S is a pair (J,h) formed by a finite set J , the ground set, and a rank
function h: P (J ) → R satisfying

1. h(∅) = 0, and
2. h is monotone increasing: if X ⊆ Y ⊆ J , then h(X) ≤ h(Y ), and
3. h is submodular: if X,Y ⊆ J , then h(X ∪ Y) + h(X ∩ Y) ≤ h(X) + h(Y ).

If the rank function h is integer-valued, we say that S is an integer polymatroid. Observe
that every matroid is an integer polymatroid and that an integer polymatroid S = (J,h)

is a matroid if and only if h(X) ≤ |X| for every X ⊆ J .
The following example of an integer polymatroid illustrates how these objects gen-

eralize matroids. In the same way as matroids abstract some properties of collections
of vectors, integer polymatroids do the same with collections of subspaces. Let E be a
K -vector space, and let (Vi)i∈J be a finite collection of subspaces of E. It is not dif-
ficult to check that the mapping h: P (J ) → Z defined by h(X) = dim(

∑
i∈X Vi) is the

rank function of an integer polymatroid Z = (J,h). The integer polymatroids that can
be defined in this way are said to be K-representable.
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Polymatroids can be defined as well in terms of convex polytopes. Specifically,
a polymatroid S = (J,h) is determined by its independent vectors, which are the el-
ements in the convex polytope

T = {
u ∈ R

J+ : ∣∣u(X)
∣∣ ≤ h(X) for every X ⊆ J

}
.

Actually, the rank function of S satisfies h(X) = max{|u(X)| : u ∈ T } for every X ⊆ J .
The maximal elements in T , that is, the vectors u ∈ T such that there does not exist any
v ∈ T with u < v, are the bases of the polymatroid S . All bases of a polymatroid have
the same modulus, which equals h(J ), the rank of the polymatroid S . More details
about these concepts can be found in [44].

By formalizing known results from combinatorial optimization [13,29,35], Herzog
and Hibi [17] presented two characterizations of integer polymatroids, one in terms of
the integer independent vectors and another one in terms of the integer bases. Complete
proofs for the facts that are stated in the following are given in [17]. Let Z = (J,h)

be an integer polymatroid. Consider the set D of the integer independent vectors of Z .
That is, if T ⊆ R

J+ is the set of independent vectors of Z , then

D = T ∩ Z
J+ = {

u ∈ Z
J+ : ∣∣u(X)

∣∣ ≤ h(X) for every X ⊆ J
}
.

The set D ⊆ Z
J+ satisfies the following properties.

1. D is nonempty and finite.
2. If u ∈ D and v ∈ Z

J+ are such that v ≤ u, then v ∈ D.
3. For every pair of vectors u,v ∈ D with |u| < |v|, there exists i ∈ J with ui < vi

such that u + ei ∈ D.

Recall that ei
j = 1 if j = i and ei

j = 0 otherwise. Moreover, for every set D ⊆ Z
J+

satisfying these properties, there exists a unique integer polymatroid Z = (J,h) such
that D is the set of the integer independent vectors of Z , and the rank function of Z is
determined by

h(X) = max
{∣∣u(X)

∣∣ : u ∈ D
}
.

Such sets of vectors are called discrete polymatroids in [17], but we prefer to consider
them simply as an alternative way to define integer polymatroids instead of as a new
combinatorial object.

Integer polymatroids can be characterized as well by its integer bases, that is, the
bases with integer coordinates. Clearly, the integer bases of an integer polymatroid are
the maximal elements in its family of integer independent vectors. A nonempty subset
B ⊆ Z

J+ is the family of integer bases of an integer polymatroid with ground set J if
and only if it satisfies the following exchange condition.

• For every u ∈ B and v ∈ B with ui > vi , there exists j ∈ J such that uj < vj and
u − ei + ej ∈ B.

As happened with the integer independent vectors, every integer polymatroid Z =
(J,h) is univocally determined by the family B ⊆ Z

J+ of its integer bases. Observe
that the rank function is determined by the bases because h(X) = max{|u(X)| : u ∈ B}
for every X ⊆ J .
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From now on, only integer polymatroids and integer vectors will be considered, and
we will omit the term “integer” most of the times when dealing with the integer inde-
pendent vectors or the integer bases of an integer polymatroid.

We conclude this section by showing the connection between multipartite matroids
and integer polymatroids. Specifically, we show how m-partite matroids can be de-
scribed by integer polymatroids with ground set Jm. This connection, which is based
on the next proposition, is fundamental for our results.

Proposition 4.2. Let Π = (Q1, . . . ,Qm) be an m-partition of a set Q and let I ⊆
P (Q) be a Π -partite family of subsets. Then I is the family of independent sets of a
Π -partite matroid M with ground set Q if and only if Π(I) ⊆ Z

m+ is the family of
independent vectors of an integer polymatroid Z with ground set Jm.

Proof. Suppose that I ⊆ P (Q) is the family of independent sets of a Π -partite ma-
troid M with ground set Q. Since 0 = Π(∅) ∈ Π(I) and Π(I) ⊆ Π(P (Q)), it is clear
that Π(I) ⊆ Z

m+ is nonempty and finite. Consider u ∈ Π(I) and v ∈ Z
m+ such that v ≤ u.

Take A ∈ I with Π(A) = u. Obviously, there exists B ⊆ A such that Π(B) = v. Since
B ∈ I , we have v ∈ Π(I). Consider now two vectors u,v ∈ Π(I) with |u| < |v|. Then
there exist sets A,B ∈ I such that

• Π(A) = u and Π(B) = v, and
• if ui ≤ vi , then A ∩ Qi ⊆ B ∩ Qi , and
• if vi ≤ ui , then B ∩ Qi ⊆ A ∩ Qi .

Since |A| < |B|, there exists p ∈ B − A such that A ∪ {p} ∈ I . Take the only i ∈ Jm

such that p ∈ Qi . Clearly, ui < vi and u + ei = Π(A ∪ {p}) ∈ Π(I).
We prove now the converse. Suppose that Π(I) ⊆ Z

m+ is the family of independent
vectors of an integer polymatroid with ground set Jm. Observe that ∅ ∈ I because 0 ∈
Π(I). Consider A ∈ I and B ⊆ Q such that B ⊆ A. Then u = Π(A) ∈ Π(I) and
v = Π(B) ≤ u, and hence v ∈ Π(I) and B ∈ I . Finally, consider two subsets A,B ∈ I
with |A| < |B| and take u = Π(A) and v = Π(B). Since u,v ∈ Π(I) and |u| < |v|,
there exists i ∈ J such that ui < vi and u + ei ∈ Π(I). Since ui < vi there exists p ∈
Qi ∩ (B − A). Then A ∪ {p} ∈ I because Π(A ∪ {p}) = u + ei ∈ Π(I). �

For an m-partite matroid M with family of independent sets I , the integer polyma-
troid associated with M is the one having ground set Jm and family of independent
vectors Π(I). The rank function of an m-partite matroid and the one of its associated
integer polymatroid are also tightly connected.

Proposition 4.3. Let Π = (Q1, . . . ,Qm) be an m-partition of a set Q. Let M =
(Q, r) be a Π -partite matroid and let Z = (Jm,h) be its associated integer polyma-
troid. Then h(X) = r(

⋃
i∈X Qi) for every X ⊆ Jm.

Proof. Let I ⊆ P (Q) be the family of independent sets of M. Recall that the rank
r(A) of every subset A ⊆ Q is the maximum cardinality of the subsets of A that are
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independent. Then

r

( ⋃

i∈X

Qi

)
= max

{
|B| : B ∈ I and B ⊆

⋃

i∈X

Qi

}
.

On the other hand, h(X) = max{|u(X)| : u ∈ Π(I)}. Clearly, this concludes the
proof. �

Finally, we prove in the following proposition that an m-partite matroid is univocally
determined by its associated integer polymatroid and the m-partition of the ground set.

Proposition 4.4. Let Π = (Q1, . . . ,Qm) be an m-partition of Q. For every integer
polymatroid Z = (Jm,h) with h({i}) ≤ |Qi | for every i ∈ Jm, there exists a unique
Π -partite matroid M with ground set Q such that its associated integer polymatroid
is Z .

Proof. Let D ⊆ Z
m+ be the family of independent vectors of Z . Observe that D ⊆

Π(P (Q)) = {u ∈ Z
m+ : 0 ≤ u ≤ Π(Q)} because h({i}) ≤ |Qi | for every i ∈ Jm. Let

I ⊆ P (Q) be the only Π -partite family of subsets of Q such that Π(I) = D. By Propo-
sition 4.2, I is the family of independent sets of a Π -partite matroid M. Clearly, Z is
the integer polymatroid associated with M and M is the only Π -partite matroid with
this property. �

5. Multipartite Matroid Ports

By using the connection between multipartite matroids and integer polymatroids we
discussed in the previous section, we present a characterization of multipartite matroid
ports based on integer polymatroids. This characterization provides a necessary condi-
tion for a multipartite access structure to be ideal.

Before presenting the main result of this section, Theorem 5.3, we need to introduce
some terminology and notation, as well as some basic facts about the connection be-
tween secret sharing and polymatroids.

For an integer polymatroid Z = (J,h) and for every subset X ⊆ J , the integer poly-
matroid Z(X) = (X,h) has ground set X and its rank function is the restriction to P (X)

of the one of Z . Let D ⊆ Z
J+ be the family of independent vectors of Z . Clearly, the

family of independent vectors of Z(X) is D(X) = {u(X) : u ∈ D} ⊆ Z
X+. We con-

sider as well the set B(Z,X) ⊆ Z
J+ of the vectors u ∈ Z

J+ such that u(X) is a basis
of Z(X) and ui = 0 for every i ∈ J −X. Recall that, for every integer m ≥ 1, we notate
Jm = {1, . . . ,m} and J ′

m = {0,1, . . . ,m}.
The connection between ideal secret sharing and matroids can be extended to gen-

eral secret sharing and polymatroids [11,24]. Namely, every secret sharing scheme de-
fines a polymatroid that determines the access structure. This connection between secret
sharing and polymatroids will be used here in a slightly different way. Similarly to ma-
troids, polymatroids define access structures. In particular, every integer polymatroid
Z ′ = (J ′

m,h) defines an access structure Δ = Δ0(Z ′) on the set Jm by

Δ0(Z ′) = {
X ⊆ Jm : h

(
X ∪ {0}) = h(X)

}
.
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Every integer polymatroid Z ′ = (J ′
m,h) such that h({0}) ≤ 1 and Δ = Δ0(Z ′) is said

to be an integer Δ-polymatroid. The proof of the following result is straightforward.

Proposition 5.1. Let Π = (P1, . . . ,Pm) be a partition of a set P , and consider the cor-
responding partition Π0 = ({p0},P1, . . . ,Pm) of the set Q = P ∪{p0}. Let M be a con-
nected Π0-partite matroid and let Z ′ = (J ′

m,h) be its associated integer polymatroid.
Finally, consider the Π -partite matroid port Γ = Γp0(M) and take Δ = supp(Γ ). Then
Z ′ is an integer Δ-polymatroid.

An integer polymatroid Z = (Jm,h) and an access structure Δ on the set Jm are said
to be compatible if Z can be extended to an integer Δ-polymatroid Z ′ = (J ′

m,h) with
Z ′(Jm) = Z . Clearly, in this situation there exists a unique such integer Δ-polymatroid
Z ′. The next result, which is a consequence of [11, Proposition 2.3], will be very useful
in the characterization of ideal tripartite access structures presented in Sect. 7.

Proposition 5.2 [11]. An access structure Δ on Jm is compatible with an integer
polymatroid Z = (Jm,h) if and only if the following conditions are satisfied.

1. If X ⊆ Y ⊆ Jm and X /∈ Δ while Y ∈ Δ, then h(X) ≤ h(Y ) − 1.
2. If X,Y ∈ Δ and X ∩ Y /∈ Δ, then h(X ∪ Y) + h(X ∩ Y) ≤ h(X) + h(Y ) − 1.

Our characterization of multipartite matroid ports is given in the following theorem.
Since every ideal access structure is a matroid port, this result provides a necessary
condition for a multipartite access structure to be ideal.

Theorem 5.3. Let Π = (P1, . . . ,Pm) be a partition of a set P and let Γ be a
connected Π -partite access structure on P . Consider Δ = supp(Γ ). Then Γ is a
matroid port if and only if there exists an integer polymatroid Z = (Jm,h) with
h({i}) ≤ |Pi | for every i ∈ Jm such that Δ is compatible with Z and minΠ(Γ ) =
min {u ∈ B(Z,X) : X ∈ Δ} .

Proof. Consider Π = (P1, . . . ,Pm), a partition of the set P , and the corresponding
partition Π0 = ({p0},P1, . . . ,Pm) of the set Q = P ∪ {p0}. Let M = (Q, r) be a con-
nected Π0-partite matroid and consider the Π -partite matroid port Γp0(M). Consider
as well the integer polymatroid Z ′ = (J ′

m,h) associated with M. Since M is connected,
h({0}) = 1 and h(Jm) = h(J ′

m). Moreover, h({i}) = r(Pi) ≤ |Pi | for every i ∈ Jm.
Finally, take Z = Z ′(Jm) and Δ = Δ0(Z ′) = supp(Γp0(M)) ⊆ P (Jm). By Proposi-
tion 4.4, we only have to prove that a subset A ⊆ P is in Γp0(M) if and only if there
exist a set X ∈ Δ and a vector u ∈ B(Z,X) such that Π(A) ≥ u.

Let D′ ⊆ Z
J ′
m+ be the set of independent vectors of Z ′. Consider a vector u ∈ Z

m+
such that u ∈ B(Z,X) for some X ∈ Δ, and a subset A ⊆ P with Π(A) = u. We can
suppose that X = {1, . . . , r}, and hence u = (u1, . . . , ur ,0, . . . ,0). Since Π0(A) = ũ =
(0, u1, . . . , ur ,0, . . . ,0) is an independent vector of Z ′, we see that A is an independent
set of M. On the other hand, Π0(A ∪ {p0}) = (1, u1, . . . , ur ,0, . . . ,0) /∈ D′ because
ũ(X) = u(X) is a basis of Z ′(X) and h(X ∪ {0}) = h(X). Therefore, A ∪ {p0} is a de-
pendent set of M. This, together with the independence of A, implies that A ∈ Γp0(M).



Ideal Multipartite Secret Sharing Schemes 449

Let A ⊆ P be a minimal qualified subset of Γp0(M) and take X = supp(A) ⊆ Jm.
We can suppose that X = {1, . . . , r}. Consider u = Π0(A) = (0, u1, . . . , ur ,0, . . . ,0).
Observe that u ∈ D′ because A is an independent set of M. The proof is concluded by
checking that u(X) is a basis of Z ′(X). If, on the contrary, u(X) is not a basis of Z ′(X),
we can suppose without loss of generality that v = (0, u1 + 1, u2, . . . , ur ,0, . . . ,0) is in
D′. Since A is a minimal qualified subset of Γp0(M), the set A ∪ {p0} is a circuit of
M, and hence B = (A ∪ {p0}) − {p1} is an independent set of M if p1 ∈ A ∩ P1. Then
w = Π0(B) = (1, u1 −1, u2, . . . , ur ,0, . . . ,0) ∈ D′. Since |v| > |w|, there exists i ∈ J ′

m

such that wi < vi and w + ei ∈ D′. This implies that (1, u1, u2, . . . , ur ,0, . . . ,0) =
Π0(A ∪ {p0}) ∈ D′, a contradiction concluding the proof. �

As a consequence of Theorem 5.3, we present in Proposition 5.5 several necessary
conditions for a multipartite access structure to be a matroid port that are efficiently
checkable from the family of its minimal vectors. The following lemma is used in its
proof.

Lemma 5.4. Let Γ be a connected m-partite matroid port and let Z = (Jm,h) be the
integer polymatroid whose existence is given by Theorem 5.3. Then u ∈ B(Z, supp(u))

for every u ∈ minΠ(Γ ).

Proof. If u ∈ minΠ(Γ ), then u ∈ B(Z,X) for some X ⊆ Jm. That is, u is an inde-
pendent vector of Z with supp(u) ⊆ X and |u| = h(X). Therefore, |u| ≤ h(supp(u)) ≤
h(X) = |u|, and hence |u| = h(supp(u)) and u ∈ B(Z, supp(u)). �

Proposition 5.5. Let Γ be a connected m-partite matroid port. Then the following
conditions are satisfied.

1. All minimal qualified subsets of Γ having the same support have the same cardi-
nality.

2. If A,B ∈ minΓ are such that supp(A) ⊆ supp(B), then |A| ≤ |B|.
3. If A,B,C ∈ minΓ are such that supp(C) = supp(A)∪ supp(B), then |C| ≤ |A|+

|B|.

Proof. By Lemma 5.4, |A| = h(supp(A)) for every A ∈ minΓ , where h is the rank
function of the integer polymatroid given by Theorem 5.3. This implies that all minimal
qualified subsets with the same support have the same cardinality. The other results are
now direct consequences of the properties of the rank function h. �

Collins [10] proved that, in every ideal tripartite access structure, all minimal quali-
fied subsets with maximum support (that is, equal to J3) have the same cardinality, and
he wondered whether this property can be generalized to all ideal multipartite access
structures. Herranz and Sáez [16] conjectured an affirmative answer. Proposition 5.5
proves and generalizes this conjecture.

We present in the following several examples showing how Theorem 5.3 and Propo-
sition 5.5 can be applied to decide whether an m-partite access structure is a matroid
port.
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Example 5.6. The following quadripartite access structures, which are described by
their minimal vectors, are not matroid ports because they do not satisfy all the conditions
in Proposition 5.5.

• minΠ(Γ1) = {(2,2,1,1), (1,3,1,2), (2,1,2,1), (1,1,2,2)}.
• minΠ(Γ2) = {(2,2,0,0), (1,1,1,0)}.
• minΠ(Γ3) = {(2,1,0,0), (0,0,1,2), (1,3,3,1)}.

Therefore, these access structures are not ideal. Moreover, by Theorem 2.2, in every
secret sharing scheme for one of these access structures, the length of one of the shares
must be at least 3/2 times the length of the secret.

Example 5.7. Let Γ be a quadripartite access structure such that

minΠ(Γ ) = {
u ∈ Z

4+ : (1,1,1,1) ≤ u ≤ (3,4,4,4) and |u| = 8
} ∪ {

(4,0,0,0)
}
.

This structure satisfies the necessary conditions in Proposition 5.5. Suppose that Γ

is a matroid port and consider the integer polymatroid Z ′ = (J ′
4, h) associated to the

corresponding 5-partite matroid. From Theorem 5.3, all vectors u ∈ minΠ(Γ ) with
supp(u) = J4 are in B, the family of the bases of the integer polymatroid Z = Z ′(J4).
We claim that

B ⊆ A = {
u ∈ Z

4+ : (1,1,1,1) ≤ u ≤ (4,4,4,4) and |u| = 8
}
.

Consider u ∈ B. If u ∈ minΠ(Γ ), then u ∈ A. If u /∈ minΠ(Γ ), by Theorem 5.3 there
exist Y � J4 and v ∈ B(Z, Y ) such that v < u and v ∈ minΠ(Γ ). Clearly, this im-
plies that (4,0,0,0) < u, and hence ui ≤ 4 if 2 ≤ i ≤ 4 because |u| = 8. Suppose that
u �≤ (4,4,4,4). This implies that u1 ≥ 5, but this is a contradiction with the fact that
h({1}) = 4 because (4,0,0,0) ∈ minΠ(Γ ). Suppose now that (1,1,1,1) �≤ u. With-
out loss of generality we can assume that u2 = 0. Take v = (2,1,2,3) ∈ B. Since
v2 > u2, there exists j ∈ J4 with vj < uj and w = v − e2 + ej ∈ B, which implies that
w ∈ Π(Γ ), but this is not possible because w1 < 4 and w2 = 0. Therefore, (1,1,1,1) ≤
u ≤ (4,4,4,4) and our claim is proved. Since h(X) = max{|u(X)| : u ∈ B} for every
X ⊆ J4, we obtain that h(X) = 4 if |X| = 1, and h(X) = 6 if |X| = 2, and h(X) = 7
if |X| = 3, and h(J4) = 8. Then (3,3,0,0) ∈ B(Z, {1,2}) and, since {1,2} ∈ Δ, this
implies that (3,3,0,0) ∈ Π(Γ ), a contradiction. Therefore, Γ is not a matroid port.

Example 5.8. Consider now the quadripartite access structure defined by

minΠ(Γ1) = {
(2,0,0,0), (1,2,0,0), (1,0,2,0), (1,1,0,2), (1,0,1,2),

(0,2,1,1), (0,1,2,1), (0,1,1,2), (1,1,1,1)
}
.

In this case, Δ = supp(Γ1) is such that minΔ = {{1}, {2,3,4}}. Clearly, Γ1 sat-
isfies the necessary conditions in Proposition 5.5. At this point, we can assume
that Γ1 is a matroid port and we can try to determine the integer polymatroid
Z1 = (J4, h1) whose existence is given by Theorem 5.3. By inspecting the vec-
tors in minΠ(Γ1), we can determine the rank function of this integer polymatroid.
From Lemma 5.4, h1({1}) = 2, and h1({1,2}) = h1({1,3}) = 3, and h1({1,2,4}) =
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h1({1,3,4}) = h1({2,3,4}) = h1(J4) = 4. In addition, by taking into account that the
minimal vectors in Π(Γ ) are independent vectors of Z1, we obtain that h1({i}) ≥ 2
for all i ∈ J4, and h1(X) ≥ 3 for every X ⊆ J4 with |X| = 2. Since Δ must be
compatible with Z1, we have by Proposition 5.2 that h1({i}) < h1({1, i}) for ev-
ery i �= 2 and h1(X) < h1({2,3,4}) = 4 for every X � {2,3,4}. This implies that
h1({2}) = h1({3}) = 2 and h1(X) = 3 for every X ⊆ {2,3,4} with |X| = 2. By apply-
ing Proposition 5.2 again, 3 = h1({2,3}) < h1({1,2,3}), and hence h1({1,2,3}) = 4.
If h1({1,4}) = 3, then (1,0,0,2) ∈ B(Z1, {1,4}) and (1,0,0,2) ∈ Π(Γ1), a contradic-
tion. Therefore, h1({1,4}) = 4. Analogously, (1,0,0,3) ∈ Π(Γ1) if h1({4}) = 3, which
implies that h1({4}) = 2. At this point, the rank function is completely determined.
Summarizing,

• h1({i}) = 2 for all i ∈ J4, and
• h1(X) = 3 for every X ⊆ J4 with |X| = 2 except for h1({1,4}) = 4, and
• h1(X) = 4 for all X ⊆ J4 with |X| ≥ 3.

Observe that Δ is compatible with Z1 and, moreover, it is easy to check that Γ1 is
actually the quadripartite matroid port determined by Δ and Z1.

Example 5.9. Our last example is the quadripartite access structure with

minΠ(Γ2) = {
(2,0,0,0), (1,2,0,0), (1,0,2,1), (1,1,2,0), (1,1,0,2),

(1,0,1,2), (0,2,1,1), (0,1,2,1), (0,1,1,2), (1,1,1,1)
}
.

This access structure is also a matroid port. Actually, the corresponding integer polyma-
troid Z2 = (J4, h2) can be determined by using similar arguments as in Example 5.8. In
this case, we have h2({1,3}) = h2({1,4}) = 4 and the other values of the rank function
h2 coincide with the ones of rank function h1 in the previous example.

6. Representable Multipartite Matroids

The main result of this section, Theorem 6.1, deals with the application to multipartite
access structures of the sufficient condition in Theorem 2.1. Specifically, it relates the
linear representations of a multipartite matroid with the linear representations of its as-
sociated polymatroid. In particular, it provides a sufficient condition for a multipartite
access structure to be ideal that depends only on the minimal vectors of the structure,
and is independent from the number of players in every part. Moreover, given a multi-
partite access structure satisfying this sufficient condition, a method to construct vector
space secret sharing schemes for it, which is discussed in Sect. 6.2, can be derived from
Theorem 6.1.

Theorem 6.1. Let M = (Q, r) be an m-partite matroid such that |Q| = n and
r(M) = k and let Z = (Jm,h) be its associated integer polymatroid. Let K be a fi-
nite field. If M is K-representable, then so is Z . In addition, if Z is K -representable,
then M is L-representable for every field extension L of K such that |L| > (

n
k

)
.
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6.1. Proof of Theorem 6.1

The first claim in the statement is not difficult to prove. Let Π = (Q1, . . . ,Qm) be an
m-partition of Q and let M = (Q, r) be a Π -partite matroid, and consider its associated
integer polymatroid Z = (Jm,h). Suppose that M is represented over the field K by a
matrix M . For every i ∈ Jm, consider the subspace Vi spanned by the columns of M

corresponding to the points in Qi . Then h(X) = r(
⋃

i∈X Qi) = dim(
∑

i∈X Vi) for ev-
ery X ⊆ Jm. Therefore, the subspaces V1, . . . , Vm are a K-representation of the integer
polymatroid Z .

The proof for the second claim in the theorem is much more involved and needs sev-
eral partial results. Since a K-representable integer polymatroid is also L-representable
for every field extension L of K , it is enough to prove that, for every finite field with
|K| > (

n
k

)
, the matroid M is K-representable if the associated integer polymatroid Z is

K-representable.
Assume that |K| >

(
n
k

)
and that Z is K -representable. Since h(Jm) = r(M) = k,

there exists a K -representation of Z consisting of subspaces V1, . . . , Vm of the K -
vector space E = K

k . Consider the subset D̃ ⊆ Z
m+ defined as follows. An integer vector

u ∈ Z
m+ is in D̃ if and only if there exists a sequence (A1, . . . ,Am) of subsets of E such

that

1. Ai ⊆ Vi and |Ai | = ui for every i ∈ Jm,
2. Ai ∩ Aj = ∅ if i �= j , and
3. A1 ∪ · · · ∪ Am ⊆ E is an independent set of vectors.

Lemma 6.2. In this situation, D̃ is the family of independent vectors of the integer
polymatroid Z .

Proof. Let D be the family of independent vectors of Z . If (A1, . . . ,Am) is a sequence
of subsets of E corresponding to an integer vector u ∈ D̃, then |u(X)| = ∑

j∈X |Aj | ≤
dim(

∑
j∈X Vj ) = h(X) for every X ∈ Jm, and hence u ∈ D. Therefore, D̃ ⊆ D.

We assert that the subset D̃ ⊆ Z
m+ is the family of independent vectors of some inte-

ger polymatroid Z̃ = (Jm, h̃). Clearly, D̃ �= ∅ and, since D̃ ⊆ D, it is finite. Moreover,
it is obvious that v ∈ D̃ if v ≤ u and u ∈ D̃. Consider u,v ∈ D̃ with |u| < |v|. Among
all possible pairs of sequences (A1, . . . ,Am) and (B1, . . . ,Bm) corresponding, respec-
tively, to the integer vectors u and v, we choose one maximizing

∑m
j=1 |Aj ∩ Bj |.

Let A = A1 ∪ · · · ∪ Am and B = B1 ∪ · · · ∪ Bm. Since |B| > |A|, there exists a vec-
tor x ∈ B − A such that A ∪ {x} is an independent set. We claim that, if x ∈ Bi ,
then |Bi | > |Ai |. If, on the contrary, |Bi | ≤ |Ai |, there must exist y ∈ Ai − Bi . Then
(A′

1, . . . ,A
′
i , . . . ,A

′
m), where A′

i = (Ai ∪{x})−{y} and A′
j = Aj if j �= i, is a sequence

corresponding to u such that
∑m

j=1 |A′
j ∩Bj | > ∑m

j=1 |Aj ∩Bj |, a contradiction. There-

fore, by considering the sequence (A1, . . . ,Ai ∪ {x}, . . . ,Am), we see that u + ei ∈ D̃.
This proves our assertion.

Take X ⊆ Jm. Clearly, h̃(X) = max{|u(X)| : u ∈ D̃} ≤ dim(
∑

j∈X Vj ) = h(X). On
the other hand, by considering a basis of the subspace

∑
j∈X Vj , we can find a vector

u ∈ D̃ with |u(X)| = dim(
∑

j∈X Vj ), and hence h̃(X) ≥ h(X). Therefore, Z̃ = Z and

D̃ = D. �
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Lemma 6.3. If the integer vector u ∈ Z
m+ is a basis of Z , then there exists a basis

B = B1 ∪ · · · ∪ Bm of the vector space E such that Bi ⊆ Vi and |Bi | = ui for every
i ∈ Jm, and Bi ∩ Bj = ∅ if i �= j .

Proof. A direct consequence Lemma 6.2. �

For every i ∈ Jm, take ki = dimVi and ni = |Qi |. Then n = n1 + · · · + nm. Consider
the space M of all k × n matrices over K of the form (M1|M2| · · · |Mm), where Mi is
a k × ni matrix whose columns are vectors in Vi . Observe that the columns of every
matrix M ∈ M can be indexed by the elements in Q, corresponding the columns of Mi

to the points in Qi . The proof of Theorem 6.1 is concluded by proving that there exists
a matrix M ∈ M whose columns are a K-representation of the matroid M.

Lemma 6.4. If A ⊆ Q is a dependent subset of the matroid M, then, for every M ∈ M,
the columns of M corresponding to the elements in A are linearly dependent.

Proof. Since u = Π(A) /∈ D, there exists X ⊆ Jm such that |u(X)| > h(X) =
dim(

∑
j∈X Vj ). Then the columns of M corresponding to the elements in A ∩

(
⋃

j∈X Qj ) must be linearly dependent. �

Therefore, Lemma 6.6 concludes the proof of Theorem 6.1. The following techni-
cal lemma is needed to prove it. Recall that, over a finite field K, there exist nonzero
polynomials p ∈ K[X1, . . . ,XN ] on N variables such that p(x1, . . . , xN) = 0 for every
(x1, . . . , xN) ∈ K

N .

Lemma 6.5. Let p ∈ K[X1, . . . ,XN ] be a nonzero polynomial on N variables with
degree at most d < |K| on each variable. Then, there exists a point (x1, . . . , xN) in K

N

such that p(x1, . . . , xN) �= 0.

Proof. The proof is by induction on N . The result is clear if N = 1, because in this
case p has at most d roots. If N > 1, we can write p = ∑t

i=0 piX
i
N , where pi is a

polynomial on the variables X1, . . . ,XN−1 for i = 0, . . . , t , and pt �= 0. By the induc-
tion hypothesis, there exists a point (x1, . . . , xN−1) ∈ K

N−1 with pt(x1, . . . , xN−1) �= 0.
By fixing these values for the N − 1 first variables, we obtain a nonzero polynomial
p(x1, . . . , xN−1,XN) of degree t ≤ d on the variable XN . Then there exists xN ∈ K

with p(x1, . . . , xN−1, xN) �= 0. �

Lemma 6.6. There exists a matrix M ∈ M such that, for every basis B ⊆ Q of the
matroid M, the corresponding columns of M are linearly independent.

Proof. By fixing a basis of Vi for every i ∈ Jm, we obtain one-to-one mappings
φi : Kki → Vi ⊆ K

k. Let N = ∑m
i=1 kini . By using the mappings φi , we can construct a

one-to-one mapping Ψ : KN = (Kk1)n1 × · · · × (Kkm)nm → M. That is, by choosing an
element in K

N , we obtain ni vectors in Vi for every i ∈ Jm. For every basis B ⊆ Q of the
matroid M, we consider the mapping fB : KN → K defined by fB(x) = det(Ψ (x)B),
where Ψ (x)B is the square submatrix of Ψ (x) formed by the k columns corresponding



454 O. Farràs, J. Martí-Farré, and C. Padró

to the elements in B . Clearly, fB is a polynomial on at most N variables and with de-
gree at most 1 on each variable, because every variable appears in at most one column
of Ψ (x)B , and every entry of this matrix is an homogeneous polynomial of degree 1.
Let B be a basis of M and u = Π(B) ∈ Z

m+. From Lemma 6.3, there exists a basis
of K

k of the form B̃ = B1 ∪ · · · ∪ Bm with Bi ⊆ Vi and |Bi | = ui for every i ∈ Jm.
By placing the vectors in B̃ in the suitable positions in a matrix M ∈ M, we can find
a vector xB ∈ K

N such that fB(xB) �= 0, and hence the polynomial fB is nonzero for
every basis B of M. Therefore, if B(M) is the family of bases of the matroid M, the
polynomial f = ∏

B∈B(M) fB is a nonzero polynomial on N variables with degree at
most

(
n
k

)
< |K| on each variable, because |B(M)| ≤ (

n
k

)
. From Lemma 6.5, there exists

a point x0 ∈ K
N such that f(x0) �= 0, and hence fB(x0) �= 0 for every basis B of M.

Clearly, the matrix Ψ (x0) is the one we are looking for. �

6.2. Constructing Ideal Multipartite Secret Sharing Schemes

A sufficient condition for a multipartite access structure to be ideal is easily derived from
Theorem 6.1. More precisely, a necessary and sufficient condition for a multipartite
access structure to admit a vector space secret sharing scheme is obtained. In addition,
an upper bound on the minimum size of the fields for which such a scheme exists is
given.

Corollary 6.7. Let Γ = Γp0(M) be an m-partite matroid port, and let Z ′ be the in-
teger polymatroid associated with the (m + 1)-partite matroid M. Then Γ is a vector
space access structure if and only if the integer polymatroid Z ′ is representable. More-
over, if Z ′ is K-representable, then Γ is an L-vector space access structure for every
field extension L of K with |L| ≥ (

n+1
k

)
, where n is the number of participants and k is

the rank of the matroid M.

Example 6.8. We apply this condition to the multipartite matroid ports Γ1 = Γp0(M1)

and Γ2 = Γp0(M2) from Examples 5.8 and 5.9, respectively. The first one does not
admit any vector space secret sharing scheme because the rank function of the integer
polymatroid Z1 = (J4, h1) violates Ingleton inequality (see [15], for instance), which
has to be satisfied by every representable integer polymatroid. This implies that the
integer polymatroid Z ′

1 associated with M1 is not representable. Moreover, it is easy to
check that the Vamos matroid is a minor of M1. By taking into account that the ports
of the Vamos matroid are not ideal [37] and the folklore results about minors of access
structures that are discussed in [24], we see that the access structure Γ1 is not ideal.
On the other hand, Γ2 is a K-vector space access structure for fields of all characteristics.
Actually, if K is a finite field and {v1, . . . , v4} is a basis of K

4, the subspaces V0 =
〈v1 + v2 + v3 + v4〉, V1 = 〈v2, v1 + v3 + v4〉, V2 = 〈v1, v2〉, V3 = 〈v1, v3〉, and V4 =
〈v1, v4〉 are a representation of the integer polymatroid Z ′

2 associated with M2.

As we said before, the existence of efficient methods to construct ideal multipartite
access structures is an open problem. Even though the proof of Theorem 6.1 can be
seen as constructive, it does not provide an efficient algorithm to obtain a representation
of a multipartite matroid from a representation of its associated integer polymatroid.
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Because of that, we cannot derive from Theorem 6.1 an efficient method to construct a
vector space secret sharing scheme for every given multipartite matroid port satisfying
the condition in Corollary 6.7.

Another open problem is to determine the minimum size of the finite fields K for
which a matroid port in the conditions of Corollary 6.7 admits a K-vector space secret
sharing scheme. Upper and lower bounds on the field size were given by Beutelspacher
and Wettl [4] for some multilevel access structures with two levels. Upper bounds for the
case of three levels have been presented recently by Giuletti and Vincenti [14]. Observe
that a general upper bound can be derived from Corollary 6.7, which is exponential in
the number of participants. Nevertheless, it is not known to which extent this general
upper bound can be improved.

Nevertheless, our results make it possible to better mark the boundary of these open
problems. In addition, while these open problems have been previously studied for
particular families of multipartite access structures [1,2,4,7,14,16,31,34,42,43], our ap-
proach makes it possible to state them in the most general possible way.

Open Problem 6.9. Determine the existence of efficient algorithms to find represen-
tations of multipartite matroids from representations of their associated polymatroids.

Open Problem 6.10. Given a representable multipartite matroid, determine the mini-
mum size of the fields over which it admits a representation.

Of course, since every matroid is multipartite, Open Problem 6.10 is connected to ex-
tremely difficult open problems about matroid representation. Therefore, one can only
expect to find lower and upper bounds for some special classes of multipartite ma-
troids. A method to attack Open Problem 6.9 is derived from the proof of Theorem 6.1.
Specifically, in order to find a representation of an m-partite matroid M whose as-
sociated polymatroid Z is representable, we have to search for a matrix of the form
(M1|M2| · · · |Mm) over some finite field K, in which the submatrices Mi are in one-
to-one correspondence with the subspaces Vi representing the integer polymatroid Z .
The columns of every submatrix Mi are vectors in the corresponding subspace Vi . The
existence of such a matrix representing the matroid M is guaranteed by Theorem 6.1.
The constructions of ideal multipartite secret sharing schemes in [1,2,7,16,31,34,42,43]
follow a common strategy. Namely, such a matrix M is constructed in some way and
then one has to check that, for every basis of the matroid M, the corresponding columns
of M are linearly independent. Or, alternatively, the matrix M is constructed column by
column and at every step one has to do the necessary checks for linear independence. If
the field K is large enough, the columns of M can be randomly chosen with high suc-
cess probability. The aforementioned works differ in the method to construct the matrix
M , and some of those proposals are less inefficient than the others, but most of them
require a huge number of checks for linear independence, which can grow exponentially
with the number of participants. Brickell [7] proposed a method to avoid these checks,
but it requires the size of the base field to be extremely large. The same happens in the
random approach if a reasonable success probability is required.
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7. Bipartite and Tripartite Access Structures

In this section, we apply our general results on ideal multipartite access structures to
completely characterize the ideal bipartite and tripartite access structures. The char-
acterization of ideal bipartite access structures was done previously in [34], but only
partial results were known about the tripartite case [1,10,16].

We begin by characterizing the bipartite and tripartite matroid ports. This is done in
Sect. 7.1 by applying Theorem 5.3 to the particular cases m = 2 and m = 3. In Sect. 7.2,
we use Theorem 6.1 to prove that all matroids corresponding to those access structures
are representable. Therefore, all matroid ports in these families are ideal and, by The-
orem 2.2, in every secret sharing scheme for a non-ideal bipartite or tripartite access
structure, the length of one of the shares must be at least 3/2 times the length of the
secret.

We observe that this approach cannot provide a characterization of ideal multipartite
access structures with more than three parts. This is due to the fact that the Vamos
matroid is quadripartite and it is not ss-representable. Therefore, there exist quadripartite
matroid ports that are not ideal.

7.1. Characterizing Bipartite and Tripartite Matroid Ports

Let Γ be a bipartite matroid port, that is, a Π -partite matroid port for some bipartition
Π = (P1,P2) of the set P of participants. The rank function of the integer polymatroid
Z = (J2, h) whose existence is given by Theorem 5.3 is completely determined by the
values ri = h({i}) ≤ |Pi | for i ∈ J2 and s = h({1,2}). Moreover, from the definition of
polymatroid and Proposition 5.2, the integer values r1, r2, s ∈ Z are the values of the
rank function of an integer polymatroid that is compatible with Δ = supp(Γ ) if and
only if the following conditions are satisfied for every i ∈ J2.

1. 0 ≤ ri ≤ s ≤ r1 + r2.
2. ri > 0 if {i} ∈ Δ, and s > ri if {i} /∈ Δ.
3. r1 + r2 > s if {{1}, {2}} ⊆ Δ.

In addition, the sets B(Z,X) can be easily described by

• B(Z, J2) = {v ∈ Z
2+ : (s − r2, s − r1) ≤ v ≤ (r1, r2) and |v| = s}, and

• B(Z, {1}) = {(r1,0)}, and B(Z, {2}) = {(0, r2)}.
Therefore, a bipartite access structure is a matroid port if and only if there exist integers
r1, r2, s in the above conditions such that minΠ(Γ ) = min{u ∈ B(Z,X) : X ∈ Δ}.

We proceed in a similar way to characterize the tripartite matroid ports. Consider
now a tripartition Π = (P1,P2,P3) of a set P and Π -partite matroid port Γ on P . The
values of a rank function of the corresponding integer polymatroid Z = (J3, h) will
be denoted by ri = h({i}) ≤ |Pi |, where i ∈ J3, and si = h({j, k}) if {i, j, k} = J3, and
s = h(J3). The integer values ri , si , and s, where i ∈ J3, univocally determine a discrete
polymatroid Z with ground set J3 that is compatible with Δ = supp(Γ ) if and only if
the following conditions are satisfied for every i, j, k with {i, j, k} = J3.

1. 0 ≤ ri ≤ sj ≤ s.
2. si ≤ rj + rk , and s ≤ si + ri , and s + ri ≤ sj + sk .
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3. ri > 0 if {i} ∈ Δ, and ri < sj if {i} /∈ Δ and {i, k} ∈ Δ, and si < s if {j, k} /∈ Δ.
4. si < rj + rk if {{j}, {k}} ⊆ Δ.
5. s + ri < sj + sk if {i} /∈ Δ and {{i, j}, {i, k}} ⊆ Δ.
6. s < si + ri if {{i}, {j, k}} ⊆ Δ.

In this case the sets B(Z,X) can be described by

• B(Z, J3) = {v ∈ Z
m+ : (s − s1, s − s2, s − s3) ≤ v ≤ (r1, r2, r3) and |v| = s},

• B(Z, {1,2}) = {v ∈ Z
m+ : (s3 − r2, s3 − r1,0) ≤ v ≤ (r1, r2,0) and |v| = s3}, and

• B(Z, {1}) = {(r1,0,0)},
and we obtain by symmetry the descriptions for the other sets B(Z,X). In conclusion,
a tripartite access structure Γ is a matroid port if and only if there exist integers ri , si ,
and s, where i ∈ J3, satisfying the previous conditions such that minΠ(Γ ) = min{u ∈
B(Z,X) : X ∈ Δ}.

7.2. All Bipartite and Tripartite Matroid Ports Are Ideal

Hammer, Romashchenko, Shen and Vereshchagin [15] proved that every integer poly-
matroid with ground set Jm with m ≤ 3 is representable. Nevertheless, to prove that
every tripartite matroid port is ideal we need the slightly more general result in Propo-
sition 7.1.

Let Z be an integer polymatroid with ground set J3 that is represented over the field K

by three subspaces V1,V2,V3 of a vector space E. If ri , si and s are the integer values
of the rank function of Z , then ri = dimVi for every i ∈ J3, and si = dim(Vj + Vk)

if {i, j, k} = J3, and s = dim(V1 + V2 + V3). If {i, j, k} = J3, consider ti = rj +
rk − si = dim(Vj ∩ Vk). Observe that t = dim(V1 ∩ V2 ∩ V3) is not determined in gen-
eral by Z . That is, there can exist different representations of Z with different val-
ues of t . Nevertheless, there exist some restrictions on this value. Of course, t ≤ ti
for every i ∈ J3. In addition, since (V1 ∩ V3) + (V2 ∩ V3) ⊆ (V1 + V2) ∩ V3, we have
dim((V1 +V2)∩V3)−dim((V1 ∩V3)+ (V2 ∩V3)) = ∑

si −∑
ri − (s − t) ≥ 0. There-

fore, max{0, s − ∑
si + ∑

ri} ≤ t ≤ min{t1, t2, t3}.

Proposition 7.1. Let Z be an integer polymatroid with ground set J3. Consider an
integer t with max{0, s − ∑

si + ∑
ri} ≤ t ≤ min{t1, t2, t3} and 	 = ∑

si − ∑
ri −

(s − t). Let K be a field with |K| ≥ s3 + 	. Then there exists a K-representation of Z
given by subspaces V1,V2,V3 ⊆ E = K

s with dim(V1 ∩ V2 ∩ V3) = t .

Proof. Consider two subspaces V,W ⊆ E such that dimV = s3 and E = V ⊕ W .
Given a basis {v1, . . . , vs3} of V , consider the mapping v: K → V defined by v(x) =∑s3

i=1 xi−1vi . Observe that the vectors v(x) have Vandermonde coordinates with respect
to the given basis of V . This implies that every set of at most s3 vectors of the form v(x)

is independent.
Consider three disjoint sets T3,R1,R2 ⊆ {v(x) : x ∈ K} ⊆ V with |T3| = t3, |R1| =

r1 − t3, and |R2| = r2 − t3. The subspaces V1 ⊆ V and V2 ⊆ V , spanned, respectively,
by T3 ∪ R1 and T3 ∪ R2, are such that V1 + V2 = V and have dimensions dimV1 = r1

and dimV2 = r2.
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At this point, we have to find a suitable subspace V3 ⊆ E to complete the rep-
resentation of Z . Consider sets T ⊆ T3 with |T | = t , and A1 ⊆ R1 and A2 ⊆ R2
with |A1| = t2 − t and |A2| = t1 − t , and B ⊆ {v(x) : x ∈ K} with |B| = 	 and
B ∩ (T3 ∪ R1 ∪ R2) = ∅. Finally, take V3 = U ⊕ W , where U ⊆ V is the subspace
spanned by T ∪ A1 ∪ A2 ∪ B .

Since |T ∪ A1 ∪ A2 ∪ B| = s3 + r3 − s ≤ s3, this is an independent set of vectors
and, hence, it is a basis of U . Therefore, dimV3 = r3. We assert that dim(V3 ∩ V1) = t2.
Effectively, it is clear that dim(V3 ∩V1) = dim(U ∩V1). The sets T3 ∪R1 and T ∪A1 ∪
A2 ∪B are bases of V1 and U , respectively. The intersection of these two sets is T ∪A1,
which has cardinality t2, and their union is T3 ∪ R1 ∪ A2 ∪ B , which is an independent
set because its cardinality is s3 − (s − s2) ≤ s3. This proves our assertion. Analogously,
dim(V3 ∩ V1) = t1. Therefore, dim(V1 + V3) = s2 and dim(V2 + V3) = s1. A similar
argument as before proves that dim(V1 ∩ V2 ∩ V3) = t . �

As we said before, next corollary was proved in [15], but we need the more general
result in Proposition 7.1 for our characterization of ideal tripartite access structures.
Corollary 7.3 is a direct consequence of Theorem 6.1 and Corollary 7.2.

Corollary 7.2. Every integer polymatroid with ground set Jm with m ≤ 3 is repre-
sentable over finite fields of all characteristics.

Corollary 7.3. Every m-partite matroid with m ≤ 3 is representable over finite fields
of all characteristics.

Corollary 7.4. Every bipartite matroid port is ideal. More specifically, every bipartite
matroid port is a vector space access structure over finite fields of all characteristics.

Proof. If Γp0(M) is a bipartite matroid port, then the matroid M is tripartite and,
from Corollary 7.3, it is representable over finite fields of all characteristics. �

The next lemma is a well-known result of linear algebra. It will be used in the proof
of Theorem 7.6.

Lemma 7.5. Let K be a field with |K| > n and let V and W1, . . . ,Wn be subspaces of
a K-vector space E such that V �⊆ Wi for every i = 1, . . . , n. Then V �⊆ ⋃n

i=1 Wi .

Theorem 7.6. Every tripartite matroid port is ideal. More specifically, every tripartite
matroid port is a vector space access structure over finite fields of all characteristics.

Proof. Let Γ = Γp0(M) be a tripartite matroid port. By Theorem 6.1, we only have
to prove that the integer polymatroid Z ′ = (J ′

3, h) associated to M is representable
over finite fields of all characteristics. Consider Δ = supp(Γ ) and the values ri, si , s,
where i = 1,2,3, of the rank function of the integer polymatroid Z = Z ′(J3) = (J3, h).
Take ti = rj + rk − si for {i, j, k} = J3. From Proposition 7.1, for every integer t such
that max{0, s − ∑

si + ∑
ri} ≤ t ≤ min{t1, t2, t3} and for every large enough field K,

there exists a K-representation of Z formed by subspaces V1,V2,V3 ⊆ E = K
s with
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dim(V1 ∩ V2 ∩ V3) = t . The proof is concluded by finding a vector x0 ∈ E such that the
subspace V0 = 〈x0〉 together with the subspaces V1,V2,V3 form a K-representation of
Z ′. We distinguish several cases, depending on the access structure Δ. Remember that
the values ri, si , s must satisfy the conditions in Sect. 7.1.

1. minΔ = {{1}}. In this case, we have to choose a vector x0 ∈ V1 such that x0 /∈
V2 + V3. Such a vector exists because {2,3} /∈ Δ and hence s1 < s.

2. minΔ = {{1}, {2}}. Then s3 < r1 + r2 and s + r3 < s1 + s2. In particular, t3 =
r1 + r2 − s3 > max{0, s − ∑

si + ∑
ri}. Therefore, we can take t < t3, and hence

there exists a representation of Z such that V1 ∩ V2 �⊆ V3. Now, we only have to
take a vector x0 ∈ V1 ∩ V2 such that x0 /∈ V3.

3. minΔ = {{1}, {2}, {3}}. In this situation, si < rj + rk whenever {i, j, k} = J3.
Therefore, min{t1, t2, t3} > 0 and there exists a representation of Z with V1 ∩
V2 ∩ V3 �= {0}.

4. minΔ = {{1}, {2,3}}. Then s < r1 + s1. In addition, s + r2 < s1 + s3 and s + r3 <

s1 + s2. Observe that dim(V1 ∩ (V2 + V3)) = r1 + s1 − s > 0. Moreover, we assert
that V1 ∩ (V2 +V3) �⊆ Vi if i �= 1. Suppose that, for instance, V1 ∩ (V2 +V3) ⊆ V2.
This implies that V1 ∩ (V2 + V3) = V1 ∩ V2 and, by considering the dimensions
of these subspaces, r1 + s1 − s = r1 + r2 − s3. Since s + r2 < s1 + s3, we have
obtained a contradiction that proves our assertion. Finally, we take a vector x0 ∈
V1 ∩ (V2 + V3) such that x0 /∈ V2 and x0 /∈ V3.

5. minΔ = {{1,2}}. For i ∈ {1,2}, we have si < s and, hence, V1 + V2 �⊆ Vi + V3.
Then there exists a vector x0 ∈ V1 + V2 such that x0 /∈ V2 + V3 and x0 /∈ V1 + V3.

6. minΔ = {{1,2}, {2,3}}. Consider V = (V1 + V2) ∩ (V2 + V3). Observe that
dimV = s3 + s1 − s > r2 = dimV2. Therefore, V �⊆ V2. In addition, since V ′ =
V2 + (V1 ∩ V3) ⊆ V ,

E = (V1 + V3) + V ′ ⊆ (V1 + V3) + V ⊆ E, (1)

and V1 +V3 �= E because s2 < s. Therefore, there exists a vector x0 ∈ V such that
x0 /∈ V1 + V3 and x0 /∈ V2.

7. minΔ = {{1,2}, {2,3}, {3,1}}. Consider W = (V1 +V2)∩ (V2 +V3)∩ (V3 +V1).
Because of (1), dimW = ∑

si − 2s. Clearly, if {i, j, k} = J3, then W ∩ Vi = Vi ∩
(Vj + Vk) and, hence, dim(W ∩ Vi) = ri + si − s. Since dimW − dim(W ∩ Vi) =
sj + sk − s − ri > 0, we have proved that W �⊆ Vi for every i ∈ J3. Therefore,
there exists a vector x0 ∈ W such that x0 /∈ Vi for every i ∈ J3.

8. minΔ = {{1,2,3}}. In this case si < s for every i ∈ J3 and there exists a vector
x0 ∈ E such that x0 /∈ Vj + Vk for every {j, k} ⊆ J3.

Clearly, the cases that are not considered here are solved by symmetry. �

8. Other Ideal Multipartite Access Structures

Several constructions of ideal secret sharing schemes for different families of multipar-
tite access structures have been proposed in the literature [2,7,16,21,31,39,42,43]. In
order to illustrate the connection of our general results on ideal multipartite secret shar-
ing schemes with those previous works on the topic, we prove in an alternative way that
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some of those access structures are ideal. Similar proofs can be obtained for the other
ones.

8.1. Multilevel Access Structures

We consider first a family of multipartite access structures with hierarchical properties.
Given a partition Π = (P1, . . . ,Pm) of the set P of participants and a monotone in-
creasing sequence of integer values 0 < t1 < · · · < tm, consider the Π -partite access
structure determined by

Π(Γ ) =
{

u ∈ P : there exists i ∈ Jm such that
i∑

j=1

uj ≥ ti

}

,

where P = Π(P (P )) ⊆ Z
m+. This structure is hierarchical, in the sense that, if A ∈ Γ

and j < i, then a participant in A ∩ Pi can be replaced by a participant in Pj − A

and the new set is still qualified. This family of access structures was introduced by
Simmons [39], who called them multilevel access structures. Brickell [7] showed how
to construct ideal secret sharing schemes for them.

By using our general results on multipartite secret sharing, we present in the follow-
ing an alternative proof for the fact that these multipartite access structures are ideal.
We use a special class of integer polymatroids, the boolean polymatroids. Given a fi-
nite set B and a family of subsets {B1, . . . ,Bm} ⊆ P (B), it is easy to check that the
mapping h: P (Jm) → Z defined by h(X) = |⋃i∈X Bi | is the rank function of an integer
polymatroid Z = (Jm,h). Such integer polymatroids are called boolean and we prove
next that they are representable over every finite field. Let K be a finite field and take a
basis {e1, . . . , ek} of E = K

k , where k = |B|. We can assume that B = {e1, . . . , ek}. For
every i ∈ Jm, consider the subspace Vi ⊆ E spanned by the vectors in Bi . Clearly, the
subspaces (V1, . . . , Vm) are a K-representation of the integer polymatroid Z .

Given a sequence of integers 0 < t1 < · · · < tm, consider the set B = {1, . . . , tm} and,
for every i ∈ Jm, the subset Bi = {1, . . . , ti} together with B0 = {1}. This defines a
boolean polymatroid Z ′ = (J ′

m,h) with h({0}) = 1 and h({i}) = ti for every i ∈ Jm. We
claim that, if |Pi | ≥ ti for every i ∈ Jm, the access structure Γ that was defined before
coincides with the Π -partite matroid port Γ̂ that is determined by the integer polyma-
troid Z ′. Recall that Γ̂ is such that minΠ(Γ̂ ) = min{u ∈ B(Z,X) : X ∈ Δ}, where
Z = Z ′(Jm) and Δ = supp(Γ̂ ) = Δ0(Z ′). Clearly, Δ consists of all nonempty sub-
sets of Jm. In addition, h(X) = ti , where i ∈ Jm is the maximum element in X ⊆ Jm.
Consider u ∈ Π(Γ ), let i ∈ Jm be the minimum value such that

∑i
j=1 uj ≥ ti , and

consider a vector v ≤ u such that
∑i

j=1 vj = ti and vj = 0 for all j > i. Clearly,
|v({1, . . . , i})| = ti = h({1, . . . , i}) and |v(X)| ≤ h(X) for every X ⊆ {1, . . . , i}. There-
fore, v ∈ B(Z, {1, . . . , i}), which implies that v ∈ Π(Γ̂ ), and hence u ∈ Π(Γ̂ ). Sup-
pose now that u ∈ minΠ(Γ̂ ). Then there exists X ⊆ Jm such that u ∈ B(Z,X). If
i = maxX, then |u| = h(X) = h({1, . . . , i}) = ti , which implies that u ∈ Π(Γ ). This
proves our claim. Since the integer polymatroid Z ′ is representable over every finite
field, the multilevel access structure Γ is a vector space access structure over fields of
all characteristics if |Pi | ≥ ti for all i ∈ Jm. If |Pi | < ti for some i ∈ Jm, then Γ is also
a vector space access structure because of the results about minors that are described
in [24].



Ideal Multipartite Secret Sharing Schemes 461

8.2. Compartmented Access Structures

The first examples of compartmented access structures were introduced by Sim-
mons [39], and ideal secret sharing schemes were constructed by Brickell [7] for a
more general family of such structures, which is described in the following. For a par-
tition Π = (P1, . . . ,Pm) of the set P of participants and positive integers t, t1, . . . , tm
with t ≥ ∑m

i=1 ti , consider the access structure Γ consisting of all subsets with at least
t participants in total and least ti participants in every compartment Pi . That is,

Π(Γ ) = {
u ∈ P : |u| ≥ t and ui ≥ ti for every i ∈ Jm

}
.

Since the set B = minΠ(Γ ) ⊆ Z
m+ satisfies the required exchange property, B is the

family of bases of some integer polymatroid Z = (Jm,h). We assume that |Pi | ≥ t −∑
j �=i tj for every i ∈ Jm. Observe that the access structure Δ = supp(Γ ) = {Jm} is

compatible with the integer polymatroid Z because h(Jm − {i}) = max{|u(Jm − {i})| :
u ∈ B} = t − ti ≤ t − 1 = h(Jm) − 1 for every i ∈ Jm. Therefore, there exists an integer
polymatroid Z ′ = (J ′

m,h) with h({0}) = 1, and Z ′(Jm) = Z , and Δ = Δ0(Z ′). From
Theorem 5.3, Γ is a matroid port. We prove next that Z ′ is representable over every
large enough finite field, and hence Γ is a vector space access structure over finite fields
of all characteristics. Consider a set B with |B| = t and a partition B = T ∪T1 ∪· · ·∪Tm

with |T | = t − ∑
i∈Jm

ti and |Ti | = ti for every i ∈ Jm. We claim that Z coincides with
the boolean polymatroid Ẑ = (Jm, ĥ) defined from the subsets Bi = T ∪ Ti ⊆ B for
i ∈ Jm. Actually, for every nonempty X ⊆ Jm,

h(X) = max
{∣∣u(X)

∣∣ : u ∈ B
} = t −

∑

j /∈X

tj ,

while

ĥ(X) =
∣∣∣
∣
⋃

j∈X

Bj

∣∣∣
∣ =

∣∣∣
∣T ∪

(⋃

j∈X

Tj

)∣∣∣
∣ = t −

∑

j /∈X

tj ,

and our claim is proved. Therefore, for every finite field K, there exists a K-
representation of Z formed by vector subspaces V1, . . . , Vm ⊆ K

t . For i ∈ Jm, con-
sider Wi = ∑

j �=i Vi . Then Wi �= K
t because dimWi = h(Jm − {i}) < h(Jm) = t .

By Lemma 7.5, if |K| > m, there exists a vector x0 ∈ K
t such that x0 /∈ Wi for all

i ∈ Jm. Therefore, if V0 = 〈x0〉, the vector subspaces V0,V1, . . . , Vm ⊆ K
t provide a

K-representation of the integer polymatroid Z ′. As before, the access structure Γ is
ideal also in the case that |Pi | < t − ∑

j �=i tj for some i ∈ Jm.
Tassa and Dyn [43] presented a construction of ideal secret sharing schemes, based

on bivariate polynomial interpolation, for a different class of compartmented access
structures. In this case, given positive integers t, t1, . . . , tm with ti ≤ t ≤ ∑m

i=1 ti , one
considers the access structure defined by

Π(Γ ) = {
u ∈ P : there exists v ≤ u with |v| = t and vi ≤ ti for every i ∈ Jm

}
.

Consider t0 = 1 and the integer polymatroid Z ′ = (J ′
m,h) defined by h(X) =

min{t,∑i∈X ti} for every X ⊆ J ′
m. Suppose that |Pi | ≥ ti for all i ∈ Jm. Observe that
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the family B of the bases of Z = Z ′(Jm) coincides with minΠ(Γ ). Actually, u ∈
minΠ(Γ ) if and only if |u| = t and |u(X)| ≤ min{t,∑i∈X ti} = h(X) for all X ⊆ Jm,
that is, if and only if u ∈ B. Therefore, Γ is the port of the Π0-partite matroid deter-
mined by Z ′. We prove in the following that Z ′ is K-representable for every finite field
with |K| ≥ ∑

i∈J ′
m

ti , and hence Γ is a vector space access structure over fields of all

characteristics. Consider the mapping v: K → K
t defined by v(x) = (1, x, x2, . . . , xt−1)

and consider
∑

i∈J ′
m

ti distinct values (xi,j )0≤i≤m,1≤j≤ti in K. For every i ∈ J ′
m, con-

sider the vector subspace Vi ⊆ K
t spanned by {v(xi,j ) : 1 ≤ j ≤ ti}. Clearly, these

subspaces form a K-representation of Z ′.
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